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Quantum Mechanical Position Operator and Localization in Extended Systems
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We introduce a fundamental complex quantity,, which allows us to discriminate between
conducting and nonconducting thermodynamic phases in extended quantum systems. Its phase can be
related to the expectation value of the position operator, while its modulus provides an appropriate
definition of a localization length. The expressions are valid dow fractional particle filling.

As an illustration we usez; to characterize insulator to “superconducting” and Mott transitions
in one-dimensional lattice models with infinite on-site Coulomb repulsion at quarter filling.
[S0031-9007(99)08740-2]

PACS numbers: 72.15.Rn, 03.65.Bz, 71.10.Ay, 71.27.+a

Macroscopically, the fundamental property that distin-systems satisfying BvK BC were discussed. The primary
guishes an insulator from a conductor is that a steady cuguantity was;y = (gle' 7~ |¢), wherelg) is the GS of the
rent cannot flow at zero temperature. Understanding thgystem (g|g) = 1), X = Z;,\’:l x; is the sum of particle

quantum nature of the insulating state and possible pha%sitions & /N is the center of mass coordinate), anis

transitions to a _conducting_state is a significant endeavak,e number of unit cells(X) was defined from the phase of
which started with the seminal work of Kohn [1]. Local- 2, while A was specified from the modulus of, taking
ization of the electronic wave function and the existence ofg thermodynamic limit/, L — =, keeping the density

a dielectric polarization density field are two related fea-;, ) — n /1 constant).

tures of the insulating ground state (GS). Accordingly, one Transational invariance and BvK (or twisted) BC are
would expect that wisdom developed from the recent migonvenient, and in most cases imperative, since the Hamil-
croscopic theory of polarization [2] could be exploited totonjan can be diagonalized separately in each Hilbert sub-
establish a criterion for localization. Important advancesspace of the many-body states which belong to the same
have been made recently [3,4], and a criterion of localizairreducible representation of the space group. For sys-
tion based on a GS expectation value has been propos@sims which do not possess translational invariance, BvK
[4]. However, as shown below, this criterion is valid only (or twisted) BC are not always an advantage over open BC,
at integer particle filling in translationally invariant sys- and for the latter, the traditional definition of the expecta-
tems, and its utility to identify a metal-insulator transition tion value of the position operator (i.e., the first moment
has not been demonstrated. of the modulus squared of the many-body wave function,
In this Letter we introduce a complex quantity,, |g|?, or “dipole”) is a well-defined concept. Thus, in the
which enables us to distinguish between conducting (metafpllowing we concentrate on translational invariant sys-
superconductor) and nonconducting (band, Peierls, Antems, although the localization citerion derived below is
derson, and Mott insulators) states of matter. Its phasealid in general. For these systems, excluding accidental
corresponds to the GS expectation value of the positiodegeneracie$g) belongs to a well-defined irreducible rep-
operator, intrinsically connected to macroscopic polarizaresentation of the space group. If the GS is nondegenerate
tion [3], while its modulus provides an unambiguous defi-(as assumed in Refs. [3,4]), callifgthe operator which
nition of a localization length which can be describedtranslates one unit cell (taken as the unit of length) to the
entirely in terms of the properties of the many-bodyright, one had'|g) = ¢'¥|g), wherek is the total momen-
GS. We show the usefulness of these ideas to charactdsm of the GS. Degeneracies of states which diffeKin
ize metal(superconducting)-insulator quantum phase trarer any other conserved quantum number do not affect our
sitions in strongly correlated lattice models. arguments (energy level crossings are allowed whenever
To describe the intrinsic bulk properties of extendedthe states involved belong to different symmetry sectors).
guantum systems it is almost mandatory to assuvne  In order forzy to be different from zero, the operator
interacting particles enclosed in a box subjected to periodidl, = ¢'Z*, when decomposed into irreducible repre-
Born—von Karméan (BvK) boundary conditions (BC). On sentations, should contain the trivial representation of
the other hand, the fact that the quantum state is definethe space group.This is not the case ifiy is not an
in a nonsimply connected manifold makes the center ointeger. It is straightforward to check that U, 7t =
mass of its wave function an ill-defined concept. Inrecene=27%U,;. Then (g|U.lg) = (g|TTT U, T T|g) =
interesting papers [3,4], the appropriate definition of thee 27 (g| U, |g), and the matrix element should vanish
GS expectation value of the position operatdr [3] unlessn is an integer. This restriction is too severe. For
and the localization length [4] in one-dimensional (1D) example, in 1D a Mott transition can take place for any
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filling, particularly if ngy is given by a simple fraction [5]. the charge stiffnes®, (i.e., sensitivity of the curvature
For noninteger fillings, the definitions of Refs. [3,4] lead of the total energy to phase changes in the BC): in the
to an undefinedX) and infiniteA for any system which is thermodynamic limitD, is zero in the insulating phase,

incorrect while it can attain any positive value in a conducting sys-
The correct definition for arbitrary filingsg = n/I, tem. Instead, lim_.|zz| = 0 for conducting systems,
wheren/l is an irreducible fraction, is and lim;— |zz| = 1 for noncorrelated insulators, or sys-
ziln/l] = <g|ei27"’X|g> = (g|Ullg). (1) temsinwhich all particles are Iocalizgd.in nonoverlapping
Then, the GS expectation value of the position operator i ectors [7]. To prove that th'|s last I|m!t can be achieved
defined[mod(L/1)] as or any correlated |nSL_1Ia_t0r is _rather involved, but one
can prove, for a generic insulating state, that, for latge
(KDn/1) = 5= 1m Iz n /1], (2) el =1— Dc/ny, and then lim—. |z, | = 1.
2l To illustrate the main concepts described above, we

and similarly to Ref. [4] one can introduce a localizationconsider an extended Hubbard model (EHM) with arbi-
length A. The first important point in these definitions is trary nearest-neighbor interaction and infinite on-site
that the operatofll; is invariant under translations and repulsionU in 1D, at quarter filling o = 1/2). By a
has no definite parity under space inversion. This enstraightforward extension of the methods used in similar
sures that; is not zero in finite systems, except for very models [10], it can be shown that this is mapped onto
particular cases in which hidden quantum numbers exis@ simple model of spinless interacting fermions [11], for
like for free electrons, in which not only the total wave Which some analytical results can be obtained in the ther-
vector K but also the one-particle wave vectors are conmodynamic limit. We explore the possibility of quantum
served by the Hamiltonian, while the latter are shifted byPhase transitions using our generalizationand(X). Fi-

the operatorU, [6,7]. The second important remark is nally, we discuss two generalizations of this model.

that, for nonintegen,, when a family of Hamiltonians The Hamiltonian which describes the charge dynamics
is introduced in which the one-particle wave vectors aredf the model in a ring ofL = 2N sites with BvK BC
shifted by a parameter [Eq. (5) of Ref. [3]], there is (cj+1 = c;r) threaded by a fludb is

a crossing of levels as a function af between states of o

different K’s. Crossings of this type were found previ- ~ H(®) = > —t(e'Teliie; + He) + Vajiny.  (4)
ously when calculating Berry's phases in systems which J

show the so-called anomalous flux quantization characthe gauge transformatiorf;r = ei/<1>/Lc;.f transforms

teristic of superconductors [6,8] and dnarmless,since (@) into a Hamiltonian Z(®) in which the phase

the states involved have different quantum numbers andgctors disappear at the cost of introducing twisted BC
therefore, are not mixed by the Hamiltonian. However, as.t

— ,idat _ ;
A ) T = e'¢; except for fluxesb = 27 X integer [11].
a consequence of this crossing, Eq. (7) of Ref. [3], stating” £ v . the GS can be obtained by perturbation
that U, |g) = e'7t|g) + O(1/L) (wherey, is a geomet-

. . ) . theory. Forr = 0 it is twofold degenerate between the
ric phase), igncorrect, since both members have differ- charge-density-wave (CDW) statéf and [2), with the
ent K's for nonintegerny. Finally, the behavior oy, '

. : . ' rticl ing ever nd sitl) = [TV,
in the thermodynamic limit provides us with a universal particles occupying every second sitd) 1_[,70

T . _ 1Ny T :
criterion to distinguish between a conductor (metal or su€2j+110); 12) = 1=, ¢2;10). These states are mixed
perconductor, as we will see below) and an insulatgr; I Nth order perturbation theory bgN'! processes in
vanishes in the first case, while | — 1 in the second. which all particles hop either to the left or to the right

In the general case (except for the above mentioned pa? Some order. For Ogd\/ [12], the effective matrix
ticular cases with hidden symmetries) one Hdslg) =  €lement is —r(N) (z/V)" cod®/2), where r(N) is a

ing to Eq. (2) can be done following Ref. [3] with simple €igenstates arkgo(®)) = (1) + [2))/v2 and|g(P)) =

and straightforward changes. As shown elsewhere [6], th8 1) ~ 12))/+/2. The former (latter) is the GS fob
Berry’s phasey; = 2w I(X)/L is 0 (® = 27). It is interesting to note what happens

2l 5 if ® is varied adiabatically fromD to 27: the wave
YL = if d® <g1<(¢) | —gK(<I>)>, (3) vector K = 0 of the GS of H(®) remains the same,
0 P while the wave vectoK in the representation off (®)
where|gx (®)) is the state obtained by adiabatic continu-varies ask = K + ®ny in general [6]. Sincéd(27) =
ation of the GSlg), when a flux® is threaded through H(0), after completing this cyclelgo(®)) has evolved
the ring [9] (a 1D system with BvK BC is topologically from the GS of H(0) with K = 0 to its first excited
equivalent to a ring). state with K = 7. After another cycle|go(4m)) re-
Using z; to distinguish between a conducting and aturns to the GS ofH(0) except for the geqmetrical
nonconducting system is more stringent than the critephase Eq. (3). It is easy to see that|2) =
rion introduced by Kohn [1]. Kohn's criterion, univer- Zjv:l(Zj) 2) = N(N + 1)[2), X|1) = N2|1). Then,
sally used in actual calculations, is based on the value oll;|go(®)) = *|g, (D)) [the sign depends on the parity
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of (N + 1)/2] and U}|go(P)) = |go(P)). This leads to 0.4
zy = 0buttoz,[1/2] = 1.

For attractive V and |V| > ¢, all particles group 03| m
together. For = 0 the GS is any of the statdPS; = / B
TIPS 0 =j=N—1), IPS =TI, cll0). Then, S o2} /i pr—" ‘
UZIPS,; = (—DV*!IPS);, andz,[1/2] = (DN, e L= 00

For arbitrary values ofV and ¢, the spinless model 0.1 ,/' ’I,"';
is equivalent (via a Jordan-Wigner transformation) to S
an XXZ model >, JoSi'S; with N spins up, and [/

J, =J, =2t,J, =V. This model was solved by the 0.0
Bethe ansatz [13]. From the solution one knows that 08 | PS |SC c I
there is a Mott transition a¥ = 2¢ and a transition to N
the phase segregated (PS) statd/at —2¢. We have __ 0B\ extrap
calculated the correlation exponekit of the EHM in the & \\"‘.}: ---------- L=
conducting phase—2t < V < 2r), solving the Bethe- 04 AW || e L=
ansatz integral equations for the energy per siig) of \‘. ——-L=12
the equivalen’XXZ model [13] and using the expression 0.2} ‘\'\ ----- L=
K, = m/D./(20%/9n2), where the Drude weight (or "" o

. . . {M
charge stiffness) is given by the Bethe-ansatz result 00 5" ] 5 3
D, = 2mtsinu/[8u(m — w)] with w = arccosV /2r) v/t

[14]. We obtain thatk, > 1 (superconducting correla-
tions dominate at large distances) fer2r <V < V., FIG. 1. Drude weightD. (top) and modulus of, defined by
with V. = —+/2¢ within our accuracy (0~3). Itis clear  Eg. (1) (bottom) for the/ — +c EHM at filling ny = 1/2 for
that this model provides a rich zero temperature phasBngs of various lengthd.. Also shown are the corresponding
diagram and an interesting laboratory to study Iocalizatiorgu"’“"t'tles extrapolated to the thermodynamic limit using a

i . ubic polynomial in1/L and the exact result foD, in the
and transitions to superconducting (SC) states. thermodynamic limit. The vertical lines separate the regions

Unfortunately the Bethe-ansatz wave function is quiteof phase segregation, Luttinger liquid witki, > 1 (SC) or
difficult to handle. Therefore, we obtained the 3$for K, < 1 (C), and a new insulating phase at larggr (1).
finite systems with up td. = 16 sites by the Lanczos
method. As usuallg) was taken at the value o _ .
which minimizes the GS energ§,(®). In the spinless increasing size. The extrapolated values|off clearly
model, this corresponds @ = 0 (BvK BC) for odd N show an abrupt transition ne& = —2z, indicating that
and ® = = (antiperiodic BC) for evenv, and in both the system is a conductor (very sméj}|) for —1.8¢ <
casesk = 0 [11]. This choice reduces the dependenceV < 1.2¢, and suggesting that it is an insulator fgr~
of the GS energy and; with size and also leads to a 3¢. Notice that the convergence to the thermodynamic
slightly more abrupt change ifx;| near the transitions. limit for D. and |z.| is, in absolute value, about the
The resultingz, | calculated with Eq. (1) is represented in same. However, for any value of, D. decreases with
Fig. 1 for various sizes, together with the correspondingsystem size while, in generat, | decreases well inside the
numerical results foD, = (L/2)d?E,(P)/o®? and the metallic phases|V| < 1.5¢) and increases well inside the
Bethe-ansatz result fob. in the thermodynamic limit. insulating phased¥| ~ 3). Thus, the results fde, | are
From the latter, the conductor-insulator transitions acomplementary to Kohn'®, criterion [1], |z, | providing
|V| = 2t are evident. However, the finite-size resultsa more useful measure.
always lead to a nonzerb. and, except perhaps for the =~ We have also studied the behavioryf [Eq. (3)] near
change in curvature neat ~ —2.5¢, there are no clear the transitions. Because of inversion symmetry,= 0
indications of any transition. The situation improves if or = [mod2)]. In contrast to previous cases [6,8], we
the finite-size results are extrapolated using a polynomiatlo not find a jump iny; at the transition from the SC to

in 1/L. The extrapolation agrees very well with the exactthe PS regimeW = —2r), or at the opening of the charge
result in the conducting phase, and suggests a transitiaggap (V = 2r). However, as in the case of attractivg6],
nearV = —2¢. However, from the extrapolatet. no there is a jump fromy;, = 7 to y, = 0 as the dominant

conclusions concerning the Mott transitiontat= 2r can  correlation functions at large distances change from the

be drawn. Only the large size dependence near 3ris  superconducting to the CDW ones. FbE L < 16 we

indicative of a charge gap. obtain with four digits accuracy, = —+/21t in perfect
NearV = —2t, asV increases|z; | decreases abruptly agreement with the value obtained from the numerical

from values near one, to very small values, as expected faolution of the Bethe-ansatz integral equations. Instead,

an insulator-conductor transition. F8r~ 2t, the change the corresponding jump in the phasezgftakes place for

in |z, | is rather smooth and the size dependence is smallj. ~ —1.55¢. This suggests that usikg) = Ly, /(2w])

but also the change of behavior becomes more abrupt withnd Eq. (3) one obtains a faster convergencéforo the
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thermodynamic limit than using Eq. (2). In addition, sincetions in models of strongly correlated quantum patrticles.
in the gapless metallic phases Jim. |z.| = 0, it mightbe  z, involves only the computation of the GS of the sys-
difficult to identify V. from the corresponding zero @f  tem, which for time-reversal symmetric Hamiltonians is
for sufficiently largeL. As in Ref. [6], we also find jumps real valued, wherea®,. needs at least two GS calcula-
in y, for other values ofV, in particular forvV = 0 and tions for different BC, and in one of them time-reversal
V = t, without an obvious physical meaning. symmetry is broken. This seems innocuous for Lanczos
In the rest of this Letter, we discuss Eq. (2) in morestudies, but it is not for stochastic approaches where the
detail and illustrate its physical meaning using two otherstudy of non-time-reversal symmetric states adds an addi-
simple examples. First, note that |i§) is replaced by tional complication to the already infamous fermion sign
one of the CDW state$l) or |2) discussed above, the problem. In additionz; can be computed using the pow-
result is(X) = 0 in both cases. This is reasonable, sinceerful density-matrix renormalization group method [15],
[1) and |2) differ in a translation and are thus physically while so far it does not seem possible to calculateus-
equivalent in translationally invariant systems. This is, ining this method.
general, the reason W) is defined modf /). Assume One of us (A.A.A)) is partially supported by CON-
now that in the model Eq. (4) one considers an attractivéCET, Argentina. G.O. acknowledges support from an
V and adds a next-nearest-neighbor repuldiésuch that Oppenheimer fellowship.
V> |V| > t. For evenN = L/2, |g) consists of a
sequence of two nearest-neighbor sites occupied, the next
two empty, and so on. Specifically~,.(P)) = (|A) =

A . 2—-1
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