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Quantum Mechanical Position Operator and Localization in Extended Systems
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We introduce a fundamental complex quantity,zL, which allows us to discriminate between
conducting and nonconducting thermodynamic phases in extended quantum systems. Its phase can be
related to the expectation value of the position operator, while its modulus provides an appropriate
definition of a localization length. The expressions are valid forany fractional particle filling.
As an illustration we usezL to characterize insulator to “superconducting” and Mott transitions
in one-dimensional lattice models with infinite on-site Coulomb repulsion at quarter filling.
[S0031-9007(99)08740-2]
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Macroscopically, the fundamental property that disti
guishes an insulator from a conductor is that a steady c
rent cannot flow at zero temperature. Understanding
quantum nature of the insulating state and possible ph
transitions to a conducting state is a significant endea
which started with the seminal work of Kohn [1]. Local
ization of the electronic wave function and the existence
a dielectric polarization density field are two related fe
tures of the insulating ground state (GS). Accordingly, o
would expect that wisdom developed from the recent m
croscopic theory of polarization [2] could be exploited t
establish a criterion for localization. Important advanc
have been made recently [3,4], and a criterion of localiz
tion based on a GS expectation value has been propo
[4]. However, as shown below, this criterion is valid onl
at integer particle filling in translationally invariant sys
tems, and its utility to identify a metal-insulator transitio
has not been demonstrated.

In this Letter we introduce a complex quantity,zL,
which enables us to distinguish between conducting (me
superconductor) and nonconducting (band, Peierls, A
derson, and Mott insulators) states of matter. Its pha
corresponds to the GS expectation value of the posit
operator, intrinsically connected to macroscopic polariz
tion [3], while its modulus provides an unambiguous de
nition of a localization length which can be describe
entirely in terms of the properties of the many-bod
GS. We show the usefulness of these ideas to charac
ize metal(superconducting)-insulator quantum phase tr
sitions in strongly correlated lattice models.

To describe the intrinsic bulk properties of extende
quantum systems it is almost mandatory to assumeN
interacting particles enclosed in a box subjected to perio
Born–von Kármán (BvK) boundary conditions (BC). O
the other hand, the fact that the quantum state is defin
in a nonsimply connected manifold makes the center
mass of its wave function an ill-defined concept. In rece
interesting papers [3,4], the appropriate definition of t
GS expectation value of the position operatorkX̂l [3]
and the localization lengthl [4] in one-dimensional (1D)
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systems satisfying BvK BC were discussed. The prima
quantity waszN ­ kgjei 2p

L
X̂
jgl, wherejgl is the GS of the

system (kgjgl ­ 1), X̂ ­
PN

j­1 xj is the sum of particle
positions (̂XyN is the center of mass coordinate), andL is
the number of unit cells.kX̂l was defined from the phase of
zN , while l was specified from the modulus ofzN , taking
the thermodynamic limit (N , L ! `, keeping the density
n0 ­ NyL constant).

Translational invariance and BvK (or twisted) BC are
convenient, and in most cases imperative, since the Ham
tonian can be diagonalized separately in each Hilbert su
space of the many-body states which belong to the sa
irreducible representation of the space group. For sy
tems which do not possess translational invariance, Bv
(or twisted) BC are not always an advantage over open B
and for the latter, the traditional definition of the expecta
tion value of the position operator (i.e., the first momen
of the modulus squared of the many-body wave functio
jgj2, or “dipole”) is a well-defined concept. Thus, in the
following we concentrate on translational invariant sys
tems, although the localization citerion derived below i
valid in general. For these systems, excluding acciden
degeneracies,jgl belongs to a well-defined irreducible rep-
resentation of the space group. If the GS is nondegener
(as assumed in Refs. [3,4]), callinĝT the operator which
translates one unit cell (taken as the unit of length) to th
right, one haŝT jgl ­ eiK jgl, whereK is the total momen-
tum of the GS. Degeneracies of states which differ inK
or any other conserved quantum number do not affect o
arguments (energy level crossings are allowed whenev
the states involved belong to different symmetry sectors

In order for zN to be different from zero, the operator
UL ­ ei 2p

L
X̂ , when decomposed into irreducible repre

sentations, should contain the trivial representation
the space group.This is not the case ifn0 is not an
integer. It is straightforward to check that̂TULT̂y ­
e2i2pn0UL. Then kgjULjgl ­ kgjT̂yT̂ULT̂yT̂ jgl ­
e2i2pn0kgjULjgl, and the matrix element should vanish
unlessn0 is an integer. This restriction is too severe. Fo
example, in 1D a Mott transition can take place for an
© 1999 The American Physical Society
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filling, particularly if n0 is given by a simple fraction [5].
For noninteger fillings, the definitions of Refs. [3,4] lea
to an undefinedkX̂l and infinitel for anysystem which is
incorrect.

The correct definition for arbitrary fillingsn0 ­ nyl,
wherenyl is an irreducible fraction, is

zLfnylg ­ kgjei 2p

L
lX̂

jgl ­ kgjU l
Ljgl . (1)

Then, the GS expectation value of the position operator
definedfmodsLyldg as

kX̂fnylgl ­
L

2pl
Im ln zLfnylg , (2)

and similarly to Ref. [4] one can introduce a localizatio
lengthl. The first important point in these definitions is
that the operatorU l

L is invariant under translations and
has no definite parity under space inversion. This e
sures thatzL is not zero in finite systems, except for very
particular cases in which hidden quantum numbers exi
like for free electrons, in which not only the total wave
vector K but also the one-particle wave vectors are co
served by the Hamiltonian, while the latter are shifted b
the operatorU l

L [6,7]. The second important remark is
that, for nonintegern0, when a family of Hamiltonians
is introduced in which the one-particle wave vectors a
shifted by a parametera [Eq. (5) of Ref. [3] ], there is
a crossing of levels as a function ofa between states of
different K ’s. Crossings of this type were found previ
ously when calculating Berry’s phases in systems whic
show the so-called anomalous flux quantization chara
teristic of superconductors [6,8] and areharmless,since
the states involved have different quantum numbers an
therefore, are not mixed by the Hamiltonian. However, a
a consequence of this crossing, Eq. (7) of Ref. [3], statin
thatULjgl ­ eigL jgl 1 O s1yLd (wheregL is a geomet-
ric phase), isincorrect, since both members have differ-
ent K ’s for nonintegern0. Finally, the behavior ofzL

in the thermodynamic limit provides us with a universa
criterion to distinguish between a conductor (metal or s
perconductor, as we will see below) and an insulator:zL

vanishes in the first case, whilejzLj ! 1 in the second.
In the general case (except for the above mentioned p

ticular cases with hidden symmetries) one hasU
l
Ljgl ­

eigL jgl 1 O s1yLd, and the rest of the demonstration lead
ing to Eq. (2) can be done following Ref. [3] with simple
and straightforward changes. As shown elsewhere [6], t
Berry’s phasegL ­ 2plkX̂lyL is

gL ­ i
Z 2pl

0
dF

ø
gK sFd

Ç
≠

≠F
gK sFd

¿
, (3)

wherejgK sFdl is the state obtained by adiabatic continu
ation of the GSjgl, when a fluxF is threaded through
the ring [9] (a 1D system with BvK BC is topologically
equivalent to a ring).

Using zL to distinguish between a conducting and
nonconducting system is more stringent than the crit
rion introduced by Kohn [1]. Kohn’s criterion, univer-
sally used in actual calculations, is based on the value
d
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the charge stiffnessDc (i.e., sensitivity of the curvature
of the total energy to phase changes in the BC): in th
thermodynamic limitDc is zero in the insulating phase,
while it can attain any positive value in a conducting sys
tem. Instead, limL!` jzLj ­ 0 for conducting systems,
and limL!` jzLj ­ 1 for noncorrelated insulators, or sys-
tems in which all particles are localized in nonoverlappin
sectors [7]. To prove that this last limit can be achieve
for any correlated insulator is rather involved, but one
can prove, for a generic insulating state, that, for largeL,
jzLj . 1 2 Dcyn0, and then limL!` jzLj ­ 1.

To illustrate the main concepts described above, w
consider an extended Hubbard model (EHM) with arb
trary nearest-neighbor interactionV and infinite on-site
repulsionU in 1D, at quarter filling (n0 ­ 1y2). By a
straightforward extension of the methods used in simila
models [10], it can be shown that this is mapped ont
a simple model of spinless interacting fermions [11], fo
which some analytical results can be obtained in the the
modynamic limit. We explore the possibility of quantum
phase transitions using our generalizationszL andkX̂l. Fi-
nally, we discuss two generalizations of this model.

The Hamiltonian which describes the charge dynamic
of the model in a ring ofL ­ 2N sites with BvK BC
(c

y
j1L ­ c

y
j ) threaded by a fluxF is

HsFd ­
X

j

2tsei F

L c
y
j11cj 1 H.c.d 1 Vnj11nj . (4)

The gauge transformation̄c
y
j ­ eijFyLc

y
j transforms

HsFd into a Hamiltonian H̄sFd in which the phase
factors disappear at the cost of introducing twisted B
c̄

y
j1L ­ eiF c̄

y
j except for fluxesF ­ 2p 3 integer [11].

For V ¿ t, the GS can be obtained by perturbation
theory. Fort ­ 0 it is twofold degenerate between the
charge-density-wave (CDW) statesj1l and j2l, with the
particles occupying every second site:j1l ­

QN21
j­0 3

c
y
2j11j0l; j2l ­

QN
j­1 c

y
2jj0l. These states are mixed

in N th order perturbation theory by2N! processes in
which all particles hop either to the left or to the right
in some order. For oddN [12], the effective matrix
element is 2rsNd styV dN cossFy2d, where rsNd is a
real positive number with1 , rsNdy2 , N!. Thus, the
eigenstates arejg0sFdl ­ sj1l 1 j2ldy

p
2 andjgpsFdl ­

sj1l 2 j2ldy
p

2. The former (latter) is the GS forF ­
0 (F ­ 2p). It is interesting to note what happens
if F is varied adiabatically from0 to 2p: the wave
vector K ­ 0 of the GS of HsFd remains the same,
while the wave vectorK̄ in the representation of̄HsFd
varies asK̄ ­ K 1 Fn0 in general [6]. SincēHs2pd ­
H̄s0d, after completing this cycle,jg0sFdl has evolved
from the GS of H̄s0d with K̄ ­ 0 to its first excited
state with K̄ ­ p. After another cyclejg0s4pdl re-
turns to the GS ofH̄s0d except for the geometrical
phase Eq. (3). It is easy to see that̂Xj2l ­PN

j­1s2jd j2l ­ NsN 1 1d j2l, X̂j1l ­ N2j1l. Then,
ULjg0sFdl ­ 6jgp sFdl [the sign depends on the parity
2561



VOLUME 82, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 22 MARCH 1999

a

ns

ic

e

he

al
ad,
of sN 1 1dy2] andU
2
Ljg0sFdl ­ jg0sFdl. This leads to

zN ­ 0 but tozLf1y2g ­ 1.
For attractive V and jV j ¿ t, all particles group

together. Fort ­ 0 the GS is any of the statesjPSlj ­
T̂ jjPSl (0 # j # N 2 1), jPSl ­

QN
j­1 c

y
j j0l. Then,

U
2
LjPSlj ­ s21dN11jPSlj, andzLf1y2g ­ s21dN11.
For arbitrary values ofV and t, the spinless model

is equivalent (via a Jordan-Wigner transformation) t
an XXZ model

P
kijla JaSa

i Sa
j with N spins up, and

Jx ­ Jy ­ 2t, Jz ­ V . This model was solved by the
Bethe ansatz [13]. From the solution one knows th
there is a Mott transition atV ­ 2t and a transition to
the phase segregated (PS) state atV ­ 22t. We have
calculated the correlation exponentKr of the EHM in the
conducting phase (22t , V , 2t), solving the Bethe-
ansatz integral equations for the energy per siteesn0d of
the equivalentXXZ model [13] and using the expression
Kr ­ p

p
Dcys2≠2ey≠n2

0d, where the Drude weight (or
charge stiffness) is given by the Bethe-ansatz res
Dc ­ 2pt sinmyf8msp 2 mdg with m ­ arccossVy2td
[14]. We obtain thatKr . 1 (superconducting correla-
tions dominate at large distances) for22t , V , Vc,
with Vc ­ 2

p
2 t within our accuracy (1023). It is clear

that this model provides a rich zero temperature pha
diagram and an interesting laboratory to study localizatio
and transitions to superconducting (SC) states.

Unfortunately the Bethe-ansatz wave function is qui
difficult to handle. Therefore, we obtained the GSjgl for
finite systems with up toL ­ 16 sites by the Lanczos
method. As usual,jgl was taken at the value ofF
which minimizes the GS energyEgsFd. In the spinless
model, this corresponds toF ­ 0 (BvK BC) for odd N
and F ­ p (antiperiodic BC) for evenN , and in both
casesK̄ ­ 0 [11]. This choice reduces the dependenc
of the GS energy andzL with size and also leads to a
slightly more abrupt change injzLj near the transitions.
The resultingjzLj calculated with Eq. (1) is represented in
Fig. 1 for various sizes, together with the correspondin
numerical results forDc ­ sLy2d≠2EgsFdy≠F2 and the
Bethe-ansatz result forDc in the thermodynamic limit.
From the latter, the conductor-insulator transitions
jV j ­ 2t are evident. However, the finite-size result
always lead to a nonzeroDc and, except perhaps for the
change in curvature nearV , 22.5t, there are no clear
indications of any transition. The situation improves
the finite-size results are extrapolated using a polynom
in 1yL. The extrapolation agrees very well with the exac
result in the conducting phase, and suggests a transit
near V ­ 22t. However, from the extrapolatedDc no
conclusions concerning the Mott transition atV ­ 2t can
be drawn. Only the large size dependence nearV , 3t is
indicative of a charge gap.

NearV ­ 22t, asV increases,jzLj decreases abruptly
from values near one, to very small values, as expected
an insulator-conductor transition. ForV , 2t, the change
in jzLj is rather smooth and the size dependence is sm
but also the change of behavior becomes more abrupt w
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FIG. 1. Drude weightDc (top) and modulus ofzL defined by
Eq. (1) (bottom) for theU ! 1` EHM at filling n0 ­ 1y2 for
rings of various lengthsL. Also shown are the corresponding
quantities extrapolated to the thermodynamic limit using
cubic polynomial in1yL and the exact result forDc in the
thermodynamic limit. The vertical lines separate the regio
of phase segregation, Luttinger liquid withKr . 1 (SC) or
Kr , 1 (C), and a new insulating phase at largeVyt (I).

increasing size. The extrapolated values ofjzLj clearly
show an abrupt transition nearV ­ 22t, indicating that
the system is a conductor (very smalljzLj) for 21.8t ,

V , 1.2t, and suggesting that it is an insulator forV ,
3t. Notice that the convergence to the thermodynam
limit for Dc and jzLj is, in absolute value, about the
same. However, for any value ofV , Dc decreases with
system size while, in general,jzLj decreases well inside the
metallic phases (jV j , 1.5t) and increases well inside the
insulating phases (jV j , 3t). Thus, the results forjzLj are
complementary to Kohn’sDc criterion [1], jzLj providing
a more useful measure.

We have also studied the behavior ofgL [Eq. (3)] near
the transitions. Because of inversion symmetry,gL ­ 0
or p fmods2pdg. In contrast to previous cases [6,8], w
do not find a jump ingL at the transition from the SC to
the PS regime (V ­ 22t), or at the opening of the charge
gap (V ­ 2t). However, as in the case of attractiveU [6],
there is a jump fromgL ­ p to gL ­ 0 as the dominant
correlation functions at large distances change from t
superconducting to the CDW ones. For8 # L # 16 we
obtain with four digits accuracyVc ­ 2

p
2 t in perfect

agreement with the value obtained from the numeric
solution of the Bethe-ansatz integral equations. Inste
the corresponding jump in the phase ofzL takes place for
Vc , 21.55t. This suggests that usingkX̂l ­ LgLys2pld
and Eq. (3) one obtains a faster convergence forkX̂l to the
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thermodynamic limit than using Eq. (2). In addition, sinc
in the gapless metallic phases limL!` jzLj ­ 0, it might be
difficult to identify Vc from the corresponding zero ofzL

for sufficiently largeL. As in Ref. [6], we also find jumps
in gL for other values ofV , in particular forV ­ 0 and
V ­ t, without an obvious physical meaning.

In the rest of this Letter, we discuss Eq. (2) in mor
detail and illustrate its physical meaning using two oth
simple examples. First, note that ifjgl is replaced by
one of the CDW statesj1l or j2l discussed above, the
result iskX̂l ­ 0 in both cases. This is reasonable, sinc
j1l and j2l differ in a translation and are thus physicall
equivalent in translationally invariant systems. This is,
general, the reason whykX̂l is defined mod(Lyl). Assume
now that in the model Eq. (4) one considers an attracti
V and adds a next-nearest-neighbor repulsionV 0 such that
V 0 ¿ jV j ¿ t. For evenN ­ Ly2, jgl consists of a
sequence of two nearest-neighbor sites occupied, the n
two empty, and so on. Specificallyjg6py2sFdl ­ sjAl 6

iT̂ jAldy
p

2, with jAl ­
QNy221

j­0 c
y
4j11c

y
4j12j0l. Then,

U
2
Ljg6py2l ­ 2jg6py2l, and kX̂l ­ Ly4 fmodsLy2dg

fX̂jAl ­
PNy221

j­0 s8j 1 3d jAl ­ NsN 2 1y2d jAlg. This
is consistent with the transfer of half of the particles o
the system, either to the left or to the right, necessary
build the statesjAl 6 iT̂ jAldy

p
2 from sj1l 6 iT̂ j1ldy

p
2.

In the examples discussed above, the Hamiltonian h
inversion symmetry. Under those circumstances the ph
of zL can attain only the values0 or p (zL is real).
This statement implies that well-defined values ofkX̂l
different from 0 andLys2ld fmodsLyldg can be achieved
only in the absence of inversion symmetry. A simpl
example in which this symmetry is explicitly broken is
obtained replacing each site in Eq. (4) by a heteronucle
molecule. Specifically, in the spinless case consider
system described by the Hamiltonian

Hs0d ­ D
X

j

d
y
j dj 2

X
j

st0d
y
j cj 1 tc

y
j11dj 1 H.c.d

1
X

j

sV 0c
y
j cjd

y
j dj 1 Vc

y
j11cj11d

y
j djd . (5)

It is easy to see that forV , V 0, t0 ¿ t, andn0 ­ 1y2 (one
particle each two unit cells),jgl is a CDW with every
second molecule singly occupied in the GS of the first tw
terms of Eq. (5). For thisjgl, Eq. (2) giveskX̂l ­ NP
whereP is the polarizability of each molecule and varie
continuously as a function oft0yD [2].

In conclusion, we have introduced a complex quanti
zL which is shown to display a qualitatively different be
havior for conductors than for insulators, thereby provi
ing a valuable criterion to distinguish between those sta
of matter. The criterion, which is valid for any fractiona
particle filling and for both ordered and disordered sy
tems, is complementary and in a sense sharper than
based on the value ofDc [1]. We have shown how to
use zL to characterize Mott and superconducting trans
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tions in models of strongly correlated quantum particle
zL involves only the computation of the GS of the sys
tem, which for time-reversal symmetric Hamiltonians i
real valued, whereasDc needs at least two GS calcula
tions for different BC, and in one of them time-reversa
symmetry is broken. This seems innocuous for Lancz
studies, but it is not for stochastic approaches where
study of non-time-reversal symmetric states adds an ad
tional complication to the already infamous fermion sig
problem. In addition,zL can be computed using the pow
erful density-matrix renormalization group method [15
while so far it does not seem possible to calculateDc us-
ing this method.
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