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Residual Native Shallow Donor in ZnO
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High-energy electron irradiation in ZnO produces shallow donors at aBeut 30 meV. Because
the production rate is much higher for Zn-face (0001) than O-{@681) irradiation, the donor is
identified as a Zn-sublattice defect, most likely the interstitia} &n a Zn-related complex. The
donor energy is quite close to that of the unirradiated sample, and of other samples discussed in the
literature, strongly suggesting that Z¢and notVy) is the dominant native shallow donor in ZnO. An
exceptionally high displacement threshold enefgyt.6 MeV) is quantitatively explained in terms of a
multiple-displacement model. [S0031-9007(99)08717-7]

PACS numbers: 71.55.Gs, 61.72.Ji, 72.20.Fr, 81.10.Bk

ZnO is a common and widely used semiconductor mathe ZnO used in the present study, but at least seven tran-
terial, which crystallizes in the wurtzite phase and has a&itions due to excitons bound to neutral donors. Fortu-
direct band gap of 3.437 eV at 2 K. Until now, the com- nately, sometimes an exciton bound to a neutral donor
mercial applications, including piezoelectric transducerswill collapse and leave the donor in an excited= 2)
varistors [1], phosphors, and transparent conducting filmsstate, and, if the donor is hydrogenic, then the ground-
have mainly involved polycrystalline material; however, state energy will be just4/3)[E(n = 1) — E(n = 2)].
recent successes in producing large-area single crystals [Reynoldset al. [11] used this fact to get a donor bind-
have opened up the possibility of a nearly lattice-matcheihg energy of about 56—-58 meV (close to the expected
substrate for GaN, a blue and uv light emitter [3]. More-value) for three of the donors associated with the donor-
over, it has been found that ZnO itself is a very brightbound-exciton lines mentioned above. Temperature de-
blue and uv light emitter, and optical uv lasing has alreadyendent Hall (TDH) measurements were applied to this
been demonstrated [4], even at 300 K [5]. With the resursame material [2], and energies of 31 and 61 meV were
gence of interest in commercial applications, it is impor-found for two donors of concentratioh X 10'® and
tant to point out that many of the fundamental propertiesl X 107 cm™3, respectively. The larger of these TDH
are poorly understood; e.g., no impurity or defect donorglonor energies is consistent with the hydrogenic model;
or acceptors have been positively identified, say, in term&owever, the shallower one is not. In an older work by
of energy. Because most ZnO material is stronglype, = Wagner and Helbig [12], again a shallow level (38 meV)
it has long been assumed that the dominant donor is a naas measured. In fact, in the samples that we have ex-
tive defect, either the O vacandiy, or the Zn interstitial amined, a shallow donor of energy 25-35 meV always
Zn; [6]. Kroger [7] assignedVp and Vz, as the domi- dominates the low-temperature electrical data, although
nant donor and acceptor species, respectively, [ltake  various deeper donors are often evident at higher tempera-
low donor state foVy has never been proven to exist. In tures(T > 300 K). Thus, we hypothesize that the donor
fact, Vo has been identified in electron paramagnetic resoat approximatelyE- — 30 meV is a native defect, and
nance (EPR) studies asdeepdonor [8], although the support that claim below.
energy has not been measured. Correspondingly, Van- To create defects, we have used high-energy (1.0—
heusderet al. [9] argued that, since the free carrier con- 2.0 MeV) electrons from a Van de Graaff accelerator. The
centrationn was much larger thaf] in their samples, sample stage was under vacuum and water cooled, and
there had to be another source of donors, possibly Zntypical current densities wer-20 wA/cn?. The ZnO
Various other authors have postulated eithigror Zn; as  samples, of approximate dimensioAsnm X 6 mm X
the dominant donor in their particular samples. 0.5 mm, were cut from 2-in.-diam. wafers, which were

The expected hydrogenic donor energy is given bythemselves cut from a boule grown by a vapor-transport
Ep = 13.6m*/e} = 66 meV, since the polaron effective technique [2]. The crystals were of very high quality,
mass ism* = 0.318my, and the relative static dielectric with peak mobilities of abou2000 cn?/V's (see inset of
constant iseg = 8.12 [10]. Optically, at least by pho- Fig. 1), and donor-bound-exciton PL linewidths as narrow
toluminescence (PL)Ep is difficult to measure directly, as 0.1 meV, at 2 K.
because most of the near-band-edge PL strength involvesMost of the energy loss in high-energy electron
exciton collapse, not free-to-bound transitions; indeedpbombardment occurs from electron-electron, rather than
Reynoldset al. [11] see no free-to-bound transitions in electron-nucleus, collisions [13]. Suck-e collisions
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107 13, 1.6 MeV; 14, 2.0 MeV; 15, 2.0 MeV; and 16, 2.0 MeV.
The TDH data for 10 and 16, O face, are shown in Fig. 1 as
squares and circles, respectively. (Note that this figure
is already corrected for the Hallfactor; i.e.,n = rng =
=1 r/eR,wherer is the measured Hall coefficient.) The solid
09100 200 300 400 lines are accurate theoretical fits, calculated according to
T (K) the following scheme [2]. First, the Hall mobilityy vsT
@ is fitted by solving the Boltzmann transport equation, using
10" Rode’s method [10], at each temperature; in this initial
fit, n is approximated by:y. The only fitting parameter
is the acceptor concentratidvy, since the ionized-defect
“ © . scattering rate varies @&V, + n in an n-type sample,
10 0 10 20 30 assuming singly ionized defects or impurities; all of the
1097 (K™ other scattering parameters are taken from the literature
[2]. From this fit, a set of factors can be calculated, and
FIG. } (Ca”ief )Conge“”at_iond‘i/ftle;o;ta; Oumg{ﬂ/dtigtgil uzgrf?:e then the truez = rny can be used to determine a better
sample (squares) and one irra : : -
1.2 >5) 10‘7qcm‘2 (circles). The inset shows mobility V& for Qé?r::ﬁyoiévé éﬁ a\;g(ral?bsallc;%r::]elééait.ignaiss 2()1}\1/2((;[}0n .

the two cases.
- nNy= Y @)
limit the electron range to about 0.7 and 1.7 mm, for 1- = 1+ n/,

and 2-MeV electrons, respectively. Most of the analysiSyhere ¢ = (g0/g;) expla/k)NET?? exp—Epo/kT).
here will concern 2-MeV electron irradiation, becauseyere, o and g, are the degeneracies of the unoccupied
litle damage is seen, either optically or electrically, gng occupied states, respectively, is Boltzmann's

for E < 1.6 MeV. At 2 MeV, the electrons will easily constant N/ is the effective density of conduction-band
penetrate the 0.5-mm samples. If a relativistic electron ofiates atr = 1 K, and Ep, and a are defined by the
energyE makes adirect hit on a nucleus, it will transfer  §onor energyEp = Epo — aT. In Fig. 1, we have

a maximum energy,, giver21 by [13] used a single-donor model to fit just the data between
_ 2E(E + 2m,c”) about 80 and 300 K; below 80 K, impurity-band (or

" Mc? defect-band) effects cause the curves to bend upward,

2147 X 10~°E(E + 1.022 X 106) and, above 300 K, deeper donors become important.

= , (1)  The fitting parameters given by the solid lines in Fig. 1

where m, and M are the /}electron and ion masses,are the following: 10: N4 = 0.25 X 10'°, Np = 8.6 X
respectively,A is the atomic weight, and the energies 10'° cm™>, and Epg = 34 meV; 16: Ny = 15.9 X 10'°,
are in eV. The threshold energf, necessary to Np = 162 X 10'cm™, and Epy =27 meV. Note
produce an atomic displacement is then just given by théhat a lower value oftp, would be expected for the 16
conditionE,, = E,, whereE, is the displacement energy. case, because of increased screening effects due to the
Since very little damage is seen fér < 1.6 MeV, the higher Np; i.e., Ep = Ep(Np = 0) — ,BNL1)/3, where 8
implication is thatEy, > 1.6 MeV, or E; > 138 eV for  is usually between 2 angl X 107> meV cm for various
Zn (A = 65.38),0r E; > 563 eV for O(A = 16). These semiconductor materials.
values of E; are much too high when compared with  Although N, has increased greatly by the end of
those of As displacement in GaAs (10 eV) [14], N in GaNthe irradiation sequence, still the same shallow level is
(11 eV) [15], Si (13 eV) [16], and even C in diamond dominant, at least below = 250 K. Sincen < ¢ in
(80 eV) [17]. However, as we shall show lateffective the high? region, Eq. (2) givesn = Np — N4, and,
values ofE,; can be much higher if thetabledefects are since N4 > n, Np and N4 are almost equal and are
only those which involvanultiple atomic displacements, being produced at nearly the same rate. In Fig. 2, we
along a chain of atoms. show ngy (300 K) and uy (80 K) for both the O-face
Automated Hall-effect measurements were performednd Zn-face samples, noting thaj; (300 K) = Np —
after each irradiation and covered a temperature range o, and wy (80 K) o N;'. Clearly, the threshold for
15-400 K. The contacts, In dots soldered to the corner&/, production is between 1.6 and 2.0 MeV, and the
of the square samples, were Ohmic even at the lowegroduction is much higher for Zn-face irradiation. In
temperatures. One sample was irradiated along the (0001his direction (Zn-face up), Zn displacement is “easy”
direction (Zn-face up), and the other along t@®01) because the Zn atoms are knocked into an interstitial
direction (O-face up). Sixirradiations, each of fluedce region; however, in the other direction (O-face up), the Zn
10'¢ /cm?, were performed per sample and are designatedtoms have a short-bonded O atom directly beneath them,
as follows: 10, no irradiation; 11, 1.0 MeV; 12, 1.3 MeV; so that Zn displacement becomes more difficult [14].
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the hydrogenic donor, which is largely responsible for
o—e O face the negative slope of: (300 K) seen in Fig. 2. One
------------- a Zn face . : PR
1000| w, (BOK) possible model fOIf the hydrogemc-dorpr Qestructlon is a

replacement reaction, often observed in Si [20]. That is,
a host interstitial (in this case ;) displaced during the

5
39 _

=F Ny, (300 K) irradiation, migrates to a substitutional donor (sayg)CI

= and replaces it, thus destroying a donor. Thg left

> 100 behind, being deeper, does not contributent¢300 K).
“e It also might be conjectured that;@ould be an acceptor
9; (as, e.g., isV; in GaN) [15]; however, then we should

3 see a strong decrease in(80 K) and, in fact, very little

10 1.0 13 eSO a0 et M.ev decrease is seen until > 1.6 MeV. Thus, we believe
0 1 2 3 4 5 6 that our data cannot be explained by O-sublattice damage.

Irradiation number It is still necessary to explain why the apparent dis-

FIG. 2. Hall concentration at 300 K and mobility at 80 K as a placement energl, is so large. Thatis, from Fig. 2, we

function of irradiation schedule for two ZnO samples, one withS€€ that the threshold energy, for significant electrical
the Zn-face up, and the other with the O-face up. The fluencehanges is~1.6 MeV, and we have assigned the donors

for each irradiation wag X 10'° cm™. and acceptors being produced above this energy to Zn
and Vz,, respectively. If the Zpresults from a simple
The opposite conclusions hold for O atoms, of coursedisplacement, then, from Eg. (1)£; = 138-198 eV,
Thus, the data of Fig. 2 suggest that Zn displacement ishich is much too high. In fact, Van Vechten has cal-
dominant, and the simplest explanation is that Zar  culatedE;(Zn) = 18.5 eV andE,(O) = 41.4 eV from a
a Zny complex) is the donor being produced, akig, thermodynamic model [21], and Locker and Meese have
(or a Vz, complex), the acceptor. Although no defect estimatedE,(Zn) = E;(O) = 57 eV from their experi-
theory in ZnO has been carried out, to our knowledgements [17]. We believe that the resolution to this problem
still, in analogy with theoretical results in ZnSe [18], we lies in the idea of multiple displacements along a chain of
might expect Zp to have(0/+) and(+/++) states near atoms. That is, suppos€;(Zn) = 18.5 eV and suppose
the conduction band minimum. Our analysis has beethe electron energy is just high enough to displace a Zn
based on single-charge-state donors and acceptors, whiatom; then, from Eg. (1), we calculaig, = 0.4 MeV.
would hold if the 30-meV energy corresponds(@y+);  However, the Zpwill be positively charged, and thez,
however, the analysis could be easily revised to includ@egatively charged, and they will probably recombine im-
double-charge-state defects and the main conclusiormaediately. On the other hand,Af is higher, then the col-
would not change. lision may give the Zn atom enough kinetic energy (KE)
The conclusion that Znis the dominant donor in our to knock out the O atom directly below it. For nonrela-
as-grown ZnO is based on the identification of a Zn-tivistic particles, the maximum energy that a particle of
sublattice donor which happens to have the same energgassM; and energyE can transfer to a particle of mass
as that of the dominant donor in the as-grown sampleM; is
However, there should also be O-sublattice defects created AM M,
at 2 MeV, as found by Smith and Vehse [19], using m = mE = RE. 3)

EPR experiments. Moreover, _Locker and Meese [17}¢ T,,(0) > E4(O), then the O atom will be displaced and
have found a threshold for carrier removal at 0.31 MeV, | itself have KEO) = T,,(0) — E4(0). This process

but it appears only after first irradiating their sample at., go on: i.e., ifRKE(O) > E4(Zn), then the O can
>0.90 MeV. They argue that the 0.31 MeV threshold \,oc1 oyt the Zn below it, etc. At some point, the last
is due to O dlsplacement, and that the one at 0.90 Me\én[ knocked out will be far enough from the pareni,

is due to Zn displacement. However, W is a deep 4 ay0id immediate recombination. Let be the total
donor, as found by the EPR experiments [8], then it,,mper of atoms displaced; e.g.,— 3 would denote Zn-
cannot remove carriers im-type material; in fact, it 5 >0 andm = 5. Zn-O-Zn-O-Zn. Then it can be shown

should not be seen by electrical measurements at all {5t the effective threshold energy, farodd andm > 1
Er is near the conduction band. We believe, rather:; ' ’

! . is given by
that the carrier removal may occur by thlkestruction EJ0)  E 2Zn)  E,O)
of the hydrogenic(~60 meV) donors. Consistent with  E; .¢+(Zn) = E4(Zn) + dR + =4 + =4

this scenario, the 10 data for both of our samples are R? R
best fitted at high temperatures with a second donor, of N N E4(Zn) 4
roughly hydrogenic energy, but this level is barely evident Rm—1 - (4)

after the 16 irradiation, as seen in Fig. 1. Two-donorThis expression can also be written in closed form, but,
fits to the 10—16 data sets show a systematic removal o$incem is usually small, Eq. (4) is more illustrative. #f
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is even (e.g.m = 6; Zn-O-Zn-0O-Zn-0), then the formula thus, Zn (and notVy) is the dominant residual native

becomes shallow donor in ZnO.
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value of E;(Zn) and E;(O), and m = 3, we calculate
Eqi1(Zn) = 130 eV. According to Eg. (1), the electron
energy required to transfer 130 eV to a Zn atom would
be about 1.55 MeV, in good agreement with the data of [1] gépiggin(%b\é\g)l' Lee, and T.-Y. Tseng, Appl. Phys. Lett.
Fig. 2. It is also interesting to note that if O atoms are ' : :
hit by the electrons, then, fon = 2 (O-ZN), E.t(O) = [2] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones,
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