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Accurate Density Functional with Correct Formal Properties:
A Step Beyond the Generalized Gradient Approximation
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We approximate the exchange-correlation energy of density functional theory as a controlled
extrapolation from the slowly varying limit. While generalized gradient approximations (GGA's)
require only the local density and its first gradient as input, our meta-GGA also requires the orbital
kinetic energy density. Its exchange energy component recovers the fourth-order gradient expansion,
while its correlation energy is free of self-interaction error. Molecular atomization energies and
metal surface energies are significantly improved over GGA, while lattice constants are little changed.
[S0031-9007(99)08696-2]

PACS numbers: 71.15.Mb, 31.15.Ew, 68.35.Md

Density functional theory [1,2] is a popular tool for elec- GGA’'s. Meta-GGA's are computationally efficient and

tronic structure calculations of ground-state properties irtan achieve ordel scaling with unit-cell size.
atoms, molecules, and solids. In this theory, only the Meta-GGA'’s can also achieve high accuracy, as demon-
exchange-correlation energy,. = E, + E. as a func- strated by recent constructions [9—11] based upon fits to
tional of the electron density(r) = n; + n; must be ap- chemical data. However, semiempirical constructions are
proximated. Despite its simplicity, the local spin densityunsatisfactory in two ways: (1) The density functional
(LSD) approximation [1,2] should derive from quantum mechanics, without the need

_ for 10 or 20 fit parameters. (2) Semiempirical functionals

ESP[ny,n)] = f d*rn(r)eir (m(r),n(r)), (1)  typically fail for the uniform electron gas—the one limit
o _ . _ in which the GGA and meta-GGA forms can be exact—
is still widely used in solid-state physics. More recently, and more generally for solids. Universal functionals must
generalized gradient approximations (GGA'’s) [3-5], be based on universal principles.
To construct a meta-GGA, we follow the philosophy of

EMny,ny] = f d’r ne N ny, ny, V. Vny), - (2) Perdew, Burke, and Ernzerhof (PBE) [5], who constructed

h q ¢ q into th Im of ¢ a GGA by preserving and extending the correct formal
ave made a strong advance Into the reaim of quantu roperties of LSD. If everything right is kept and nothing
chemistry. However, the goal of constructing a universa

functional with chemical tomizati rong is added, the resulting functional can never be less
unctional with chemical accuracy (atomiza 10N ENETrgy €Iy ccurate than LSD, unless by accident. For molecules,
rors of orderl kcal/mole = 0.0434 eV) remains elusive.

4 the PBE GGA reduces the LSD overbinding and greatly
One way fo go beyond the restricted GGA form 0fimproves atomization energies. It gives realistic binding-
Eq. (2) is to construct a fully nonlocal density functional,

h di ¢ K16l A . nergy curves for rare-gas dimers, where other GGA's fail
as we have propose“ In recent work [6]. more prac 'C‘?‘F12,13]. In solid-state physics, itimproves lattice constants
way is to construct “meta—generalized gradient approxi

Lo \ i and magnetic properties of many metals, and pressures for
matlons (MGGA's) Wh.'Ch expand.t.he argum'ents Qf thephase transitions [14]. However, the PBE GGA does not
integrand of Eq. (2) to include additional semilocal infor-

it the L aplaciar? the Kineti q always improve upon LSD lattice constants and can even
mation, €.g., the Laplaciavi n, Orthe KInetic energy den- predict less accurate ones as in Ge. Moreover, surface

sity of the occupied Kohn-Sham orbitals, exchange energies are significantly underestimated by this
oceup 5 and other GGA'’s.
To(r) = = D Vo @, 3) In this Letter, we construct a new functional for
“« the exchange-correlation energy which retains the good
where o = 1,] and n, = >, |os|>. Although 7, is  formal properties of the PBE GGA while adding others.
a nonlocal functional of the density, it is accessible inThis new functional makes predictions which significantly
every calculation. Early meta-GGA's [7,8] preceded mosimprove upon those of PBE. The price for this general
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improvement (which seems unreachable within the GGAa form similar to that of Ref. [5] but with
form) is the addition of another local variable, the kinetic 10 146 73 1 /10\2
energy densityr = m + 7|, which for ny = n; has the x = 31 P qu - qu + [D + ;( ) } 2,
second-order gradient expansion [15]

2
1 [vnl® + lvzn, (4) anewinhomogeneity parameter which repla@@s 951 p.
72 n 6 k = 0.804 is the largest value which ensures that the

Becke has argued thatis a natural ingredient of both the Lieb-Oxford bound of Eq. (7) is satisfied for all pos-
exchange energy [16] and the correlation energy [11]. Fopible densities. We estima®@ = 0.113 by minimizing
compatibility, these two should be approximated togeththe mean absolute error in the atomization energies of the

81
(14)
FGEA _ 13_0 (3772)2/3n5/3 n

in the same way. molecules from Ref. [5] (Table I). This estimate DX,
The meta-GGA for exchange must satisfy the spinWhich makesr = 0 (henceF, = 1), is also supported by
scaling relation [17] studies of the surface exchange energy for slowly varying
density profiles [21].
1 1 Unlike this meta-GGA (but like other GGA'’s [4]), the
E[n, = —E|2 + —E 2 s 5 . ’ .
Ly, 2 (2] 2 (2] ®) PBE GGA does not recover the correct gradient expansion

the uniform density-scaling relation [18] for exchange even to second orderMn Its coefficient
for the term linear irp in the enhancement factor is larger

E.n,] = AE([n], (6) than the correct value ¥81 [22] by a factor of 1.778.
This choice was made in Ref. [5] to recover the LSD linear
response of the uniform electron gas, because the second-
order gradient expansion is a less satisfactory approxima-
tion to this response. The meta-GGA recovers the exact
linear response function, (k) up to fourth order irk /2k,
whereky is the Fermi wave vector. The combined (ex-
We write the meta-GGA for a spin-unpolarized den-change plus correlation) linear response functir(k) in
Sity n as meta-GGA is in good agreement [21] with nearly exact re-
sults for0 = k/2kr < 1.5.

where n,(r) = A3n(Ar), and the Lieb-Oxford lower
bound [19]

E.[n,n] = E[n,n] = —1.679[ Pra*?. (@)

EMSCGA[,] = f &*rne™(n)F(n,Vn,7), (8)
- 3 TABLE I. Atomization energies (in kcgmole). All function-
where e'"if(n) = —;=(372n)!/? is the exchange energy als evaluated on GGA densities at experimental geometries.
per particle of the uniform electron gas. The enhancemerfero-point vibration removed from experimental energies [5].

. . ) The GGA is PBE [5], and the LSD is the local part of PBE.
factor F, for a slowly varying density has the fourth-order The Gaussian basis sets are of triple-zeta quality, pitindd

gradient expansion of Svendsen and von Barth [20] polarization functions for H and and f polarization functions
for first- and second-row atoms.

o 106, T3
x = 31 P 2025 q 405 qp Molecule AELSD A EGGA A EMGGA A Eexpt

+ Dp? + O(V9), 9 H 113.3 104.6 114.5 109.5
LiH 61.1 53.5 58.4 57.8
where CH, 462.6 419.8 421.1 419.3
_ 2 2\2/3 8/3 NH; 337.3 301.7 298.8 297.4
p = [Vnl* /4B n"]. 10 op 1242  109.8 107.8 106.4
is the square of the reduced density gradient, and H,O 266.6 234.2 230.1 232.2
HF 162.3 142.0 138.7 140.8
q = Vn/[437%) 0] 1y, 23.8 19.9 225 24.4
is the reduced Laplacian of the density. While the first-iF 156.1 138.6 128.0 138.9
two gradient coefficients in Eq. (9) are known exactly, theBe 12.8 9.8 4.5 3.0
third has an uncertainty of 20% [20] and the fouri) (s C.H, 460.3 414.9 401.2 4054
K CoHq 632.7 571.5 561.5 562.6
unknown. _ HCN 360.8 326.1 311.8 311.9
We define a new variable co 298.9 268.8 256.0 259.3
- 22/3,5/31 — 9/20 — p/12 12 N, 266.9 243.2 229.2 228.5
g =37/R07) ] = 9/20 = p/12, - (12) G 1984  171.9 158.5 152.9
which by Eq. (4) reduces tg in the slowly varying limit O, 174.9 143.7 131.4 120.5
but remains finite at a nucleus whereiverges. Asimple F 78.2 53.4 43.2 38.5
enhancement factor, which scales like Eq. (6) and reduces 143.0 121.1 117.8 117.3
to Eq. (9) in the slowly varying limit, is Cl, 82.9 65.1 9.4 8.0

Mean abs. error 31.69 7.85 3.06

F.p,g) =1+ k — /(1 + x/k), (13)
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Our meta-GGA correlation energy functional retains thefor E.[n,] under uniform scaling as the scale parameter
correct formal properties of PBE GGA correlation, suchA — «. We also require that the correlation energy be
as the correct slowly varying limit and the finite limit self-interaction free, i.e., vanish for a spin-polarized one-
electron density. We use the form

w\2 W\ 2
EMSCA[py n)] = f d3r{neCGGA(nT,nl,Vm,an)[l + C(Z‘TT") :| -1+ C)Z(T”) ny€5(ny,0,Vn,,0) 1,
o To o To
(15)

where €564 = it + I is the PBE GGA correlation’  Since the meta-GGA exchange-correlation energy de-
energy per electron [5]. Here pends explicitly on the occupied Kohn-Sham orbitals, the
W 1 |Vn, |2 corresponding exchange-correlation potential can be found
T T g . (16) by the optimized potential method [25,26]. However, in
7 this paper we evaluate meta-GGA energies with orbitals
the Weizsacker kinetic energy density, is exact for a oneand densities from self-consistent LSD or GGA calcula-
electron system. Thus Eq. (15) vanishes for any onetions for surfaces and for molecules and solids, respec-
electron density, for any value of the paramefer Becke tively. Experience with other functionals suggests that
[11] and others [9,23] have used andr) to construct results obtained this way will be very close to those of
self-interaction-free correlation energy functionals. Wefully self-consistent meta-GGA calculations.
have shifted the self-interaction correction to fourth order Table | shows the atomization energies of 20 small
in V, where it has no effect on the correct second-ordemolecules calculated [27] with different functionals. The
gradient coefficient iS4, meta-GGA functional performs remarkably well; it re-

Just as our self-interaction correction has no effectiuces the mean absolute error to 3 Koable, more than
on a system of slowly varying density, it should havea factor of 2 better than the PBE GGA and a factor of
none on the surface energy of an extended solid. TheO better than LSD. The PBE GGA overbinding of multi-
choice C = 0.53 gives surface correlation energies for ply bonded molecules is strongly reduced, without degrad-
jellium (with bulk density parametef;, 2 < r; = 6 bohr)  ing the quality of the results for singly bonded molecules.
in close agreement with those of PBE GGA; atomicThe largest errors occur for,Quith almost 11 kcglmole
correlation energies also agree, but less precisely. For th@verbinding, and for LiF which is underbound by almost
Hartree-Fock density of the He atom, the MGGA energiegshe same amount. For atomization energies, meta-GGA
in hartrees arek,[n] = —1.020, E.[n] = —0.047, and accuracy is comparable to that achieved more expensively
limy—« E.[n,] = —0.054. by mixing GGA with exact exchange [28].

By making the correlation energy self-interaction free, Table Il shows surface exchange and correlation ener-
we achieve proper uniform scaling behavior for all one-gies for jellium. The meta-GGA gives surface exchange
electron densities. This improvement seems to carry ovegnergieso, closer to exact values [29] than either LSD
to many-electron systems. Under uniform scaling to thgwhich overestimates) or PBE GGA (which underesti-
low-density or strongly interacting limitA(— 0), E.[n,]  mates). The combined MGGk, = o, + o, is close
scales to\W,.[n]. For the density:(r) of the helium atom, to estimates of the exaet,. [6] which treat exchange and
W.[n] in hartrees is—0.84 (LSD), —0.68 (PBE GGA), long-range correlation within the random phase approxi-
—0.48 (MGGA), and—0.48 (exact [24]). mation (RPA) [29], and short-range correlation (the cor-

Unlike the PBE GGA, our meta-GGA [Egs. (3), (5), rection to RPA) within LSD.

(8), (13), and (15)] has fitted parameters, D), but far The general improvement we have achieved over PBE
fewer than other recent functionals. Comparison withGGA seems to be a consequence of the more general meta-
other functionals will be made elsewhere. GGA form. Attempts to revise PBE within the GGA form

TABLE Il. Exchange and correlation contributions to surface energies (ificery for jellium, using self-consistent LSD
densities. Exact surface exchange energies were provided by Pitarke and Eguiluz [29].

I O.;ccxact O.)I;SD O',CGGA O.)I(\/IGGA O'(ITSD (TE'GA (TEAGGA
2.00 2624 3037 2438 2578 317 827 824
2.07 2296 2674 2127 2252 287 754 750
2.30 1521 1809 1395 1484 210 567 564
2.66 854 1051 770 825 137 382 380
3.00 526 669 468 505 95 275 274
3.28 364 477 318 346 72 215 214
4.00 157 222 128 142 39 124 124
5.00 57 92 40 47 19 67 66
6.00 22 43 12 15 10 40 40
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TABLE Ill. Lattice constants (in A) for some solids studied [3] D.C. Langreth and M.J. Mehl, Phys. Rev. 28, 1809
in Ref. [32], from scalar-relativistic all-electron full-potential (1983).
linearized augmented plane wave calculations [33] without [4] A.D. Becke, Phys. Rev. /88, 3098 (1988).

zero-point anharmonic expansion. GGA densities used for all [5] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

but the LSD calculations. 77, 3865 (1996)78, 1396(E) (1997).
Solid 4-SP 4GGA aMGGA Pt [6] S. Kurth and J.P. Perdew, Phys. Rev. B (to be published).

[7] J.P. Perdew, Phys. Rev. Lef5, 1665 (1985).

Na 4.05 4.20 4.31 4.23 8] S.K. Ghosh and R.G. Parr, Phys. Rev3A, 785 (1986).

NaCl 5.47 5.70 5.82 5.64  [9] T. Van Voorhis and G.E. Scuseria, J. Chem. PH39

Al 3.98 4.05 4.02 4.05 400 (1998).

Si 5.40 .47 5.46 543 [10] E.I. Proynov, E. Ruiz, A. Vela, and D.R. Salahub, Int.

Ge 5.63 5.78 5.73 5.66 J. Quantum ChenR9, 61 (1995).

GaAs 5.61 5.76 5.72 5.65 [11] A.D. Becke, J. Chem. Phy&09, 2092 (1998).

Cu 3.52 3.63 3.60 3.60 [12] Y. Zhang, W. Pan, and W. Yang, J. Chem. Phy67,

W 3.14 3.18 3.17 3.16 7921 (1997).

Mean abs. error 0.078 0.051 0.059 --- [13] D.C. Patton and M. R. Pederson, Phys. Re\bGA R2495

(1997).

. o . . o ~ [14] A. Zupan, P. Blaha, K. Schwarz, and J.P. Perdew, Phys.
[30] achieve limited improvement in atomization energies, Rev. B58, 11266 (1998).

but worsen the surface energies. Even for atomizatiopi5] M. Brack, B. K. Jennings, and Y. H. Chu, Phys. L&&B,
energies, the “revised PBE” GGA improves results for the 1 (1976).

multiply bonded molecules at the cost of worsening thenj16] A.D. Becke, Int. J. Quantum Cherf3, 1915 (1983).
for the singly bonded ones [31]. [17] G.L. Oliver and J.P. Perdew, Phys. Rev. 20, 397

The meta-GGA distinguishes between different limiting (1979).
regions of space: (i) iso-orbital regions, such as densit{18] M- Levy and J.P. Perdew, Phys. Rev.3%, 2010 (1985).
tails in atoms and single bonds in molecules, where th&®! El'gl_él"'eb and S. Oxford, Int. J. Quantum Cheb, 427
density is do_minatedey one ._orbita_l or several of the_sam 0] ED.S. %.vendsen and U. von Barth, Phys. Re®4B17 402
shape, making = 7", and (ii) regions of strong orbital (1996).
overlap, such as intershell regions in atoms or valencg} j p. perdevet al. (to be published).
regions in metals, where > 7. (By the Cauchy- [22] p.R. Antoniewicz and L. Kleinman, Phys. Rev3g, 6779
Schwarz inequalityr = 7%.) (1985).

Convincing evidence [32] indicates that the core-valencg23] J.B. Krieger, J. Chen, G.J. lafrate, and A. Savin, in
intershell region is the main source for the errors of LSD Electron Correlations and Materials Propertiesdited by
and GGA lattice constants of solids. In this region, the = A. Gonis and N. Kioussis (Plenum, New York, 1999).
reduced Laplacian of Eq. (11) is rather large # 2).  [24] M. Seidl, J.P. Perdew, and M. Levy, Phys. Rev5$ 51
Table 1l shows that meta-GGA lattice constants [33] do___ (1999). _
not consistently improve upon those of GGA. In Nacl, [2°] Zlig)%;alman and W.F. Shadwick, Phys. Rev.14 36
neglect of long-range van der Waals attraction may be ?26] J.B. Krieger, Y. Li, and G.J. lafrate, Phys. Rev. 4,
second source of error. 101 (1992).

Some say that “there is no systematic way to construgbz] r.p. Amos, I.L. Alberts, J.S. Andrews, S.M. Colwell,
density functional approximations.” But there are more or N.C. Handy, D. Jayatilaka, P.J. Knowles, R. Kobayashi,
less systematic ways, and the approach taken in Ref. [5]  G.J. Laming, A.M. Lee, P.E. Maslen, C.W. Murray,
and here is one of the former. As LSD is embedded in  P. Palmieri, J.E. Rice, J. Sanz, E.D. Simandiras, A.J.
GGA, so GGA is embedded in meta-GGA. While real Stone, M.-D. Su, and D.J. Tozecappace The Cam-
electron densities are seldom close to the slowly varying  bridge Analytical Derivatives Package Issue 6.0 Cam-
limit, this limit still provides an important global constraint bridge, 1995.
on the density functional. [28] iolg g;{srge(vlvgsl;/é) Ernzerhof, and K. Burke, J. Chem. Phys.
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