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For a system of spinless one-dimensional fermions, the nonvanishing short-range limit of a tw
body interaction is shown to induce the wave-function discontinuity. We prove the equivalence o
this fermionic system and the bosonic particle system with a two-bodyd-function interaction with the
reversed role of strong and weak couplings. [S0031-9007(99)08775-X]
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The relation between the spin and the exchange sta
tics is one of the fundamental properties of particles r
siding in four-dimensional Minkowski space. In lowe
dimension, however, the relation becomes blurred,
evidenced in the appearance of anyons in the system
two spatial dimension. In spatial dimension one, the r
lation loses its meaning since the spin itself is rather
phenomenological concept having no ground in the rep
sentation theory of a Lorentz group. The discovery
the strict equivalence of a bosonic sine-Gordon mod
and a fermionic massive Thirring model [1] suggests th
the exchange statistics also is no absolute concept in
spatial dimension. Aside from its aesthetic value, th
equivalence has practical ramifications in the treatme
of an interacting many-body system in lower dimensio
There the relevant aspect is the fact that the strong c
pling in a fermionic model corresponds to the weak co
pling in the bosonic model and vice versa.

There is indeed a historic precedence to the bosoni
tion of fermionic theory in a setting of quantum many
body problem. In the Tomonaga-Luttinger theory o
one-dimensional Fermi liquid [2–5], low energy exci
tations are describable in terms of bosonic degrees
freedom. Despite its status as a classical standard,
model has several drawbacks. First, the equivalen
is exact only for the ground state of the system. A
other problem is its nonapplicability to the short-rang
interaction as noted in the original paper by Tomonag
This makes a sharp contrast to the case of bosons in
dimension where a simple but rich model of particle
with two-body d-interaction exists [6], whose solvability
allows the physical intuition as well as the thoroug
thermodynamical analysis.

The purpose of this paper is to formulate a model
a fermionic many-body system in one dimension wit
nonvanishing zero-range interaction. Its analysis reve
that the model can be exactly mapped to the same num
of bosonic particles interacting throughd interaction with
the strength of the coupling reversed. This means th
we have had a solvable model of interacting fermion
for quite some time without recognizing it as such.
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gives a tractable model of a one-dimensional system w
a nontrivial property of fermion-boson duality.

We start with a very elementary setting of two identic
particles with unit mass in one dimension obeying th
Fermi statistics. The wave function of the system has t
property

C2sx1, x2d ­ 2C2sx2, x1d , (1)

wherex1 and x2 denote the coordinates of the particle
Let us suppose that the two particles are interacti
through a two-body potentialV sx1 2 x2d. For now, we
place one-body harmonic interaction for the technic
convenience to bind the system around the origin. T
Schrödinger equation is given by"

2X
i­1

√
2

1
2

d2

dx2
i

1
1
2

v2x2
i

!
1 V sx1 2 x2d

#
C2sx1, x2d

­ EC2sx1, x2d . (2)

With the usual use of the relative and center-of-mass
ordinatesx ­ x2 2 x1 andX ­ sx1 1 x2dy2, the system
separates into two subsystems as

C2sx1, x2d ­ w2sxdFsXd , (3)

where the center-of-mass wave functionFsXd is a trivial
harmonic oscillator, and the physics is in the relative wa
functionw2sxd, which satisfies"

2
d2

dx2 1
1
4

v2x2 1 V sxd

#
w2sxd ­ Erw2sxd . (4)

The identity of the particles requiresV to be symmetric:

V s2xd ­ V sxd . (5)

The fermionic exchange symmetry, Eq. (1), now reads

w2s2xd ­ 2w2sxd . (6)

We consider the case where the potential is short rang
namely,V sxd ­ 0 for jxj . a for a small positive number
a. At the limit a ! 0, the self-adjoint extension theory
dictates that any Hermitian potential has to be reduced
the generalized pointlike interaction [7–10]

V sxd ! xsx; a, b, g, dd , (7)
© 1999 The American Physical Society
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which admits the discontinuity both of the wave functio
and its space derivative. The physical understanding
this rather counterintuitive objectx is possible through its
explicit construction in terms of a local operator, whic
has recently been devised [11]. We have

xsx; a, b, g, dd ­ lim
a!10

fu2dsx 1 ad 1 u0dsxd

1 u1dsx 2 adg , (8)

where the strengths ofd functions are given by

u1sad ­ 2
1
a

1
a 2 1

d
,

u2sad ­ 2
1
a

1
g 2 1

d
, (9)

u0sad ­
1 2 ag

ba2 ,

in which a, b, g, andd are arbitrary real numbers with
the constraint

ag 2 bd ­ 1 . (10)

The effect of thexsxd on the wave function can be
expressed as

w0
2s01d 1 aw0

2s02d ­ 2bw2s02d ,

w2s01d 1 gw2s02d ­ 2dw0
2s02d ,

(11)

where prime signifies the spatial derivative. In the curre
case, these conditions have to be compatible with t
antisymmetry of wave functions, Eq. (6), which resul
in w2s01d ­ 2w2s02d and w0

2s01d ­ w0
2s02d. Also,

from the symmetry ofV sxd, Eq. (5), one hasu1sad ­
u2sad, thus a ­ g. The condition, Eq. (11), is then
reduced to

w2s01d ­ 2w2s02d ­ 2cw0
2s01d ­ 2cw0

2s02d , (12)

where the real numberc is defined by

c ­
d

2sa 2 1d
. (13)

We therefore have the discontinuity in thewave function
itself, while its derivative is kept continuous. The shor
range limit, Eq. (7), now reads

V sxdw2sxd ! ´sx; cdw2sxd sa ! 0d , (14)

where´sx; cd is defined by

´sx; cdw2sxd ­ lim
a!10

µ
1

2c
2

1
a

∂
3 hdsx 1 ad 1 dsx 2 adjw2sxd . (15)

The easiest (but not unique) way to express´sxd in terms
of xsxd is

´sx; cd ­ xsx; 21, 0, 21, 24cd . (16)

This should be contrasted to the “usual” zero-range lim
Dirac’s delta function

dsx; yd ; xsx; 21, 2y, 21, 0d ­ ydsxd , (17)

which has no effect on the antisymmetric wave function
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;

dsx; ydw2sxd ­ 0 . (18)

Thus the nonvanishing zero-range limit of the system
described by"

2
d2

dx2 1
1
4

v2x2 1 ´sx; cd

#
w2sxd ­ Erw2sxd .

(19)

Intuitive meaning of the admissibility of the discontinuity
inducing interactioń sx; cd should become clear by in-
specting Fig. 1, where we depict the antisymmetric wa
functions subjected to a symmetric potential of small b
finite range. The procedure, Eqs. (14) and (15), is
nontrivial but sensible renormalized zero-range limit th
keeps the nonvanishing effect of the potential throu
a rather unfamiliar concept of wave-function discontin
ity. Further analysis of the renormalization properties
´sx; cd should be of special interest, since this has the
rect relevance to the question of approximating the mo
realistic, finite-range problem with proper choice of th
couplingc.

We now perform a transformation:

w1sxd ­ fusxd 2 us2xdgw2sxd , (20)

where usxd is the step functionusxd ­ 1 when x . 0
and usxd ­ 0 when x , 0. The connection condition,
Eq. (12), is rewritten as

w0
1s01d ­ 2w0

1s02d ­
1

2c
w1s01d ­

1
2c

w1s02d ,

(21)

which means thatw1sxd satisfies an analog of Eq. (11
with a ­ g ­ 21, d ­ 0, and b ­ 21yc. In other
words,w1sxd is a solution of the Schrödinger equation,"

2
d2

dx2 1
1
4

v2x2 1 dsx; yd

#
w1sxd ­ Erw1sxd ,

(22)

FIG. 1. Examples of fermionic relative wave functions. Th
harmonic oscillator parameterv ­ 2 sets the scale. The
interaction V is chosen to be a square well with the rang
a ­ 0.2. (a) The case for attractive interaction of depth250.
(b) The case of repulsive interaction of height 300. In bo
cases, top figures are the profile of the interactionU ­
v2x2y4 1 V . The middle and the bottom are the lowest an
the second lowest energy eigenfunctions.
2537
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if the coupling constantsy andc are related by

y ­
1
c

. (23)

By construction, one has

w1s2xd ­ w1sxd . (24)

In terms of the full two-particle wave function

C1sx1, x2d ­ w1sxdFsXd , (25)

this signifies the bosonic exchange symmetry

C1sx1, x2d ­ C1sx2, x1d . (26)

Therefore, a two-fermion system with́ interaction is
equivalent to a two-boson system withd interaction,
and the strong coupling in one side corresponds
the weak coupling in the other. We emphasize th
d and ´ functions are theonly nonvanishing limits
of any interaction that acts on bosonic and fermion
wave functions, respectively. Note the parallel relatio
to Eq. (18) forw1sxd;

´sx; cdw1sxd ­ 0 . (27)

Note also that the couplingsy andc can be both positive
and negative. In the latter case, the equivalence extend
the negative-energy bound states that exist in both Fe
and Bose systems.

It is instructive to look at the wave functions to se
the actual workings of the boson-fermion duality wit
some numerical examples. We show, in Fig. 2(a), t
lowest energy fermionic eigenstates of Eq. (19) with se
eral values of coupling strengths. In Fig. 2(b), the co
responding bosonic eigenstates of Eq. (22) are display
In the calculations, thé interaction, Eq. (15), is evaluated
with a small but finite value ofa in place of thea ! 0
limit. These figures show that the rigorous results at t
mathematical limita ! 0 do have real relevance to a
more realistic problem with finite-range interactions.

It is straightforward to extend the above argumen
to the system ofN one-dimensional particles. Let us
write the wave function of the system for the particula
ordering of the set ofN coordinatessx1, x2, . . . , xN d, say
x1 . x2 . · · · . xN , asC1;

C1 ; Csx1, . . . , xN dusx1 2 x2d · · · usxN21 2 xN d .

(28)

We define the permutationP of N numbers:

P: s1, 2, . . . , Nd ! sP1, P2, . . . , PN d . (29)
2538
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FIG. 2. The fermionic (a) and bosonic (b) relative wav
functions with three values of coupling parameter. Wav
functions (a) and (b) are related by the transformation, Eq. (2
The ´ interaction for case (a) are constructed from Eq. (1
with the a ! 0 limit replaced by a small numbera ­ 0.05.

Supposes21dP represents the parity of the permutationP.
The wave functionsC6 defined by

C6sx1, . . . , xN d ­
1

p
N!

X
P

s61dPC1sxP1 , . . . , xPN d (30)

have the exchange symmetry

C6s. . . , xi , . . . , xj , . . .d ­ 6C6s. . . , xj , . . . , xi , . . .d .

(31)

Namely,C1 andC2 represent the systems ofN bosons
and N fermions, respectively. It is easy to see that th
following two equations are equivalent:

C2jxi­xj1
­ 2C2jxi­xj2

­ c

√
≠

≠xi
2

≠

≠xj

!
C2

É
xi­xj1

­ c

√
≠

≠xi
2

≠

≠xj

!
C2

É
xi­xj2

, (32)

√
≠

≠xi
2

≠

≠xj

!
C1

É
xi­xj1

­ 2

√
≠

≠xi
2

≠

≠xj

!
C1

É
xi­xj2

­
1
c

C1jxi­xj1
­

1
c

C1jxi­xj2
.

(33)

Therefore, ´sxi 2 xj ; cd acting on C2 and
dsxi 2 xj ; 1ycd acting on C1 are two different rep-
resentations of the same effect. We have the equivale
of two equations,
"X

i

√
2

1
2

d2

dx2
i

1
1
2

v2x2
i

!
1

X
i.j

´sxi 2 xj; cd

#
C2sx1, . . . , xN d ­ EC2sx1, . . . , xN d (34)

and "X
i

√
2

1
2

d2

dx2
i

1
1
2

v2x2
i

!
1

X
i.j

d

√
xi 2 xj ;

1
c

!#
C1sx1, . . . , xN d ­ EC1sx1, . . . , xN d , (35)
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that can be mapped into each other.
The confining harmonic potential is an artifact to suppl

the basis functions, which sometimes causes a nuisan
Alternatively, one setsv ­ 0 and imposes the cyclic
boundary condition:

Cs. . . , xi 1 L, . . .d ­ Cs. . . , xi , . . .d for i ­ 1, . . . , N .

(36)

There is a subtle complication with this prescriptio
[6,12], which we analyze in the following. Let us
suppose, for a moment, that we have a set ofxi all
within the range of lengthL, say L

2 . xi . 2
L
2 with

the ordering x1 . x2 . · · · . xN . By definition, one
hasC6sx1, . . . , xN d ­ C1sx1, . . . , xN d. With the replace-
ment xN ! xN 1 L, one has C6sx1, . . . , xN 1 Ld ­
s61dN21C1sxN 1 L, x1, . . . , xN21d. This can be rewritten
as a relation betweenC1 andC2 in the formC2sx1, . . . ,
xN 1 Ld ­ s21dN21C1sx1, . . . , xN 1 Ld. Thus it is not
always appropriate to impose the cyclic boundary both f
C1 and C2. A consistent description of the boundary
is achieved by replacing the strict periodic condition
Eq. (36), with a relaxed version

C6s. . . , xi 1 L, . . .d ­ eil6 C6s. . . , xi , . . .d

for i ­ 1, . . . , N
(37)

with

l2 ­ l1 1 sN 2 1dp .

Then, for v ­ 0, the fermionic problem, Eq. (34), is
equivalent to the bosonic problem, Eq. (35). Specificall
the usual choicel1 ­ 0 gives the periodic boundary for
C1 and antiperiodic boundary forC2.

The representation of our model is the secon
quantized form should be very useful, since it is in tha
form that the bosonization of fermion systems is discuss
with formidable mathematical machinery [13,14]. Also
it could lead to a new type of field theoretical model. A
technical block on its way is the nonperturbative natu
of the ´ interaction, which does not allow meaningfu
calculations of its matrix elements in a straightforwar
manner.

Since the complete solution based on the Bethe ans
for the bosonic problem, Eq. (35), withv ­ 0 exists [6],
we now have a model of a solvable fermionN-body
problem with nontrivial characteristics. It is of particula
interest to investigate the thermodynamic properties
this system in detail.

It would be worthwhile to place our approach in
the context of other solvable many-body models in on
dimension [15]. In particular, the study of its relation
(or contrast) to the model with a long-range interactio
y
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namely, the Calogero-Sutherland model [16–18], appe
to be a promising subject. It should be also interesting
look at the fermion-boson relations inother dimensions.
This is especially true in light of a recent article on th
equivalence between free fermions and free bosons
dimension two [19]. Finally, we call the reader’s attentio
to rather unexplored potential roles of the generaliz
contact interactions in other contexts than discussed he
Those include such diverse subjects as the semicondu
heterojunctions [20] and the controversy over the on
dimensional1yjxj potential [21,22].
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