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For a system of spinless one-dimensional fermions, the nonvanishing short-range limit of a two-
body interaction is shown to induce the wave-function discontinuity. We prove the equivalence of
this fermionic system and the bosonic particle system with a two-l#éflynction interaction with the
reversed role of strong and weak couplings. [S0031-9007(99)08775-X]
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The relation between the spin and the exchange statigrives a tractable model of a one-dimensional system with
tics is one of the fundamental properties of particles rea nontrivial property of fermion-boson duality.
siding in four-dimensional Minkowski space. In lower We start with a very elementary setting of two identical
dimension, however, the relation becomes blurred, aparticles with unit mass in one dimension obeying the
evidenced in the appearance of anyons in the system &fermi statistics. The wave function of the system has the
two spatial dimension. In spatial dimension one, the reproperty
lation loses its meaning since the spin itself is rather a _
phenomenological concept having no ground in the repre- V(e x) = =W-(x2,x), @)
sentation theory of a Lorentz group. The discovery ofwherex; and x, denote the coordinates of the particles.
the strict equivalence of a bosonic sine-Gordon model€t us suppose that the two particles are interacting
and a fermionic massive Thirring model [1] suggests thathrough a two-body potentidl'(x; — x,). For now, we
the exchange statistics also is no absolute concept in orfdace one-body harmonic interaction for the technical
spatial dimension. Aside from its aesthetic value, thisconvenience to bind the system around the origin. The
equivalence has practical ramifications in the treatmen®chrddinger equation is given by
of an interacting many-body system in lower dimension.| Z 1 42 1 5,
There the relevant aspect is the fact that the strong COLIEZ (_2 Al + 5@ X,-) + Vix, — X2):|\P—(XI,XZ)
pling in a fermionic model corresponds to the weak cou--'=! '
pling in the bosonic model and vice versa. =EV_(x1,x2). (2)

There is indeed a historic precedence to the bosonizayith the usual use of the relative and center-of-mass co-
tion of fermionic theory in a setting of quantum many- ordinatest = x, — x; andX = (x; + x,)/2, the system
body problem. In the Tomonaga-Luttinger theory ofseparates into two subsystems as
one-dimensional Fermi liquid [2-5], low energy exci-
tations are describable in terms of bosonic degrees of V- (x1,202) = ¢-()P(X), (3)
freedom. Despite its status as a classical standard, thwhere the center-of-mass wave functidiX) is a trivial
model has several drawbacks. First, the equivalencharmonic oscillator, and the physics is in the relative wave
is exact only for the ground state of the system. An-function ¢_(x), which satisfies
other problem is its nonapplicability to the short-range d2 1
interaction as noted in the original paper by Tomonaga. [—dz 7 w’x* + V(x):|¢>(x) =E¢ (x). (4)
This makes a sharp contrast to the case of bosons in one *
dimension where a simple but rich model of particlesThe identity of the particles requirés to be symmetric:

with two-body é-interaction exists [6], whose solvability V(—x) = V(x). (5)

allows the physical intuition as well as the thorough o

thermodynamical analysis. The fermionic exchange symmetry, Eq. (1), now reads
The purpose of this paper is to formulate a model of o (—x) = —¢_(x). (6)

a fermionic many-body system in one dimension with . -
nonvanishing zero-range interaction. Its analysis revealgve consider the case where the potential 1S short ranged,
that the model can be exactly mapped to the same numbBpMely,V (x) = 0for |x| > a for a small positive number

of bosonic particles interacting throughinteraction with %At the limit a — 0, the self-adjoint extension theory
the strength of the coupling reversed. This means th (ﬁctates thqt any H.e”T““‘?‘” potentlal has to be reduced to
we have had a solvable model of interacting fermiong e generalized pointlike interaction [7-10]

for quite some time without recognizing it as such. It V(x) = x(x;a,8,y,96), @)
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which admits the discontinuity both of the wave function

and its space derivative. The physical understanding
this rather counterintuitive objegt is possible through its

explicit construction in terms of a local operator, which

has recently been devised [11]. We have
x(x;a,B,y,8) = |irgo[u75(x + a) + upd(x)

+usdx — al, 8
where the strengths d@ functions are given by
1 -1
us(a) = _; = s
u(a)= -+ + X1, (©)
1)
1 — ay
up(a) = Ba?

in which «, B, v, andé are arbitrary real numbers with
the constraint

ay — B6=1. (20)

The effect of the y(x) on the wave function can be
expressed as

@L(0+) + @¢’(0-) = —Be-(0-),
¢-(0+) + yo-(0-) = —8¢"(0-),
where prime signifies the spatial derivative.

(11)

in ¢_(04) = —¢_(0-) and ¢’ (0+) = ¢’ (0-). Also,
from the symmetry ofV(x), Eq. (5), one hasii(a) =
u_(a), thus @« = y. The condition, Eq. (11), is then
reduced to

- (01) = —p—(0-) = 29’ (0+) = 2c¢’(0-), (12)
where the real numberis defined by
é
c = m (13)

We therefore have the discontinuity in theve function
itself, while its derivative is kept continuous. The short-
range limit, Eq. (7), now reads

Ve ()= sie (1) @—0.  (14)
wheree(x; c) is defined by
e(x;c)o—(x) = I|m (% - %)

X{8(x +a) + 6(x — a)lp_(x). (15)

The easiest (but not unique) way to express) in terms
of y(x) is

elx;c) = y(x;—1,0,—1, —4c). (16)

This should be contrasted to the “usual” zero-range limi
Dirac’s delta function

S(x;v) = x(x;—1,—v,—1,0) = vé(x), a7
which has no effect on the antisymmetric wave function;

In the current
case, these conditions have to be compatible with the #%(0+) =
antisymmetry of wave functions, Eq. (6), which results

S(x;v)p_(x) =0. (18)

O{'hus the nonvanishing zero-range limit of the system is

described by
p-(x) = E"@_(x).

I
(19)

1
dx? * 4 ¢

Intuitive meaning of the admissibility of the discontinuity-
inducing interactione(x; ¢) should become clear by in-
specting Fig. 1, where we depict the antisymmetric wave
functions subjected to a symmetric potential of small but
finite range. The procedure, Egs. (14) and (15), is a
nontrivial but sensible renormalized zero-range limit that
keeps the nonvanishing effect of the potential through
a rather unfamiliar concept of wave-function discontinu-
ity. Further analysis of the renormalization properties of
e(x; ¢) should be of special interest, since this has the di-
rect relevance to the question of approximating the more
realistic, finite-range problem with proper choice of the
couplingc.

We now perform a transformation:

@+(x) =[0(x) = 0(=x)]p-(x), (20)

where 0(x) is the step functiord(x) = 1 whenx >0
and 6(x) = 0 when x < 0. The connection condition,
Eq. (12), is rewritten as

2x? + s(x;c):|

1
2 ¢+(0_)3
C
(21)
which means thaty, (x) satisfies an analog of Eq. (11)
with « =y = -1, § =0, and 8 = —1/c. In other
words, ¢ 1 (x) is a solution of the Schrédinger equation,

~pl0) = 5 01(0,) =

2 1 i
—— + — i + () |+ (x) = ETgi(x),
dx? 4
- (22)
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FIG. 1. Examples of fermionic relative wave functions. The

harmonic oscillator parametess = 2 sets the scale. The

t|nteract|onV is chosen to be a square well with the range

0.2. (a) The case for attractive interaction of depthi0.
(b) The case of repulsive interaction of height 300. In both
cases, top figures are the profile of the interaction=
w?x%/4 + V. The middle and the bottom are the lowest and
the second lowest energy eigenfunctions.
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if the coupling constants andc are related by
0171 ¢=0.083 T
v= L (23) 0.0 /\ /\/\
c il N @] fuer (b)
By construction, one has = . =
Y _ 017 c-0.333 (\ /\/\
o+(—x) = @+(x). (24) 0.0 \)
In terms of the full two-particle wave function 011 |1 v=3
W x1,3) = @ (DY), (25) oo [N | ] I\
this signifies the bosonic exchange symmetry 014 1 v=0.5
\I"+(X1,X2) = \I’+(XQ,X1). (26) -5 0 5 -I5 0 5
X X

Therefore, a two-fermion system with interaction is o . .
equivalent to a two-boson system with interaction, FIG.2. The fermionic (a) and bosonic (b) relative wave
unctions with three values of coupling parameter. Wave

and the strong coupling in one side corresponds t($unctions (a) and (b) are related by the transformation, Eq. (20).

the weak coupling in the other. We emphasize thafhe ¢ interaction for case (a) are constructed from Eq. (15)
6 and e functions are theonly nonvanishing limits with thea — 0 limit replaced by a small number = 0.05.

of any interaction that acts on bosonic and fermionic _ _
wave functions, respectively. Note the parallel relationSupposé—1)” represents the parity of the permutatién
to Eq. (18) forg+(x); The wave functiongl.. defined by

s(x; )+ (x) = 0. @) (v, ) = % S =DMV (xp... xpy) (30)
' P

Note also that the couplings andc can be both positive

and negative. In the latter case, the equivalence extends Ve the exchange symmetry
the negative-energy bound states that exist in both Fermi W.(...,x;,...,x;,...) = 2 Wo(.,x),..0,x,..0).
and Bose systems.

It is instructive to look at the wave functions to see (31)
the actual workings of the boson-fermion duality with Namely, ¥, and¥_ represent the systems &f bosons
some numerical examples. We show, in Fig. 2(a), theand N fermions, respectively. It is easy to see that the
lowest energy fermionic eigenstates of Eq. (19) with sevfollowing two equations are equivalent:
eral values of coupling strengths. In Fig. 2(b), the cor- Ve = —W |, _
responding bosonic eigenstates of Eq. (22) are displayed. M B

In the calculations, the interaction, Eq. (15), is evaluated _ C( J i)
with a small but finite value of: in place of thea — 0 axi  ax; )|,
limit. These figures show that the rigorous results at the o
mathematical limita — 0 do have real relevance to a _ c( 9 i)\lf (32)
more realistic problem with finite-range interactions. dx;  Ox; N

It is straightforward to extend the above arguments S
to the system ofV one-dimensional particles. Let us/ j 9 E 9
write the wave function of the system for the particular(a_x, - g)‘l@ = _(a_x - g)‘h
ordering of the set oV coordinatedx;, xz,...,xy), say ' / Xi=Xj+ ! / X=X
X] > Xp > - >xN,aS‘I’1; — lq/+|xi:xj+ = l\PJrlx,:x,_-

C C
Wy = Wlxp,...,xn)0(x = x2) - 0(ey—1 — xn). (33)

(28)  Therefore, e(x; — x;;¢) actng on W_ and
8(x; — xj;1/c) acting on ¥, are two different rep-

We define the permutatio”R of N numbers: : .
P resentations of the same effect. We have the equivalence

P:(1,2,...,N)— (Py,Ps,...,Py). (29) | of two equations,
1 d? 1 5,
Z —— — + T |+ Zs(xi —xj30) [W-(xi,...,xn) = E¥_(x1,...,xpn) (34)
p 2 dxj 2 i>j
and
Z_ld_2+l 22) + S5 ) e ) = EW.( ) (35)
z 5 dx% 5 w°X; 2 X; Xj; . + (X1, .., XN + X1, .. XN)
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that can be mapped into each other. namely, the Calogero-Sutherland model [16—18], appears

The confining harmonic potential is an artifact to supplyto be a promising subject. It should be also interesting to
the basis functions, which sometimes causes a nuisandeok at the fermion-boson relations other dimensions.
Alternatively, one setsw = 0 and imposes the cyclic This is especially true in light of a recent article on the
boundary condition: equivalence between free fermions and free bosons in
W(...xi+L..)=W(. .x..) fori=1,...N. dimension two [19]. Finally, we call the reader’s attent_ion

to rather unexplored potential roles of the generalized
(36)  contact interactions in other contexts than discussed here.
Those include such diverse subjects as the semiconductor
heterojunctions [20] and the controversy over the one-
dimensionall /|x| potential [21,22].
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There is a subtle complication with this prescription
[6,12], which we analyze in the following. Let us
suppose, for a moment, that we have a setxpfall
within the range of lengthL, say% > x; > —% with
the orderingx; > x, > --- > xy. By definition, one
hasW.(xi,...,xy) = Vi(x1,...,xy). With the replace-
ment xy — xy + L, one hasWV.(xy,...,xy + L) =
(DN " (xy + L,xq,...,xy—1). This can be rewritten
as a relation betweeWw . andV_ in the formW_(x,,...,

xy + L) = (—l)N_I\I'+(X1,...,XN + L) Thus it is not
always appropriate to impose the cyclic boundary both for
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