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Mesoscopic Mean-Field Theory for Supercooled Liquids and the Glass Transition
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The Weiss mean-field theory is applied to finite systems with unrestricted sizes, yielding a partition
function for supercooled liquids. Finite-size effects broaden the transition and induce a Curie-Weiss
like energy reduction which provides an explanation for the Vogel-Tamman-Fulcher law. Because th
energy reduction is intensive, the basic thermodynamic unit (aggregate) subdivides into smaller region
(clusters) which lowers the net internal energy. The distribution of aggregate sizes, combined with
relaxation rate that varies exponentially with inverse size, provides an explanation for the Kohlrausch
Williams-Watts law. [S0031-9007(99)08725-6]

PACS numbers: 64.70.Pf, 05.20.–y, 65.20.+w, 77.22.–d
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Any liquid that is supercooled sufficiently below its
normal freezing point will exhibit abrupt changes in
its thermal and dynamic properties near a glass te
perature Tg [1]. Such supercooled liquids are often
classified by their distinctive timet- and temperature
T -dependent behavior. Relaxation measurements are u
ally analyzed in terms of the Kohlrausch-Williams-Watt
(KWW) stretched exponentialFstd ~ e2stytdb

, with the
Vogel-Tamman-Fulcher (VTF) law for the characteristi
relaxation time t ~ eBysT2T0d. Here b is the KWW
stretching exponent,T0 is the Vogel temperature, andkB
gives an energy scale for activation. The most common
observed nonexponential response hasb , 1, and non-
Arrhenius activation behavior hasT0 . 0, but there is
still no widely accepted explanation for either formula
Here we extend standard mean-field theory to mesosco
systems and obtain a partition function for supercool
liquids. Our approach is an empirically motivated adapt
tion of the theory of finite-size thermostatistics develope
by Hill [2]. The main new feature is a connection betwee
the Curie-Weiss law from magnetism and the VTF-lik
behavior [3,4] of supercooled liquids. When combine
with a model for size-dependent relaxation rates [5
the theory also gives good agreement with measur
KWW-like response [6,7] and a quantitative correlatio
to measured heat capacities [8,9]. Thus, the behav
near Tg can be attributed to a thermal transition withi
mesoscopic domains.

Most experimental evidence now favors the doma
picture for the primary response of supercooled liquid
[10]. One of the techniques is nonresonant spect
hole burning (NSHB) [11], where different low-frequenc
electric fields are absorbed by distinct slow degrees
freedom. NSHB works because the slow degrees
freedom are sufficiently independent from the therm
bath that most of the energy they absorb remains localiz
during their response. Local-probe measurements [12,
on polyvinylacetate (PVAc) have determined that nearTg

the radius of dynamic correlation is 2–7 nm.
Consider a cluster containing a total ofm degrees of

freedom. In the Ising model, theith degree of freedom
0031-9007y99y82(12)y2520(4)$15.00
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may be represented by a “particle” with a state varia
ssid that is either “up”s11d or “down” s21d. Assuming
a uniform interaction energys´0ygd between each parti
cle and itsg nearest neighbors, the net internal energy
particle is the sum over all pairs of interacting particle
´m ­ 2s´0ygmd

P
sisj. For magnetic systems,si rep-

resents the orientation of an Ising spin. For supercoo
liquids, si could correspond to a quasistatic position
dynamic phase of a molecule. Although it may be un
alistic to assume only binary degrees of freedom for r
molecules in glass-forming liquids, the simplified mod
presented here seems adequate as a first step towar
scribing several salient features. Thus, for simplicity,
assume that each molecule with multiple degrees of fr
dom may be represented by multiple Ising-like particle

In general,́ m will depend on the relative “alignment
(position or phase) of each particle and its neighbo
If the cluster is large enough and the interaction lo
ranged enough, a mean-field approximation may be u
to replace the actual state of all neighbors by the
alignment of the entire cluster. Assuming a total of,
up particles andm 2 , down particles, with the Bragg
Williams mean-field formalism, the interaction energ
per particle may be writteńms,d ­ 2

1
2 ´0s2,ym 2 1d2.

Using the binomial coefficient for the degeneracy of ea
configuration, the partition function of the cluster is

Dm ­
mX

,­0

m!
sm 2 ,d!,!

e2m´ms,dykT . (1)

For analytic evaluation it is convenient to make a chan
of variables toL ­ 2,ym 2 1, leaving´sLd ­ 2

1
2 ´0L2.

Note that the magnitudesjLjd is a type of order pa-
rameter, and that the energy is a maximum when th
is no order,´s0d ­ 0, and it is a minimum when the
cluster is fully aligned,́ s61d ­ 2´0y2. For largem,
using Stirling’s approximation for the factorials and co
verting the sum to an integral, the partition functio
becomesDm ø

R
11
21 dL e2mfsLdykT , where the free en-

ergy per particle is fsLd ø ´sLd 1
1
2 kT hs1 1 Ld lnf 1

2 s1 1

Ldg 1 s1 2 Ld lnf 1
2 s1 2 Ldgj. If m ! `, only the mini-

mum free energy contributes to the partition function, a
© 1999 The American Physical Society
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setting≠fsLdy≠L ­ 0 yields the usual transcendental equa
tion for the order parameter,L` ­ tanhfL`s´0ykT dg. This
solution exhibits the well-known Curie-Weiss transition a
T ­ ´0yk, with L` ­ 0 and hencé sL`d ­ 0 for T .

´0yk, but this standard result is valid only in the macro
scopic limit. We now show that a mesoscopic system c
lower its energy by subdividing into smaller clusters.

Continuing with the integral representation
the average energy for a cluster of sizem is
Em ø

R1
21 dL s2 1

2 ´0L2de2mfsLdykT yDm. For large
but finite m, the integrals may be approximated b
a steepest-descents procedure. Specifically, for
denominator at T . ´0yk where L` ­ 0, Dm ø
2m

p
2pyms1 2 ´0ykT d. However the extra factor ofL2

in the numerator yields a different transcendental equat
Lm ø tanhfLms´0ykT d 1 2ysmLmdg, which leads to a
nonzero order parameterLm ø

p
2yms1 2 ´0ykT d and

a nonzero energy reductionEm ø 2
1
2 ´0ys1 2 ´0ykT d

above the transition. Note thatLm ~ m21y2 and the
total energy is intensive, effectively independent of siz
thereby returning the standard mean-field result that
infinite cluster atT . ´0yk is unordered, with negligible
energy density. Our main conclusion is that, when a
plied to finite clusters, the same mean-field theory yiel
Curie-Weiss-like energies which can be used to expla
the VTF law in supercooled liquids. A specific model i
as follows.

Returning to the explicit summation of Eq. (1), we now
consider clusters that are in contact with a bath of partic
at chemical potentialm. This induces a range of cluste
sizesm0 # m , `, wherem0 is a minimum cluster size,
which may be related to the minimum number of particle
necessary for the mean-field approximation ofDm. The
partition function becomes

G ­
X̀

m­m0

DmemmykT . (2)

Presumablym0 requires a central particle and at least on
shell of nearest neighbors, which for random close-pack
spheres would involve about 13 particles. Particles w
steric constraints might have somewhat less than id
close packing, and indeed all but one of the substan
we have analyzed havem0 ­ 8 12 (Table I). Salol has
the unusual value ofm0 ­ 24, possibly due to the O-H
bond between molecules. Although Eq. (2) resembles
grand-canonical ensemble, in fact,G contains only the in-
tensive variablesm and T (pressure can be ignored fo
liquids which are effectively incompressible), so that th
cluster volumes are not fixed. If the summation include
all cluster sizes1 # m , `, thenG would be in the “gen-
eralized” ensemble [2]. This completely open ensemble
rarely used for macroscopic systems, where the three
tensive variables cannot be independent, but it is the o
ensemble that does not externally restrict the sizes of me
scopic systems. The small clusters missing from Eq. (
are compensated for by including an average fractions fd
of free particles between the clusters in Eq. (3) below.
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TABLE I. Glass temperature sTgd and transition mid-
point (Tm, where jLj ­ 1

2 ) for methyltetrahydrofuran (MT),
propylene carbonate (PC), salol (SA), PVAc, propylene glyc
(PG), and glycerol (GL). Best fits to the peak dielectric loss
a function of temperature [3,4] yield the net interaction energ
s´0ykd, fraction of free particless fd, frequency prefactorsn0d,
and minimum cluster sizesm0d.

Tg sKd Tm sKd ´0yk sKd f n0 sTHzd m0

MT 91.5 89.3 100 0.086 0.031 9
PCAc 163 160 182 0.086 0.021 12
SA 217 225 257 0.079 0.014 24
PV 299 240 272 0.050 0.046 9
PG 167 92.5 105 ø0 7.7 8
GL 188 107 121 ø0 28 9

Finally we assume thatn clusters group together to
form an aggregate, and that the clusters are in dynam
equilibrium with the free particles in the aggregate so th
the clusters are indistinguishable. The partition functio
becomes

Y ­
X̀
n­1

Gn

n!
enfmmykT , (3)

wherem ­ kT≠ ln Gy≠m is the average number of par
ticles in a cluster. Note thatf is an effectively con-
stant geometric ratio, and that the filling factor of th
clusters is1ys1 1 fd. For random close-packed uni-
form hard spheres,f ­ 0.57, whereas for realistic clusters
which vary in size and need not be spherical,f ø 0.57
(Table I). Typical values off are similar to the fraction
of mobile molecules found in a molecular-dynamics sim
lation, 0.055 6 0.005 [14], but we emphasize that in our
picture the primary response is due to the activated rela
ation of all particles in each aggregate.

Thermal equilibrium is found from Gibbs’ variationa
principle by adjustingm to maximizeY with all other
variables fixed,s≠Yy≠mdf,´0,T ­ 0. Thus, the thermal
behavior of a given substance is governed by only tw
basic parameters:f controls both the average number o
particles in a clustersmd andaverage number of clusters in
an aggregatesn ­ G≠ ln Yy≠Gd, while ´0yk simply shifts
the temperature of the transition. [Glycerol and PG diff
in that they have a vanishingly smallf, possibly due to the
hydrogen bonding between molecules. For these “stron
liquids we setf ­ 0 in Eq. (3) and adjustmykT in Eq. (2)
to the constant value which best fits the data.] Recall th
the energy of an average cluster exhibits Curie-Weiss-li
behavior so that the energy of an average aggregate ma
written E ø nEm ø n f2 1

2 ´0ys1 2 ´0ykT dg. Using this
activation energy in the Arrhenius lawse2jEjykT d yields
VTF-like behavior with T0 ­ ´0yk and B ­ 1

2 n´0yk,
but Fig. 1 shows thatE ­ kT2s≠ ln Yy≠T dmykT without
mathematical approximation gives a better agreement w
the observed response.

The partition function yields a distribution of clus-
ters fPm ­ DmemmykT yGg and a distribution of aggre-
gatesfPn ­ GnenfmmykT yn!Yg which we convert into a
2521
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FIG. 1. Symbols are from measurements [3,4] of the inver
peak dielectric loss frequencyf y ­ 2logs fpdg for MT: D;
PC: =; SA: e; PVAc: 1; PG: h; and GL: s. Solid
curves are from activation energy of an average aggrega
y ­ 2lns f0d 1 jEjykT . (a) Plot of y vs TgyT linearizes
the Arrhenius law. “Fragile” liquids show a large amount o
curvature, whereas “strong” liquids are more nearly Arrheni
[1]. (b) Plot of fDyyDs1yT dg21y2 vs TgyT linearizes the VTF
law. Fragile liquids show deviations from the VTF law which
can be attributed to a transition (arrows) nearTm ø Tg, whereas
the strong liquids (which have been offset for clarity) hav
Tm , 0.8Tg.

distribution of relaxation times. LetPN ø PnPm be the
probability of finding an aggregate containing a total o
N ­ ns1 1 fdm particles. Because each aggregate is
separate system of indistinguishable clusters, it is reas
able to assume that the relaxation rate depends only on
total number of particles in the aggregate,wN . Thus the
susceptibility as a function of frequencysnd is

x 0snd 2 ix 00snd ­ F0

X̀
N­1

NPN
1

1 1 i2pnywN
, (4)

whereF0 is a constant amplitude prefactor. The relax
tion rate is given by the normal thermal fluctuations in th
activation energy about its average valuejEj [5],

wN ­ 2pn0e2jEjykT expsCpyky2Nd , (5)

wheren0 is a constant frequency factor andCp is the heat
capacity of an average aggregate. Note that, to a first
proximation, theinversesize dependence in the “inverse
Arrhenius” term yields the usual result that small aggr
gates relax faster than large aggregates, but becausE
is not extensive, the mechanism is not the usual siz
dependent activation energy. Instead, small aggrega
have large thermal fluctuations which are activated
2522
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a broad spectrum of excitations, whereas large agg
gates require more precisely matched activation energi
Qualitatively, the inverse size dependence converts a re
tively symmetric size distribution into the observed asym
metric spectrum of response, while the inverse Arrheniu
factor gives the excess response on the high-frequen
side of the peak. Quantitatively, thiswN yields superior
agreement with the measured dielectric response of sup
cooled liquids, Fig. 2, withCp as the only temperature-
dependent parameter governing the width and shape
the response. The agreement extends well into the hig
frequency wing, where all simple empirical formulas suc
as the KWW law fail.

The inset of Fig. 2 shows a comparison between th
average specific heat per particle deduced from diele
tric spectra,CpyN , and the measured excess specifi
heat per molecule,Dcp. Good quantitative agreement
is obtained by multiplyingCpyN by a rational constant
which presumably gives the number of particles (binar
degrees of freedom) per molecule. All but one of th
nonpolymeric systems we have examined have three p
ticles per molecule, while PVAc requires six monomer

FIG. 2. Frequency-dependent dielectric loss of (a) salol [6
and (b) glycerol [7]. The solid curves give the theoretica
response from Eqs. (4) and (5). The dashed curves in (
include a cutoff in the number of isolated free particles and
resonance at the frequency corresponding to the average ene
of each clustersEmyhd. The dotted line in (b) represents the
high-frequency behavior of the KWW law. The inset shows th
measured excess specific heat per molecule [8,9]Dcpyk (open
symbols with connecting lines), and 3 times the specific he
per particle3sCpyNdyk deduced from the dielectric response o
salol: r; glycerol: d; and PC:..
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to achieve the same 3 degrees of freedom. Thus PV
at T ­ 315 K has N ø 600 particles, corresponding to
about 1200 monomers. Assuming spherical aggrega
this yields an average dynamical correlation radius
3.3 nm, consistent with3 6 1 nm [12] and 5 6 2 nm
[13] from recent measurements.

The average cluster sizem and average aggregate
size n define two distinct size scales which corre-
spond to the two distinct energy scales (kT0 and kB)
in the VTF law. We propose the following inter-
pretation. Because energy-reducing fluctuations a
intensive, aggregates subdivide into multiple clusters
decrease the net energy; and because only nea
clusters can exchange particles rapidly enough to
indistinguishable, aggregates remain finite sized to
crease the net entropy. The transient nature of the clus
implies that they coincide with subtle changes in the p
sition or motion of the particles which induce a relativel
strong interaction over a sufficient range to allow use
the mean-field approximation. A possible mechanism
for neighboring molecules in the cluster to reside at
near the most favorable separation for chemical bondin
which sharply strengthens their energy of interaction. W
speculate that aggregates are regions of thermodyna
correlation (consistent with NSHB), while clusters ar
regions of quantum-mechanical coherence [consist
with the secondary response above109 Hz in Fig. 2(b)],
but the final picture will require further investigation.

We summarize by comparing our approach to som
other theories of supercooled liquids. Two prevale
models for the VTF law are the Adam-Gibbs (AG
[15] theory of cooperatively rearranging regions, and th
Cohen-Grest (CG) [16] free-volume theory for percola
tion of solid clusters in a liquid matrix. Like the CG the
ory, we consider partially ordered clusters surrounded b
fraction of free particles, but we assume thatf is constant
and that the transition occurs within the clusters. Furthe
more, the CG theory yields first-order-like behavior whic
must be heterogeneously broadened, whereas our theo
for a second-order transition which is broadened by finit
size effects. The CG theory also gives KWW-like beha
ior, but with b .

2
3 , while most supercooled liquids have

b ,
2
3 . Like the AG theory, we consider size-depende

relaxation rates, but because the energy of mesosco
clusters is intensive, Eq. (5) giveswN that varies expo-
nentially with theinversesize. Furthermore, the AG the-
ory yields cooperative regions atTg containing only 4–8
molecules [17]. More realistic correlation lengths of 2
7 nm have been obtained by considering thermal fluctu
tions within correlated volumes of cooperative region
[18,19], much like the two distinct size scales in our ag
gregates of clusters. However it is usually assumed t
all correlated volumes at a given temperature have t
same size, so that energy fluctuations alone are respo
ble for the spectral width, but atTg the observed spec-
tral shapewould require asymmetric energy fluctuation
of at least 100 K. Much recent interest in the dynami
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of supercooled liquids has come from the mode-couplin
theory [20] that predicts KWW-like behavior at low fre-
quencies, excess loss at high frequencies, and a dynam
transition at a critical temperaturesTcd which is 20–50 K
aboveTg. Our theory offers an alternative explanation
for the critical behavior aboveTg in salol [21] and PC
[22] where´0yk ø Tc, and explains why the critical be-
havior is less obvious in glycerol [23] and PVAc [24]
where´0yk , Tg. Moreover, our theory yields a hetero-
geneous distribution of relaxation rates, with correlatio
lengths that are consistent with experiment. Although th
basic model presented here gives relatively good agre
ment with observed VTF- and KWW-like responses, th
dashed curves in Fig. 2(b) show how the agreement
very high frequencies can be improved by including reso
nances and single-particle effects. Finally, since simila
responses are found in a wide variety of materials [5], th
mesoscopic mean-field theory may ultimately be adapte
to many systems.
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