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Control of Unstable High-Period Orbits in Complex Systems
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We apply the discrete parametric control (Ott-Brebogi-York method) to stabilize the high-order
(k = 34) unstable periodic orbit of a 2D chaotic map. The map describes a complex reversible system,
the phase space of which contains elements typical for both Hamiltonian and dissipative dynamics.
Stabilization was achieved (even with external noise) for the unstable orbit where the amplitude of
chaotic oscillations shows variations by 4 orders of magnitude. [S0031-9007(99)08706-2]

PACS numbers: 05.45.Gg

The recent tendency in the area of controlling chaos iglliptic centers and the others are hyperbolic saddles. IAS
related to control of complex systems in order to carry outjs formed from the set of solutions,
possibly, control of biological and even human functions. B .
Despite the great variety in the properties of complex In = 4, X+t = @+ Yne1) (mo),  (2)
systems, it is assumed, nevertheless, that any of these syghich are periodic (quasiperiodic) for rational (irrational)
tems possess certain common features: (i) A complexalues of the parameter. It was shown [5] that the set
system is a composition of several interacting componentgEq. (2)] attracts trajectories (belonging to the attractor’s
(ii) there is a coexistence of regular and chaotic dynamicspasin) with incremeny = £2/6 (¢ < 1). The number of
and (iii) it exhibits a multiscale spatiotemporal behaviortrajectories that are repelled from the solution [Eqg. (2)]
[1]. These features make it possible to control complexand approach infinity (along the separatrices of saddle
system, using a rather simple switching of a system fronpoints) increases witle. Thus we have two attractive
chaotic to regular regime (or vice versa) under a smaltegions, one given by Eq. (2) and another located at the
perturbation. infinity. The basins of these two attractive sets have
The above mentioned complexity is not necessarily am complicated fractal structure which is typical for any
attribute of high-dimensional systems only; it may also beriddled basin [6].
found in low-dimensional systems. In particular, the low- Hamiltonian properties of the map [Eq. (1)] are deter-
dimensional dynamics is realized in so-called reversiblanined by the determinant of the Jacobian matrixAlet
systems which exhibit typical complex behavior [2]. Thel + ex which gives the variation of the phase volume af-
phase space of such systems usually contains elements one iteration. At each iteration the phase volume is not
of Hamiltonian systems (stability islands and resonanceg)reserved; however, there is a conservation of volume af-
as well as elements of dissipative systems (attractors artdr averaging over the period. For< 1, the determinant
invariant attractive sets) [3]. The interplay between thesef the Jacobian matrix is close to 1; therefore the structure
elements gives rise to rather complicated dynamics asf the phase space in the vicinity of the origin is similar
compared with the dynamics of either pure Hamiltonianto the one in a Hamiltonian system: Namely, the elliptic
or pure dissipative systems. fixed point (0,0) is surrounded by the periodic trajectories.
In this Letter, we accomplish, for the first time, the The frequency of rotation for periodical trajectories close
control of chaos in complex reversible systems. Weto an elliptic point isw = 2 arcsir(\/ea/2). A fragment
study the possibility of controlling a high-perigd = 34)  of the phase space (stability island) is shown in Fig. 1a for
unstable periodic orbit (UPO) in a two-dimensional map: the values of the parameters= 0.5, = 1.7. Deforma-
tion of this stability island with parameter is shown in
Tl = (x”“) = f(r,) = (x" T yn (mod2)>' (1) Fig. 1b fora = 0.05. One can see that with the decreas-
Y+l Yo = &l@ = ya)xn ing of a the stability island and the IAS are getting closer
Equation (1) describes the discrete dynamics of a lineaand the separatrices of high-order resonances are being
oscillator with the stiffness coefficient proportional to broken. A narrow stochastic layer is formed from these
the velocity, under the action of kiks [4]. The phase broken separatrices (see Fig 1c). One may conclude that
space of this map is a cylinder,e [—1,1], y € R. For the origin of chaos here is due to the overlapping of neigh-
e > 0, the phase space structure is determined by thboring nonlinear resonances. Figure 2 shows a plot of the
invariant attractive set (IAS) at = a and fixed points width W of the resonances and the spaciigbetween
at(0,2n),n = 0, =1, =2. The linear analysis shows that them againsk. Fork > 30, the widthW and the spacing
the fixed points within the stripe — 4/3 <y < a are Ay are of the same order of magnitude and at 33-35
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a global chaos is developed, according to Chirikov's cri-

terion [7]. Here we choose the UPO with= 34 which
we are going to control.

The first question which arises is how to locate this
UPO. Traditional methods of locating UPOs based on
the Newton-Raphson procedure require a good guess of
initial conditions for the iterative procedure. In general,
they are not applicable for cycles with high periods.
An appropriate method was developed by Schmelcher
and Diakonos [8]. They used the principal idea of
control—transforming unstable orbits into stable ones—
to locate UPOs. The first step of the method [8] is to
apply a universal linear transformation of coordinates in
order to get stable orbits at the same positions where
unstable orbits are located. Then the positions of stable
orbits in new coordinates can be found by a simple
iterative procedure. For the 2D case the transformation
of coordinates takes the following form:

ry+p = I, + Ai[fm(rn) - rn]’ (3)
whereA; is one of eighti = 1,2, ...,8) invertible2 X 2
matrices (for D-dimensional caseé = D!2P), the con-
crete form of which is determined by type of the orbit.
The inset in Fig. 1b shows the result of transformation
[Eqg. (3)] for one of the saddle points lying on the period-
34 orbit.

To stabilize the high-period unstable orbit, we used the
discrete one-parametric Ott-Grebogi-York (OGY) control
[9]. This method was originally proposed to stabilize
UPO embedded within a strange attractor. Later it was
generalized for the case of Hamiltonian systems [10]. The
orbit to be controlled follows a periodic sequeneg,—

r, —---—r; —TIi =r,. The linearized dynamics
in the neighborhood of this orbit yields

4 o ry+1 — I (po) = Alr, — r,(po)] + Bép,, (4)
-0.5 o - 0.5 where p is one of the parameters ¢; pg is its nominal
value;p, — po = 6p, < A; A is the range of variations
& it C of the parametep (A < 1); Ais2 X 2 Jacobian matrix;
i I S -] andB is two-dimensional vector,
: i A =D i, p)l-:.  B=DfE.pl—. (5
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FIG. 1. (a) Fragment of the phase space of the map<] &} W AN 1
[Eq. (1)] with stability island at the centeu (= 0.5, = 1.7). '*,\
(b) Deformation of the stability island with parameter --'-"""""‘"-l—,.._‘ L]
a =0.05,&e = 1.7. Period-34 orbit is marked by crosses TR g
connected by straight lines. (c) Blow up of a small region ar m, ]
of the phase space [small blank square in (b)]. One of “m®
the saddle points of the orbit is marked by number 34. L L 1
Kolmogorov-Arnold-Moser surfaces close to the period-35 25 30 k 35

orbit are destroyed, however, they still exist for period-33 orbit.

Inset of (b): image of the saddle point [marked by number 34FIG. 2. The width of the resonancé¥) and the spacing

in (c)] after transformation Eq. (3).

between thentAy) vs the number of the resonan@e.
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If we try to apply the OGY method [9] directly to con- entrapment under control; (ii) exponentially fast approach
trol high-period unstable orbits, we face two difficulties. of the controlled trajectory to the goal-periodic orbit;
First, the one-step Jacobian matAxmay possess com- (iii) stable motion alongunstableperiod-34 orbit (up to
plex eigenvalues at certain points of a periodic orbit. Thighe numerical error accuracy); (iv) exponential deviation
makes the application of the original OGY method impos-from the goal trajectory after the control is off [13], (v) re-
sible. To avoid this, we could use the original OGY for- construction of natural chaotic oscillations.
mula, not at each iteration, but afteiiterations. In other To check the sensitivity of the control to external Gauss-
words we could perform control with a cyclic matrt%  ian noise we add a termé&, to the right-hand side in
whose eigenvalues are real. However, here we face theq. (1), Here,, andé&,, are independent identically dis-
second difficulty, namely, the sensitivity éfstep control tributed random variables with zero mean value and a unit
to external or system (numerical) noise. This means thatariance;s is the amplitude of the noise. In Fig. 4b we
k-step control becomes ineffectivekif> 1. A modifica- show the influence of the Gaussian noise witk 0.01.
tion of the OGY method which allows the application of In the logarithmic scale, one can clearly see that the effi-
parametric perturbation at each step was proposed by Laiency of control goes down by the orders of magnitude;
et al.[10]. To avoid the problem of complex eigenvalues however, the OGY method allows the control to be main-
they developed the approach based on the consideration @ined during the same temporal interval as without noise.
stable and unstable directions at each point of the UPO. In addition to the OGY method, we also applied the
If kK > 1, these directions (at a given point) do not necessimple proportional method [14]. Originally it was pro-
sarily coincide with the eigenvectors. An efficient methodposed for the control of Hamiltonian systems [15]. In this
to calculate stable and unstable directions is given in [10]method a perturbatiol,, stands in the right-hand side
They can be also calculated by the well-known methodf the map [Eq. (1)] and has a forth, = C(r, — r}),
of diagonalization of the cyclic matrig* at each point of where the matrixC = (_ng gf) The perturbation
the orbit. A, is applied if A, < Apax (Apax < 1). By choos-

Let the unit vectorse,) and e, be local(r =r;) ing parametersc; = —0.2, c; = 0.0001 and A, =
stable and unstable directions. It is worthwhile to in-0.02 we were able to control the period-34 orbit with
troduce a complementary badig,) andf,, by means the same accuracy as that shown in Fig. 3 for the OGY
of the following relationsfy, e = £, eun = 1, and  method.
fumesm = fimeun = 0. Here index stands for trans- The proposed method of control may be used for a
posed vector (row vector). By making use of the OGYwide class of reversible systems with complex phase space
stabilization conditiorf;(nﬂ)[rnﬂ —r,41(po)] = 0 and structure. In particular, a simple modification of the map

Eq. (4), one can readily get [11] (1) allows one to change the level of dissipation. This
£ (A[r, — r(po)]} is done by introducing a coefficient — ¢ for the y,
Sp, = —LwrDn o ) (6) term in the second equation of the map (1). When the

fit(nH)B dissipation is switched on smoothly: (increases from
Parametric perturbation written in the form of Eq. (6) 0 to 1), the Hamiltonian component is suppressed and
may be applied at each iteration. If the eigenvalues othe system developes a strange attractor via a cascade of
the matrix f are real, Eq. (6) is reduced to the OGY bifurcations. The results of the control for the case when
formula [9]. ¢ # 0 will be published elsewhere.

Figure 3 demonstrates the internal mechanism of OGY An interesting application of controlling chaos is re-
control in action. We “launch” four testing points (black lated to the problem of encoding of binary information
squares) from the vicinity of randomly selected saddle
points which belong to period-34 orbit. The trajectories
of the testing points are shown after three successive
iterations. After the third iteration these points are aligned
along the stable direction. Then they follow the periodic
orbit remaining in alignment and approaching the saddle
points with each iteration.

In Fig. 4a we show the behavior of the deviation— 0.49985 <\
r, as the control is switched on and off. One can see that
the system exhibits a long transient period before a trajec-
tory can be stabilized. Control is switched on at the 340th
iteration; however, stabilization occurs only after approxi- L R\
mately 1000 iterations. Such behavior is similar to what 0 05 10 15
has been observed for pure Hamiltonian systems [10,12k5 3 | ocal evolution of four testing points towards the

We use the logarithmic scale to separate different stagegable direction. Stable (unstable) directions are shown by thick
of the control procedure: (i) chaotic oscillations beforesolid (broken) lines.

0.49990 |
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FIG. 4. Stabilization of the coordinate when the control is
switched on: (a) without noise, (b) with Gaussian noise.

[16]. Stabilized orbits serve as generators of random nu-

a high-order UPO in complex systems. The problem of
location of the period-34 orbit was resolved by making
use of a new method proposed in [8]. Stabilization
was successfully achieved when the amplitude of chaotic
oscillations of coordinates along the period-34 orbit was
varied by 4 orders of magnitude.
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