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Anomalous Chiral Symmetry Breaking above the QCD Phase Transition
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We study the anomalous breaking of () symmetry just above the QCD phase transition for zero
and two flavors of quarks, using a staggered fermion, lattice discretization. The properties of the QCD
phase transition are expected to depend on the degree @) Wymmetry breaking in the transition
region. For the physical case of two flavors, we carry out extensive simulationsl 6h>a 4 lattice,
measuring a difference in susceptibilities which is sensitive 161)Jsymmetry and which avoids many
of the staggered fermion discretization difficulties. The results suggest that anomalous effects are at or
below the 15% level. [S0031-9007(99)08688-3]

PACS numbers: 12.38.Gc, 11.30.Rd, 12.38.Mh

The breaking of classical AJ1) chiral symmetry by the regulator. (ii) As resulting from an infrared sin-
quantum effects is a theoretical phenomenon of considegularity which permits chiral asymmetry to survive the
able physical importance which has direct implications orchiral limit of vanishing fermion mass. While chiral
the order of the finite temperature, QCD phase transitionsymmetry breaking effects might naively be expected to
If we consider only the two light: andd quarks, anoma- be proportional to the explicit quark mass, the pres-
lous symmetry breaking reduces the flavor symmetry fromence of infrared singularl/m behavior can allow such
U(2) X U(2) to SU2) X SU2) X Ug(l) X Z4(2). Itis  chirally asymmetric effects to remain even in the— 0
only this reduced symmetry that is consistent with secondlimit. In a semiclassical calculation, sudiim behavior
order, critical behavior [1]. Although present lattice appears for gauge backgrounds with fermion zero modes.
simulations suggest that the QCD phase transition is inThese two views are related by the Atiyah-Singer index
deed second order for two flavors, it is an important contheorem [3].
sistency check to establish the required anomaloyd U Most lattice calculations [4] explore the first approach,
symmetry breaking directly. In addition, the size of thesestudying explicit chiral symmetry breaking inherent in
symmetry breaking effects will determine the width in the lattice regulation which should reduce to anomalous
temperature and quark mass of the region showing unieffects as the continuum limit is taken [5]. In this paper
versal critical behavior. we explore the second approach, searching for anomalous

The plasma phase of QCD is a particularly good placeasymmetries that arise from infrared singularities in the
to study the axial anomaly. Fd < T., the dynamical limit of small quark mass. For lattice calculations these
breaking of chiral symmetry obscures the effects oftwo approaches are not equivalent since the Atiyah-Singer
the axial anomaly. ForT > T,., chiral symmetry is theorem applies only in the limit of an infinite number of
restored and thermal Greens’ functions are explicitlydegrees of freedom.
symmetric under SWWy) X SU(Ny) transformations. We It is important to pursue both methods. The first ap-
can then look directly for anomalous symmetry breakingproach may overestimate anomalous effects, confusing
by comparing Greens functions that are related by théhem with simple lattice artifacts which vanish in the con-
anomalous Y(1) symmetry. tinuum limit. The second approach may miss anomalous

Such breaking of global W{1) symmetry, associated effects since infrared singularities are often softened by
with a zero-momentum Ward identity, is especially in-lattice effects, e.g., the zero-mode shift of Smit and Vink
teresting, since at zero momentum the anomalous term ii6], and become apparent only as— 0.
the chiral Ward identity become$, times the topological The question of anomalous symmetry breaking above
chargevr, a quantity which vanishes to all orders in con- 7. has now been studied by a number of groups. For a
ventional perturbation theory. The’ mass in QCD and general review, see the article of Laermann [7]. Prelimi-
the nonconservation of the baryon number in the standandary versions of our results can be found in Ref. [8], while
model are other examples in which such nonperturbativan alternative calculation, also taking approach (i), can be
anomalous effects should occur [2]. found in Bernarcet al. [9]. Finally, Kogutet al. [10] use

This sort of anomalous symmetry breaking can be una combination of methods examining signals for anoma-
derstood from two perspectives: (i) As the physical rem{ous symmetry breaking of both types (i) and (ii) above.
nant of an ultraviolet ambiguity in the theory. Here In this paper, we study both zero- and two-flavor
modifications made to regulate the divergences preseQCD, just abovel.. For N, = 0, anomalous effects are
in the continuum gauge theory necessarily introduce exexpected in the chiral condensafgg), while for Ny =
plicit chiral symmetry breaking whose effects remain visi-2 we must examine a more infrared singular,(U-
ble, even on energy scales small compared to those @foninvariant quantity, here a difference of isovector
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susceptibilities which we referto as = yp — xs where where M is the complex fermion mass matrix and
1 e e o i i 0 the usual theta parameter. Defining the topological
xXr =59 [d xd?y xrliy x)xtiv’x(y)) (1) susceptibility asyop = —%/962In Z, one easily derives
Xop = QGm™ for § = 0 and M = mlI, a multiple of
the identity.
We can similarly obtain expressions f@rg) andw,

for space-time volume) and flavor generator/. The
scalar susceptibilityys is defined similarly, by omitting
the internali y> factors.

We adopt the staggered fermion, lattice discretization. ,_ . 1 4 o _ No—1
This is the approach used most successfully to date in q) = N/Q om INZ(M) = —2Fm — Gm™ ™",
finite temperature, lattice QCD studies. While the quantity (4a)

(gg) can be calculated directly using this formalism, the

more physically interesting = yp — xs cannot. Direct | 92 52

definitions of yp and ys using staggered fermions will ¢ = — [—2 - __2}|n Z(M) = 2Gm™ 2, (4b)
necessarily introduce ambiguities, with potentially large QL omi am|

lattice artifacts obscuring the anomalous effects of interestyhere in Eq. (4a) we have divided by to define(gq)

Here, we take an indirect approach, expresaingn the a5 coming from a single fermion species while in Eq. (4b)
continuum, as a spectral integral whose singular behavigfq have used a compled = ml + (mg n img’),rj
DT

as m — 0 gives rise to anomalous symmetry breaking.
We then demonstrate that this spectral integral can b
directly evaluated using staggered lattice fermions and us
this result to provide a lattice calculation of
Consider the spectral representations,

If we make the possibly reasonable assumption that the
uenched value ofgg) can be obtained as thg; — 0

it of Eq. (4a), then we can combine Eq. (4) with the
formula for ., to obtain

o 1 Xto 1

- (A9g23m) S . 7 :__—p,.\,_
= <o [ B2E| e MmO @ == T

{ mg=m
2 (5)
2 (7 p(Aghm) Ny =2 0 =— AP const
w = 4m dA m . (Zb) m Q
0 m

) ) ) ] ) The last relation is of particular interest, implying that
Here p(A, g%, m) is the average density of Dirac eigen- gpover. the quantityw provides an alternative measure
valuesA. The first formula is due to Banks and Casherof the topological susceptibility. As is shown below,

[11] and the second is derived in a similar fashion. INcan pe easily determined using lattice methods, without
Eq. (2a) we distinguish the fermion mass that appears ifhe normal difficulties of defining topological winding on
the fermion line attached tg and g, m,, from that en- 4 jiscrete lattice.
tering through the fermion determinamt, The factors We will now compare these continuum expectations
of m or m, in the numerators of Eq. (2) reflect the chiral it |attice calculations. Because of the remnant chiral
symmetry breaking character ¢f¢) and w. However, symmetry of staggered fermions, Eq. (2a) is also valid on
an anomalous, small-mass limit can result if the integraje |attice allowing us to relatéy y) and p, wherey is
over A is sufficiently singular for small. the single component, staggered fermion field. Viewing
Now let us investigate what might be expected for<c-1q> as a function ofm andm,;, we can express as

these quantities in continuum QCD. F@r> T., the 5 fynction of(z¢) and then use this continuum result to
small mass limit ofgg) and » in the continuum theory yefinew on the lattice,

can be analyzed for both the case of very small volume
and in the limit of infinite volume. For finite volume,
the Dirac spectrum will be discrete for each gauge
configuration in the path integral. The only nonzeroyhere these two terms correspond precisely to the terms
contributions to eithekgq) or w asm — 0 will come iy the differencew = y» — xs. In the remainder of
zero mode. In very small volumes, these zero modegccording to Eq. (6) wheréy x) is normalized to behave
can be predicted semiclassically and give the anomalougg —1 /;; in the large mass limit.
small-mass behaviorsgg) ~ 1/m, for Ny = 0 andw ~ First considerN; = 0. In Fig. 1 we show(yy) for
const, forNy = 2. o , , two distinct phases distinguished by the complex phase of
The case wher&¥ — = first is more interesting and can e Wilson line,(W), computed a8 = 5.71, just above
be analyzed using the methods of Leutwyler and Smllga)gc — 5.6925. (Recall that the Wilson lineW, is the
[12]. AboveT,, there are no massless modes so the fregolume average of the trace of the ordered product of
energy should be proportional to the volume and analytigink variables along a line in the time direction.) For the
in the fermion mass, 4 case whergW) is real, we see the power lawm®’®
Z =~ expQ[Fy + FotrMM + GRele’? detM)], (3)  for both 16 and32? volumes suggesting this power-law

1 d
w = __</?X> + <X//\/>|m;=m, (6)
m amy
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01r a TABLE I. Our B8 = 5.3, 16° X 4 results for two flavors of
' I p B e L] dynamical quark with mass:. Run length is the number of
E ¢ 2 time units in the hybrid, R"-algorithm evolution after 200
o . time units were discarded. These quantities are normalized
% @ 2 in a manner consistent with Eq. (6) withy defined so that
% ] it behaves ad/ma for large ma. The time step sizes used
0.01 with the R algorithm are A7 = 0.03125 for ma = 0.005;
i A7 = 0.007125 for ma = 0.01; and A7 = 0.01 for the three
A [ larger masses.
=
IR i % ma Run length xx) Xs 1)
i
0.001 0.005 4464 0.02256(21) 3.945(43) 0.559(37)
—e— 3213 real phase 0.01 2550 0.04374(50) 3.369(68) 0.932(56)
E —6— 3273 COTPEX phase 0.015 2600 0.06517(82) 3.010(52) 1.322(62)
& 1673 real phase 0.02 2992 0.0896(10)  2.697(34) 1.722(62)
L 51673 complex phase 0.025 3072 0.1141(38)  2.38(11)  2.24(12)
0.0001
While these results are consistent with those reported
1E-005 0.0001 0.001 0.01

by Bernardet al. [9], our conclusions are different. That
_ ) _ calculation examines a smaller lattice spacing than con-
FIG. 1. The chiral condensatgyy) plotted as a function sjdered here but with larger statistical errors. Their analy-

of quark mass for a pure gauge calculation I X 4 and : : _
323 X 4 lattices. The real phase (closed points) is the mos is adopts the quadratic small-mass dependencevfor

physical flet(D — m) is largest for this phase]. No evidence While, as implied by Egs. (3) and (4b), this quadratic
is seen for the expected anomalous behavipyy) ~ m~' as  behavior is expected on physical grounds fgr = 2, it
m — 0. is only guaranteed mathematically in the unphysical limit
wherem vanishes at fixed lattice spacing. For example,
description holds in the infinite volume limit. We see no nonuniformity in the limit of vanishing andm is actually
sign of the anomalous/m behavior in(y x) expected in  expected in the case of three flavors: Aor = 3 Eq. (4b)
the continuum. implies a linear behavior fow (m) in conflict with the
For the case of comple¥), we see an unexpected quadratic dependence expected from the functional form
spontaneous breaking of chiral symmetry ab@yewith ~ of the path integral at finitez. Thus, the validity of
(¥ x) approaching a constant asdecreases. The eventual the expected quadratic behavior needs to be established
decrease iy x) for very smallm < my,;, is the normal numerically for the mass range of interest. Unfortu-
finite-volume behavior expected with spontaneous symmenately, our poor quadratic fit does not provide this needed
try breaking, withmumin(¥ x)V/T = 1 for both volumes.  justification.
Next we examine» and the more physical case of two

m

flavors, atB = 5.3, just aboveB, (recall 8. = 5.265 for 0.14 [ °
N, = 4andma = 0.01), on al6® X 4 lattice for five dif- - — o M
ferent values of the dynamical quark mass. The results 012} 14 P
are summarized in Table | and plotted in Fig. 2. [Both
w and ys are computed from analytic derivatives of cu- 0.1F ﬁo”.‘ega .

. ! . chi-bar-chi
bic spline fits to then, dependence of x(m;)/m; and —o—chi P 1a
X x(my), respectively.] This figure shows the chiral con- 4, 008}
densate{y x) approaching zero linearly as is expected {? . o
for B8 > B.. Likewise, yp shows the expected regular, ' ool 12
constant behavior a8 — 0. However, rather than show- )
ing the anomalous behaviog, ~ w, + w,m?, expected 0.04 -
from Eq. (5), Fig. 2 suggests a nearly linearasm goes g 11
to zero. 0.02F g

Four fitted curves are also shown in Fig. 2. The two
linear fits to (y x) and w have ay?/d.o.f of 2.2 and 0 o005 007 o015 o0z 0025 o009
2.7, respectively. Both of these fits are constrained to m

vanish atm = 0. If that constraint is dropped for the FIG. 2 The quantityw, which directly measures anomalous
o fit, the intercept moves upward slightly to 0.15(5) andsym'métry breaking, plofted versus fermion mass. AIso

the Xz/d-oz-f falls to 0.34. A ﬁ; to the expected form ghown are the chiral condensatg y) and the pseudoscalar
wo + wym” is worse, with ay*/d.o.f of 3.4 and an sysceptibility y». We studied al6® X 4 lattice at 8 = 5.3,
intercept,wg = 0.54(3). just aboveg..
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From Fig. 2 one observes that for quark masses ishould not be seen iN;, = 4 thermodynamics at least for
the range0.01 = m = 0.025, our results are consistent |8 — B8.| = 0.03.
with an unusual but nonanomalous, linear behawof- In conclusion, we have numerically studied anoma-
m. At our smallest mass, 0.00% is significantly lous symmetry breaking by examining quantities whose
higher than such a linear extrapolation, suggesting thaanomalous behavior comes directly from infrared effects.
anomalous effects may be emerging. However, suclsiven the relatively coarse lattice spacing in our simu-
effects are clearly quite small and occur for quark massektions a = 1/3 Fermi, our failure to find such effects
that are below those used in present studies of QCRbove the 15% level is far from conclusive evidence that
thermodynamics, suggesting little connection between thisuch effects are suppressed in nature [14]. However, this
anomalous behavior and the observed second-order QQCigpresents a first step in a systematic lattice calculation of
phase transition. such phenomena and must be followed by more demand-
In order to describe the physical size of a possiblang calculations on finer lattices and calculations using
nonzero value ofw|,,—o, Wwe must address the potential fermion formulations with improved chiral properties.
cutoff dependence of the quantities being discussed. We thank Xiangdong Ji, Edward Shuryak, and Andre
While a thorough analysis of this question lies beyondSmilga for helpful discussions and Yubing Luo for
the scope of the present paper [13], there are two issuessistance.
that are important to recognize. First, the= 0 intercept
of w requires the same (m)-dependent, multiplicative
renormalization as the inverse square of the quark mass

as is suggested by Eq. (_5)' We _Wi” ignore such a factor *Present address: Department of Physics, Duke University,
for our present rough estimate, since this factor should be  p o Box 90305, Durham, NC 27708.

of the order of 1 for current lattice spacings. TPresent address: CTP-LNS, Massachusetts Institute of
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