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Anomalous Chiral Symmetry Breaking above the QCD Phase Transition
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We study the anomalous breaking of UAs1d symmetry just above the QCD phase transition for zero
and two flavors of quarks, using a staggered fermion, lattice discretization. The properties of the QCD
phase transition are expected to depend on the degree of UAs1d symmetry breaking in the transition
region. For the physical case of two flavors, we carry out extensive simulations on a163 3 4 lattice,
measuring a difference in susceptibilities which is sensitive to UAs1d symmetry and which avoids many
of the staggered fermion discretization difficulties. The results suggest that anomalous effects are at or
below the 15% level. [S0031-9007(99)08688-3]

PACS numbers: 12.38.Gc, 11.30.Rd, 12.38.Mh
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The breaking of classical UAs1d chiral symmetry by
quantum effects is a theoretical phenomenon of consid
able physical importance which has direct implications o
the order of the finite temperature, QCD phase transitio
If we consider only the two lightu andd quarks, anoma-
lous symmetry breaking reduces the flavor symmetry fro
Us2d 3 Us2d to SUs2d 3 SUs2d 3 UBs1d 3 ZAs2d. It is
only this reduced symmetry that is consistent with secon
order, critical behavior [1]. Although present lattice
simulations suggest that the QCD phase transition is
deed second order for two flavors, it is an important co
sistency check to establish the required anomalous UAs1d
symmetry breaking directly. In addition, the size of thes
symmetry breaking effects will determine the width i
temperature and quark mass of the region showing u
versal critical behavior.

The plasma phase of QCD is a particularly good pla
to study the axial anomaly. ForT , Tc, the dynamical
breaking of chiral symmetry obscures the effects
the axial anomaly. ForT . Tc, chiral symmetry is
restored and thermal Greens’ functions are explicit
symmetric under SUsNfd 3 SUsNfd transformations. We
can then look directly for anomalous symmetry breakin
by comparing Greens functions that are related by t
anomalous UAs1d symmetry.

Such breaking of global UAs1d symmetry, associated
with a zero-momentum Ward identity, is especially in
teresting, since at zero momentum the anomalous term
the chiral Ward identity becomesNf times the topological
chargen, a quantity which vanishes to all orders in con
ventional perturbation theory. Theh0 mass in QCD and
the nonconservation of the baryon number in the stand
model are other examples in which such nonperturbat
anomalous effects should occur [2].

This sort of anomalous symmetry breaking can be u
derstood from two perspectives: (i) As the physical rem
nant of an ultraviolet ambiguity in the theory. Her
modifications made to regulate the divergences pres
in the continuum gauge theory necessarily introduce e
plicit chiral symmetry breaking whose effects remain vis
ble, even on energy scales small compared to those
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the regulator. (ii) As resulting from an infrared sin
gularity which permits chiral asymmetry to survive th
chiral limit of vanishing fermion mass. While chira
symmetry breaking effects might naively be expected
be proportional to the explicit quark mass,m, the pres-
ence of infrared singular,1ym behavior can allow such
chirally asymmetric effects to remain even in them ! 0
limit. In a semiclassical calculation, such1ym behavior
appears for gauge backgrounds with fermion zero mod
These two views are related by the Atiyah-Singer ind
theorem [3].

Most lattice calculations [4] explore the first approac
studying explicit chiral symmetry breaking inherent i
the lattice regulation which should reduce to anomalo
effects as the continuum limit is taken [5]. In this pape
we explore the second approach, searching for anomal
asymmetries that arise from infrared singularities in t
limit of small quark mass. For lattice calculations thes
two approaches are not equivalent since the Atiyah-Sin
theorem applies only in the limit of an infinite number o
degrees of freedom.

It is important to pursue both methods. The first a
proach may overestimate anomalous effects, confus
them with simple lattice artifacts which vanish in the con
tinuum limit. The second approach may miss anomalo
effects since infrared singularities are often softened
lattice effects, e.g., the zero-mode shift of Smit and Vin
[6], and become apparent only asa ! 0.

The question of anomalous symmetry breaking abo
Tc has now been studied by a number of groups. Fo
general review, see the article of Laermann [7]. Prelim
nary versions of our results can be found in Ref. [8], whi
an alternative calculation, also taking approach (ii), can
found in Bernardet al. [9]. Finally, Kogutet al. [10] use
a combination of methods examining signals for anom
lous symmetry breaking of both types (i) and (ii) above.

In this paper, we study both zero- and two-flavo
QCD, just aboveTc. For Nf ­ 0, anomalous effects are
expected in the chiral condensate,kq̄ql, while for Nf ­
2 we must examine a more infrared singular, UAs1d-
noninvariant quantity, here a difference of isovect
© 1999 The American Physical Society 2463
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susceptibilities which we refer to asv ­ xP 2 xS where

xP ­
1

2V

Z
d4x d4y kx̄tjig5xsxdx̄tjig5xs ydl (1)

for space-time volumeV and flavor generatortj . The
scalar susceptibilityxS is defined similarly, by omitting
the internalig5 factors.

We adopt the staggered fermion, lattice discretizati
This is the approach used most successfully to date
finite temperature, lattice QCD studies. While the quant
kq̄ql can be calculated directly using this formalism, t
more physically interestingv ­ xP 2 xS cannot. Direct
definitions of xP and xS using staggered fermions wil
necessarily introduce ambiguities, with potentially lar
lattice artifacts obscuring the anomalous effects of inter

Here, we take an indirect approach, expressingv, in the
continuum, as a spectral integral whose singular beha
as m ! 0 gives rise to anomalous symmetry breakin
We then demonstrate that this spectral integral can
directly evaluated using staggered lattice fermions and
this result to provide a lattice calculation ofv.

Consider the spectral representations,

kq̄ql ­ 22mz

Z `

0
dl

rsl, g2, md
l2 1 m2

z

Ç
mz ­m

, (2a)

v ­ 4m2
Z `

0
dl

rsl, g2, md
sl2 1 m2d2 . (2b)

Here rsl, g2, md is the average density of Dirac eigen
valuesl. The first formula is due to Banks and Cash
[11] and the second is derived in a similar fashion.
Eq. (2a) we distinguish the fermion mass that appears
the fermion line attached toq and q̄, mz , from that en-
tering through the fermion determinant,m. The factors
of m or mz in the numerators of Eq. (2) reflect the chir
symmetry breaking character ofkq̄ql and v. However,
an anomalous, small-mass limit can result if the integ
overl is sufficiently singular for smalll.

Now let us investigate what might be expected f
these quantities in continuum QCD. ForT . Tc, the
small mass limit ofkq̄ql and v in the continuum theory
can be analyzed for both the case of very small volu
and in the limit of infinite volume. For finite volume
the Dirac spectrum will be discrete for each gau
configuration in the path integral. The only nonze
contributions to eitherkq̄ql or v as m ! 0 will come
from gauge configurations with at least one exact Dir
zero mode. In very small volumes, these zero mod
can be predicted semiclassically and give the anomalo
small-mass behaviors:kq̄ql , 1ym, for Nf ­ 0 andv ,
const, forNf ­ 2.

The case whereV ! ` first is more interesting and ca
be analyzed using the methods of Leutwyler and Smi
[12]. AboveTc, there are no massless modes so the f
energy should be proportional to the volume and analy
in the fermion mass,

Z ø expVfF0 1 F2 tr MyM 1 G Reseiu detMdg , (3)
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where M is the complex fermion mass matrix an
u the usual theta parameter. Defining the topologic
susceptibility asxtop ­ 2≠2y≠u2 ln Z, one easily derives
xtop ­ VGmNf for u ­ 0 and M ­ mI, a multiple of
the identity.

We can similarly obtain expressions forkq̄ql andv,

kq̄ql ­ 2
1

NfV

≠

≠m
ln ZsMd ­ 22F2m 2 GmNf 21,

(4a)

v ­
1
V

"
≠2

≠m
j2
r

2
≠2

≠m
j2
i

#
ln ZsMd ­ 2GmNf 22, (4b)

where in Eq. (4a) we have divided byNf to definekq̄ql
as coming from a single fermion species while in Eq. (4
we have used a complexM ­ mI 1 smj

r 1 im
j
i dtj.

If we make the possibly reasonable assumption that
quenched value ofkq̄ql can be obtained as theNf ! 0
limit of Eq. (4a), then we can combine Eq. (4) with th
formula forxtop to obtain

Nf ­ 0: kq̄ql ­ 2
1
m

xtop

V
,

1
m

,

Nf ­ 2: v ­
2

m2

xtop

V
, const.

(5)

The last relation is of particular interest, implying tha
aboveTc the quantityv provides an alternative measur
of the topological susceptibility. As is shown below,v

can be easily determined using lattice methods, witho
the normal difficulties of defining topological winding on
a discrete lattice.

We will now compare these continuum expectatio
with lattice calculations. Because of the remnant chir
symmetry of staggered fermions, Eq. (2a) is also valid
the lattice, allowing us to relatekx̄xl andr, wherex is
the single component, staggered fermion field. Viewin
kq̄ql as a function ofm and mz , we can expressv as
a function ofkq̄ql and then use this continuum result t
definev on the lattice,

v ­ 2
1
m

kx̄xl 1
≠

≠mz

kx̄xljmz ­m , (6)

where these two terms correspond precisely to the ter
in the differencev ­ xP 2 xS. In the remainder of
this paper we quote values ofv, xP, andxS normalized
according to Eq. (6) wherekx̄xl is normalized to behave
as21ym in the large mass limit.

First considerNf ­ 0. In Fig. 1 we showkx̄xl for
two distinct phases distinguished by the complex phase
the Wilson line,kW l, computed atb ­ 5.71, just above
bc ­ 5.6925. (Recall that the Wilson line,W , is the
volume average of the trace of the ordered product
link variables along a line in the time direction.) For th
case wherekW l is real, we see the power law,m0.76

for both 163 and323 volumes suggesting this power-law
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FIG. 1. The chiral condensatekx̄xl plotted as a function
of quark mass for a pure gauge calculation on163 3 4 and
323 3 4 lattices. The real phase (closed points) is the mo
physical [detsD 2 md is largest for this phase]. No evidence
is seen for the expected anomalous behavior,kx̄xl , m21 as
m ! 0.

description holds in the infinite volume limit. We see n
sign of the anomalous1ym behavior inkx̄xl expected in
the continuum.

For the case of complexkW l, we see an unexpected
spontaneous breaking of chiral symmetry aboveTc, with
kx̄xl approaching a constant asm decreases. The eventua
decrease inkx̄xl for very smallm # mmin is the normal
finite-volume behavior expected with spontaneous symm
try breaking, withmminkx̄xlVyT ø 1 for both volumes.

Next we examinev and the more physical case of two
flavors, atb ­ 5.3, just abovebc (recall bc ø 5.265 for
Nt ­ 4 andma ­ 0.01), on a163 3 4 lattice for five dif-
ferent values of the dynamical quark mass. The resu
are summarized in Table I and plotted in Fig. 2. [Bot
v and xS are computed from analytic derivatives of cu
bic spline fits to themz dependence of̄xxsmz dymz and
x̄xsmz d, respectively.] This figure shows the chiral con
densate,kx̄xl approaching zero linearly as is expecte
for b . bc. Likewise, xP shows the expected regular
constant behavior asm ! 0. However, rather than show-
ing the anomalous behavior,v , v0 1 v2m2, expected
from Eq. (5), Fig. 2 suggests a nearly linearv asm goes
to zero.

Four fitted curves are also shown in Fig. 2. The tw
linear fits to kx̄xl and v have ax2yd.o.f of 2.2 and
2.7, respectively. Both of these fits are constrained
vanish atm ­ 0. If that constraint is dropped for the
v fit, the intercept moves upward slightly to 0.15(5) an
the x2yd.o.f falls to 0.34. A fit to the expected form
v0 1 v2m2 is worse, with ax2yd.o.f of 3.4 and an
intercept,v0 ­ 0.54s3d.
st
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TABLE I. Our b ­ 5.3, 163 3 4 results for two flavors of
dynamical quark with massm. Run length is the number of
time units in the hybrid, “R”-algorithm evolution after 200
time units were discarded. These quantities are normaliz
in a manner consistent with Eq. (6) with̄xx defined so that
it behaves as1yma for large ma. The time step sizes used
with the R algorithm are Dt ­ 0.03125 for ma ­ 0.005;
Dt ­ 0.007125 for ma ­ 0.01; and Dt ­ 0.01 for the three
larger masses.

ma Run length kx̄xl xS v

0.005 4464 0.02256(21) 3.945(43) 0.559(37
0.01 2550 0.04374(50) 3.369(68) 0.932(56
0.015 2600 0.06517(82) 3.010(52) 1.322(62
0.02 2992 0.0896(10) 2.697(34) 1.722(62
0.025 3072 0.1141(38) 2.38(11) 2.24(12)

While these results are consistent with those repor
by Bernardet al. [9], our conclusions are different. Tha
calculation examines a smaller lattice spacing than co
sidered here but with larger statistical errors. Their ana
sis adopts the quadratic small-mass dependence forv.
While, as implied by Eqs. (3) and (4b), this quadrat
behavior is expected on physical grounds forNf ­ 2, it
is only guaranteed mathematically in the unphysical lim
wherem vanishes at fixed lattice spacing. For examp
nonuniformity in the limit of vanishinga andm is actually
expected in the case of three flavors: forNf ­ 3 Eq. (4b)
implies a linear behavior forvsmd in conflict with the
quadratic dependence expected from the functional fo
of the path integral at finitea. Thus, the validity of
the expected quadratic behavior needs to be establis
numerically for the mass range of interest. Unfortu
nately, our poor quadratic fit does not provide this need
justification.

FIG. 2. The quantityv, which directly measures anomalou
symmetry breaking, plotted versus fermion mass,ma. Also
shown are the chiral condensatekx̄xl and the pseudoscalar
susceptibilityxP . We studied a163 3 4 lattice at b ­ 5.3,
just abovebc.
2465
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From Fig. 2 one observes that for quark masses
the range0.01 # m # 0.025, our results are consisten
with an unusual but nonanomalous, linear behaviorv ,
m. At our smallest mass, 0.005,v is significantly
higher than such a linear extrapolation, suggesting t
anomalous effects may be emerging. However, su
effects are clearly quite small and occur for quark mass
that are below those used in present studies of QC
thermodynamics, suggesting little connection between t
anomalous behavior and the observed second-order Q
phase transition.

In order to describe the physical size of a possib
nonzero value ofvjm­0, we must address the potentia
cutoff dependence of the quantities being discuss
While a thorough analysis of this question lies beyon
the scope of the present paper [13], there are two iss
that are important to recognize. First, them ­ 0 intercept
of v requires the same lnsad-dependent, multiplicative
renormalization as the inverse square of the quark massm,
as is suggested by Eq. (5). We will ignore such a fac
for our present rough estimate, since this factor should
of the order of 1 for current lattice spacings.

Sincev is the difference ofxP andxS, it is natural to
comparev to either of these quantities. However, bot
quantities contain a1ya2 piece when evaluated in physica
units. Thus, we choose to comparev to a quantity we will
call ṽ, obtained as the difference betweenxP evaluated at
b ­ 5.3 and xS evaluated atb ­ 5.245, just below the
transition,

ṽ ­
kx̄xl

m

Ç
b­5.3

2
≠kx̄xl
≠mz

Ç
b­5.245

. (7)

Such a subtraction removes the unwanted, quadratic
divergent1ya2 term at tree level and leaves an expressi
finite up to an O(1), lnsad-dependent multiplicative factor
and a much smaller1ya2 term suppressed by the facto
s5.3 2 5.245d. Note, bothv andṽ would share the same
1ym divergence asT ! T1

c if the anomalous breaking
takes the expected form:xP , 1ym, xS , const asT
approachesTc from above. Thus, in the case of anomalou
symmetry breaking andT ! T1

c we expectvyṽ ­ 1.
We find vyṽ , 15% where forv we use the intercept
0.54 above and≠kx̄xly≠mz jb­5.245 ­ 0.97 [13].

Within the expected critical region, the light mode
s $p , sd should be much less massive than the nonu
versal degrees of freedom suggestingvyṽ , 1, not the
,0.15 observed here. Since critical, O(4) behavior resu
from self-interaction among the four light modes, the in
teraction of the four light modes with these nonunivers
nearly degenerate states is expected to alter this beh
ior. Thus, our results suggest that O(4) critical behav
2466
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should not be seen inNt ­ 4 thermodynamics at least for
jb 2 bcj ø 0.03.

In conclusion, we have numerically studied anoma
lous symmetry breaking by examining quantities whose
anomalous behavior comes directly from infrared effects
Given the relatively coarse lattice spacing in our simu
lations a ø 1y3 Fermi, our failure to find such effects
above the 15% level is far from conclusive evidence tha
such effects are suppressed in nature [14]. However, th
represents a first step in a systematic lattice calculation o
such phenomena and must be followed by more deman
ing calculations on finer lattices and calculations using
fermion formulations with improved chiral properties.
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