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New String Excitations in the Two-Higgs-Doublet Standard Model
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We establish the existence of a static classically stable string solution in a region of parameters of the
generic two-Higgs-doublet standard model. In an appropriate limit of parameters, the solution reduces
to the well-known soliton of the 3) nonlinear sigma model. [S0031-9007(99)08726-8]
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The effective theory of electroweak interactions mayBelavin-Polyakov soliton [7], whose arbitrary scale can
contain more than the single Higgs doublet of the mini-be fixed by embedding it into a gauged linear sigma
mal standard model. Theoretical arguments in favomodel [6].
of an extended Higgs sector [1] include supersymme- The purpose of the present Letter is to show that one
try and string theory, as well as the possibility of elec-can embed this same soliton as a stable static string
troweak baryogenesis [2]. Extra Higgs scalars give risalefect in the 2HSM. The key observation is that in
to a richer spectrum of nonperturbative excitations, suctan appropriate limit of parameters the only relevant
as membrane defects [3] and new unstable sphaleromfnamical field is the relative SU(2) phase of the two
[4] In this Letter we will establish the existence of H|ggs doublets, partia”y constrained to lie on a two-
a new string excitation in the two-Higgs-doublet stan-spheres®. Our string defects are characterized by the
dard model (2HSM), and we will argue that it is sta- fact that the mapping of the transverse two-dimensional
ble in a region of parameter space extending into weakjane ontoS2 has a nonvanishing winding number. In
coupling. _ _contrast to the previously discussed vortex strings [8] the

A systematic way to search for such nontopologicalgefects described here carry no net electroweak flux, have
excitations has been outlined by two of us in Refs. [5,6]:hg symmetry restoration in their core, and do not exist in
one considers appropriate limits of parameters so thahe one-Higgs-doublet standard model.
field space acquires n(_)ntrlwal topology_, thus gllowmg for The Lagrangian of the 2HSM i§ = _%Wavwa,uv _
topologically stable solitons. These solitons will generally v 5 5 r
continue to exist when the parameters are relaxed byl ¥"" * LD#Hll le#IZL _bV(CHl’H2)’ where
a “small amount” so that the degrees of freedom thatVur = 9uWy = Wy = ge™ W, W,, Yy, = 9,7, —
were frozen or decoupled in the limit affect only slightly ?»Yu- The physical Z° and photon fields are
the dynamics. A possible exception to this rule occur?x = W, €osfy — Y, sinfy and A, = W} sinfy +
when the limiting soliton has zero modes other than itst, COSfw and tardy = g'/g. Both Higgs doublets have
center-of-mass position. Small corrections may lift inhypercharge equal to one; their covariant derivatives are
this case the degeneracy and either fix or completelgefined by D, Hiqo) = (9, + %gT“W;; + 58'Y)Hi ),
destabilize the excitation. This is exemplified by tr|1ewhi|e their potential reads
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(1)

This is the most general potential [1] subject to the con- Assuming all A; are positive, the minimum of the
dition that bothCP invariance and a discreté, sym-  potential is, up to gauge transformations, @) =
metry (H, — —H,) are only broken softly. The softly (0,v,/v2), (H,) = ¢'¢(0,v,/+/2). The perturba-
broken Z, symmetry is there to suppress unacceptabltive spectrum consists of the electroweak gauge
large flavor-changing neutral currents. bosons with masses¥ = g*(v} + v3)/4 and my =
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my/cosfy, a charged Higgs scalaff* with mass respectively. This restricts the Higgs target space to
my- = A(vi + v3)/2, and three neutral scalars, onea two-sphereS?, parametrized by the unit vecta.

CP odd (A° and two CP even ¢° and H®), whose Sendingis — 0 removes the potential af. In order to
masses depend on the value §f The neutral mass decouple the gauge field we take, furthermore, the limit
matrix simplifies considerably for siicosé = 0. For g — 0. This isa priori dangerous because it renders the
& = /2 the neutral masses areio = As(v? + v3)/2, gauge fixing (2) singular. To remedy the situation we
mﬁo ={—-Jn and mi,u ={ + Jm, where (= must also takev; — « while keeping the gauge-boson
Mo+ vk A+ (s + %)\6) W)+ v3) and 5 = (A + mhaSSnfz'W"v g1 finti)te. We wiII_S(_aedexglicitIy later ?n

A — %)%)ZU? + (M + A3 — i)%)zv;‘ + 20203[(As + that a finite gauge-boson mass is indeed necessary for our

1 \2 1 stability analysis.

7A6)° + A3h6 — (A3 — 726) (A1 + A) — A1A2]. For - . .

216 316 3 R 1 2 112 3
¢ = 0 the masses of?, 1, andH" are given by the same In the above limit of parameters one is left with an ef

. . : - ..~ fective O(3) nonlineawr model L ~ v%(aﬂn)2 describ-
expressions withts and Aﬁ_lntercha?g_ed. IO S'Tp“fy ing the dynamics of the unit-vector fieli(x). The o
the discussion we takg = /2, g' = A3 = As =0, | Ch "o el known topological solitons in two spa-
and drop the decoupled(U) gauge fieldy*. We wil tial dimensions [7] char;)cter?zed by an integer wiFr)ld-
comment on these assumptions at the end. ’ y 9

Since we are interested in classically stable statid"9 numtz)erN: This is the number of imea(x) winds
string solutions, we choose th&¢ — 0 gauge and aroundsS* as its argument covers the plane transverse to

work with static field configurations, so that Gauss’s?itgggcﬁé Ir;[icls fg-g\éﬁg':,;?t +to‘ gaiaggt/rzﬁlé :T;;ng)h

law is automatically satisfied. Furthermore, for strings®, graphic projectiom: + in . '
T A ; n’ =1 - |Q)/1 + |Q|*). TheN = 1 string, extend-

stretching in thex; direction we take all fields to be . . . ’ o

independent ofc; and putw? = 0. It is easy to verify mgg along th_ex3 aX|s_and with the boundary condition

that stable minima of the ensuing two-dimensional energy I'ater, is then given by

functional correspond to stable infinite-string excitations Q = pe'/(z — z20), (3)

in the original model. Unlike the Nielsen-Olesen-type . -

vortex strings, the finite-energy solutions of interest towherez = x; + ix,. The positiorz, scalep, and angle

us will have |H)| # 0 everywhere. This fact allows « are arbitrary paraSmeters corresponding to soliton zero

us to use the radial representation of the two doublet§lodes. The value’ = 1 at < will be imposed by the

and write them as,5) = FioU12(0,1). F( are two ~ équirement of finiteness of energy once, as we do below,

positive functions, whileU,» are two smooth S(2)  We letAs # 0. .

valued functions on the plane. The space of smooth Following the same steps as in Ref. [6], we want now

maps from the two-dimensional plane into @U=  to relax slightly the above limits on the parameters and

$3 is topologically trivial, and there is no topological Study the fate of the solution (3). A simple scaling

obstruction in using the remaining freedom of smoothargument shows that the potential terms tend to shrink

transverse-space-dependent gauge transformations to §¢ soliton to zero size, while the gauge interactions tend

either U, or U, equal to the identity matrix. We to blow it up. Our task will be to show that in a region

will choose U; = 1 so that the most general Higgs Of parameter space the soliton is stabilized at some fixed

configuration takes the form scalep. Our semiclassical analysis seems at first glance
0 0 to be incompatible with the strong scalar-coupling limit
H, = F1< 1) and H, = F,exp—iOn - ,-)(1), considered above. To resolve this apparent contradiction,

we must redefine the limiting theory in terms of classically
@) relevant parameters as in [5,6]. To this end, we rescale the
with n - n = 1 andr the Pauli matrices. Higgs and gauge fields by /+/2A; and the transverse
In the naive limitA;, A, As — %, Fy, F», and® freeze  space coordinates; (j = 1,2) by 1/my. The energy
at their vacuum values/v2, v»/v2, and ¢ = 7/2, | per unit string length takes the form

2 ~
, 1 A
-5 dzx{Fg[S'”z@“’f"V T @OP]+ @)+ (P + 5 (FF = 9i + T2 (FF — o)
1
+ X5 P2z eog A 35in® — 5,5, + — WeWe
{F5c08 @ + — (F1Fn’sin® — ©,9,)" + — WAWS
2 2 4
1
+ g (F7 + FOW!WE — gF3JWE . 4)

We have defined g = g/v/2A1, Am = An/Ap for | 99,0 + sirt © e nba,n¢ + sin® cos® ;" We
m=2,5,6, ¥, = +/2cosB/g, 9, = +/2sinB/g, have kept the same notation for the rescaled coordinates
tang = vy/v| = /9, and the current Ji = and fields, as well as for the field strengiti; which
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is defined as previously but with the gauge couplingheavy Higgs modes and the vector bosons. Inspection of
replaced byg. (4) shows that all higher tree diagrams contain extra heavy
Since we will keepmy different from zero in the propagators and/or extra powers of weak couplings. We
limiting theory, we can use it to fix the length and can ensure that such corrections are indeed subleading by
mass scales by setting from now ony = 1. We insisting, for instance, that all three heavy Higgs masses
may, furthermore, treat,; as the semiclassical expansion be comparable. Second, had we ggt = 0, the gauge-
parameter, which we will take sufficiently small so as toboson exchange diagram would have been IR divergent
justify our semiclassical treatment. This leaves us withfor configurations with a simple power decay at infinity
six classically relevant parametefs;, i, A2, As, A, and  like (3). A consistent stability analysis would thus be im-
g2. The limiting theory of interest can now be defined possible in this case. Finally, we should point out that
more precisely as follows: Skyrme-like and potential terms have been used to sta-
F1. Ay — o0 5. s # 0 fixed: b!lize the B_eIavin-_Ponakov soliton in the past [9]. The
. (5) difference is that in our case the nonlocal and nonrenor-
As¥7,8 ~ B — 0. malizable effective action (7) was derived from ttassi-
This looks different from our original naive limit but has cal field equations of the (renormalizable) 2HSM.
the same dynamical effects. The first set of conditions Following [6], we can look for a stable solution of
indeed freezeF,;, F,, and ® to their vacuum values, (7) by minimizing the correction terms with respect to
so that the only dynamically accessible Higgs degree othe collective coordinates of the zeroth-order solution
freedom is the fielah(x), which parametrizes a two sphere (3). Since Z is independent of the center-of-mass
of nonzero radius. The second set of conditions decoupldosition and of the U(1) angler, only the sizep of
the gauge field and ensures that the dynamicmdé  the soliton is important. The current for the Belavin-
described by the usual (@) nonlinearo model, without ~ Polyakov soliton isji’ = €;;0;4%, where ¢' + i¢* =
any additional potential term. The energy functional ~ 2p(x1 — ix2)/(r* + p?) and¢’® = —2p%/(r* + p?). A

5?2 ) ) straightforward calculation then gives
Eo = 2 d*x (9;m)°, ®)  5E(p) 2o b [xd 2[Ki(z) + Ko(2)]
in this limit, admits the Belavin-Polyakov soliton as a c P p2 0 (*/pH) +1 °
(marginally stable) solution. 9)
Relaxing slightly the limit (5) will introduce a potential, \here k,, k, are the modified Bessel functions,
unfreeze the “heavy Higgs modes’ — o, = f1, F» =  §F_. = F o — Fo, and we have defined the

9, = fo, and ® — 77/2 = 0, and couple weakly the tant i85 b = 8/3%.525 d
gauge fieldW; to the “light Higgs mode’n. These eonslams ¢ 601/28°03, /342870, an

= 25254 i ;
effects can be summarized by a classical (nonlocaliaijezg %fvfr{é\ lba:ahniefggpzn%f(sf eﬁv\fgs)’ ;%;Sgﬁ;ezb_
effective-energy functional [6], ’

merically. The results are given in Fig. 1. At every

_ o3 s |« 22,3 5 point below the thick curve the energy has a local mini-
Lerr = L) + 4, dx| Asi(n” — 1) mum, corresponding to a classically stable soliton of size
p = pla,b).
~ (9in - am)> + 3202 [ a2y i) The soliton size stays constant along the thin straight
X3 £V Y Jk lines, as shown in the figure in units df/fmy. The

assumptions that justified our perturbative treatment, and

X Gyi(x — y)jf'(y)} + ... (7)

0.5
where j{ = e*“n’oyn¢, and Gy is the two-
dimensional massive Green function satisfying
(8jkA - ajak - ajk)Gki = 5(X - y)(Sjl' and given
by

04

03

1 Ori + PkPi ip-(x—
The first correction in (7) is a potential term. The second
and the third come from the exchange of a heavy (radial)
mode f, and of a vector boson, respectively. All three 0.1}
are small compared t& ), at least in the range of scales
p ~ 1 that will interest us. 0.0 ,
A series of comments on the above energy functional 0.0 0.1 0.2
are in order here. FirstE.; contains an infinite series a
of terms which come from integrating out classically the FIG. 1. The region of stability of winding string solitons.
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in particular the conditionp ~ 1, are satisfied in a comply with experimental bounds. It is, on the other
large part of the stability region. The validity of our hand, a welcome fact of our analysis thatneed not be
analysis was confirmed independently by a numericalarge for stable strings to exist and that is preferred to
minimization of the energy functional of the 2HSM. We be small. Realistic values of thépP violation parameter
use, in an obvious notation, the most general axiallyin the Higgs sector, which is proportional to the difference

symmetric ansatz As — Ag [1], may be consistent with string stability even
0 [ etf if & cannot be relaxed to very small values. Thus,
Hi=1|, | Hy =i hy + ihy )’ there is naa priori indication that the experimental limits

; 3 3 on the parameters of the 2HSM [1] are incompatible

W7 = Wle, + Wgey . (10)  with the existence of our defects, but this must be

N 1 . _ decided ultimately by a numerical analysis of the stability
W' = NG e'Cl(W + iWn)e, + Wy + iWgnley], region [10].

Finally, having anS? target space in the effective the-

+ = 1 _ »w?2 i
where W N .(W iW?)/V2. The ¢ dependence_ IS ory suggests that one should also search for stable local-
shown explicitly and the ten real unknown functlonsized solitons classified by the Hopf indexs(S2) [11].

depend only onr. The analvti :
) . . - ytic methods of this paper are not, however, ap-
Figure 2 shows the profile of the solution fg)rd— 02, plicable because the zeroth-order sigma model Lagrangian
v2/vy =03, A —d.°-5' Ay ; 20.0, ’\Sf_F.l'O’l an c/i\é '_h does not admit such Hopf solutions.
0.0001 (correspon 'n% to the point of Fig. ) and wit This research was supported in part by the EU Grants
tensionE = 31.24mwmjy. We did not plota(r), whichis o CHRX-CT94-0621 and No. CHRX-CT93-0340, as

essengia"y _equal to 6.7728 everywhere hor W1, Wo2,  well as by the Greek General Secretariat of Research and
andW;, which to this accuracy are zero. As promised andTechnoIogy Grant No. 95K1750.
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