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We establish the existence of a static classically stable string solution in a region of parameters o
generic two-Higgs-doublet standard model. In an appropriate limit of parameters, the solution red
to the well-known soliton of the Os3d nonlinear sigma model. [S0031-9007(99)08726-8]

PACS numbers: 11.27.+d, 05.45.Yv, 11.10.Lm, 12.60.Fr
n
a

ne
ing
in
nt
o
-
e
al

n
he
ave
in

are
The effective theory of electroweak interactions ma
contain more than the single Higgs doublet of the min
mal standard model. Theoretical arguments in fav
of an extended Higgs sector [1] include supersymm
try and string theory, as well as the possibility of ele
troweak baryogenesis [2]. Extra Higgs scalars give ri
to a richer spectrum of nonperturbative excitations, su
as membrane defects [3] and new unstable sphaler
[4]. In this Letter we will establish the existence o
a new string excitation in the two-Higgs-doublet sta
dard model (2HSM), and we will argue that it is sta
ble in a region of parameter space extending into we
coupling.

A systematic way to search for such nontopologic
excitations has been outlined by two of us in Refs. [5,6
one considers appropriate limits of parameters so t
field space acquires nontrivial topology, thus allowing fo
topologically stable solitons. These solitons will general
continue to exist when the parameters are relaxed
a “small amount” so that the degrees of freedom th
were frozen or decoupled in the limit affect only slightl
the dynamics. A possible exception to this rule occu
when the limiting soliton has zero modes other than
center-of-mass position. Small corrections may lift
this case the degeneracy and either fix or complet
destabilize the excitation. This is exemplified by th
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Belavin-Polyakov soliton [7], whose arbitrary scale ca
be fixed by embedding it into a gauged linear sigm
model [6].

The purpose of the present Letter is to show that o
can embed this same soliton as a stable static str
defect in the 2HSM. The key observation is that
an appropriate limit of parameters the only releva
dynamical field is the relative SU(2) phase of the tw
Higgs doublets, partially constrained to lie on a two
sphereS2. Our string defects are characterized by th
fact that the mapping of the transverse two-dimension
plane ontoS2 has a nonvanishing winding number. I
contrast to the previously discussed vortex strings [8] t
defects described here carry no net electroweak flux, h
no symmetry restoration in their core, and do not exist
the one-Higgs-doublet standard model.

The Lagrangian of the 2HSM isL ­ 2
1
4 Wa

mnWamn 2
1
4 YmnYmn 1 jDmH1j

2 1 jDmH2j
2 2 V sH1, H2d, where

Wa
mn ­ ≠mWa

n 2 ≠nWa
m 2 geabcWb

mWc
n , Ymn ­ ≠mYn 2

≠nYm. The physical Z0 and photon fields are
Zm ­ W3

m cosuW 2 Ym sinuW and Am ­ W3
m sinuW 1

Ym cosuW and tanuW ­ g0yg. Both Higgs doublets have
hypercharge equal to one; their covariant derivatives
defined by DmH1s2d ­ s≠m 1

i
2 gtaWa

m 1
i
2 g0YmdH1s2d,

while their potential reads
V sH1, H2d ­ l1

√
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√
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√
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2 H1dg 1 l5

"
ReH

y
1 H2 2
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2
sinj
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b ge
This is the most general potential [1] subject to the co
dition that bothCP invariance and a discreteZ2 sym-
metry (H1 ! 2H1) are only broken softly. The softly
broken Z2 symmetry is there to suppress unaccepta
large flavor-changing neutral currents.
n-

ly

Assuming all li are positive, the minimum of the
potential is, up to gauge transformations, atkH1l ­
s0, y1y

p
2d, kH2l ­ eijs0, y2y

p
2d. The perturba-

tive spectrum consists of the electroweak gau
bosons with massesm2

W ­ g2sy2
1 1 y

2
2dy4 and mZ ­
© 1999 The American Physical Society 2443
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mW y cosuW , a charged Higgs scalarH1 with mass
m2

H1 ­ l4sy2
1 1 y

2
2dy2, and three neutral scalars, on

CP odd (A0) and two CP even (h0 and H0), whose
masses depend on the value ofj. The neutral mass
matrix simplifies considerably for sinj cosj ­ 0. For
j ­ py2 the neutral masses arem2

A0 ­ l5sy2
1 1 y

2
2dy2,

m2
h0 ­ z 2

p
h and m2

H0 ­ z 1
p

h, where z ;
l1y

2
1 1 l2y

2
2 1 sl3 1

1
4 l6d sy2

1 1 y
2
2d and h ; sl1 1

l3 2
1
4 l6d2y

4
1 1 sl2 1 l3 2

1
4 l6d2y

4
2 1 2y

2
1y

2
2fsl3 1

1
4 l6d2 1 l3l6 2 sl3 2

1
4 l6d sl1 1 l2d 2 l1l2g. For

j ­ 0 the masses ofA0, h0, andH0 are given by the same
expressions withl5 and l6 interchanged. To simplify
the discussion we takej ­ py2, g0 ­ l3 ­ l4 ­ 0,
and drop the decoupled Us1d gauge fieldYm. We will
comment on these assumptions at the end.

Since we are interested in classically stable sta
string solutions, we choose theWa

0 ­ 0 gauge and
work with static field configurations, so that Gauss
law is automatically satisfied. Furthermore, for string
stretching in thex3 direction we take all fields to be
independent ofx3 and putWa

3 ­ 0. It is easy to verify
that stable minima of the ensuing two-dimensional ener
functional correspond to stable infinite-string excitation
in the original model. Unlike the Nielsen-Olesen-typ
vortex strings, the finite-energy solutions of interest
us will have jH1s2dj fi 0 everywhere. This fact allows
us to use the radial representation of the two double
and write them asH1s2d ­ F1s2dU1s2ds0, 1d. F1s2d are two
positive functions, whileU1s2d are two smooth SUs2d
valued functions on the plane. The space of smoo
maps from the two-dimensional plane into SUs2d ;
S3 is topologically trivial, and there is no topologica
obstruction in using the remaining freedom of smoo
transverse-space-dependent gauge transformations to
either U1 or U2 equal to the identity matrix. We
will choose U1 ­ 1 so that the most general Higgs
configuration takes the form

H1 ­ F1

µ
0
1

∂
and H2 ­ F2 exps2iQn ? t d

µ
0
1

∂
,

(2)

with n ? n ­ 1 andt the Pauli matrices.
In the naive limitl1, l2, l5 ! `, F1, F2, andQ freeze

at their vacuum valuesy1y
p

2, y2y
p

2, and j ­ py2,
2444
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respectively. This restricts the Higgs target space
a two-sphereS2, parametrized by the unit vectorn.
Sendingl6 ! 0 removes the potential ofn. In order to
decouple the gauge field we take, furthermore, the lim
g ! 0. This isa priori dangerous because it renders th
gauge fixing (2) singular. To remedy the situation w
must also takey1 ! ` while keeping the gauge-boson
massmW , gy1 finite. We will see explicitly later on
that a finite gauge-boson mass is indeed necessary for
stability analysis.

In the above limit of parameters one is left with an e
fective O(3) nonlinears modelL , y

2
2s≠mnd2 describ-

ing the dynamics of the unit-vector fieldnsxd. The s

model has well-known topological solitons in two spa
tial dimensions [7], characterized by an integer win
ing numberN . This is the number of timesnsxd winds
aroundS2 as its argument covers the plane transverse
the defect. It is convenient to parametrizeS2 through
a stereographic projection:n1 1 in2 ­ 2Vys1 1 jVj2d,
n3 ­ s1 2 jVj2dys1 1 jVj2d. TheN ­ 1 string, extend-
ing along thex3 axis and with the boundary condition
n3 ! 1 at `, is then given by

V ­ reiaysz 2 z0d , (3)

wherez ; x1 1 ix2. The positionz0, scaler, and angle
a are arbitrary parameters corresponding to soliton ze
modes. The valuen3 ­ 1 at ` will be imposed by the
requirement of finiteness of energy once, as we do belo
we letl6 fi 0.

Following the same steps as in Ref. [6], we want no
to relax slightly the above limits on the parameters a
study the fate of the solution (3). A simple scalin
argument shows that the potential terms tend to shr
the soliton to zero size, while the gauge interactions te
to blow it up. Our task will be to show that in a region
of parameter space the soliton is stabilized at some fix
scaler̄. Our semiclassical analysis seems at first glan
to be incompatible with the strong scalar-coupling lim
considered above. To resolve this apparent contradicti
we must redefine the limiting theory in terms of classical
relevant parameters as in [5,6]. To this end, we rescale
Higgs and gauge fields bymW y

p
2l1 and the transverse

space coordinatesxj s j ­ 1, 2d by 1ymW . The energy
per unit string length takes the form
E ­
m2

W

2l1

Z
d2x

(
F2

2 fsin2 Qs≠ind2 1 s≠iQd2g 1 s≠iF1d2 1 s≠iF2d2 1
1
2

sF2
1 2 ỹ2

1d2 1
l̃2

2
sF2

2 2 ỹ2
2d2

1
l̃5

2
F2

1F2
2 cos2 Q 1

l̃6

2
sF1F2n3 sinQ 2 ỹ1ỹ2d2 1

1
4

Wa
ijWa

ij

1
1
4

g̃2sF2
1 1 F2

2 dWa
i Wa

i 2 g̃F2
2Ja

i Wa
i

)
. (4)
tes

We have defined g̃ ­ gy

p
2l1, l̃m ­ lmyl1 for

m ­ 2, 5, 6, ỹ1 ;
p

2 cosbyg̃, ỹ2 ;
p

2 sinbyg̃,
tanb ­ y2yy1 ­ ỹ2yỹ1, and the current Ja

i ­
na≠iQ 1 sin2 Qeabcnb≠inc 1 sinQ cosQ≠ina. We
have kept the same notation for the rescaled coordina
and fields, as well as for the field strengthWa

ij which
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is defined as previously but with the gauge couplin
replaced bỹg.

Since we will keepmW different from zero in the
limiting theory, we can use it to fix the length and
mass scales by setting from now onmW ­ 1. We
may, furthermore, treatl1 as the semiclassical expansion
parameter, which we will take sufficiently small so as t
justify our semiclassical treatment. This leaves us wi
six classically relevant parameters:ỹ1, ỹ2, l̃2, l̃5, l̃6, and
g̃. The limiting theory of interest can now be define
more precisely as follows:

ỹ1, l̃2 ! `; ỹ2, l̃5 fi 0 fixed;

l̃6ỹ2
1 , g̃ , b ! 0 .

(5)

This looks different from our original naive limit but has
the same dynamical effects. The first set of condition
indeed freezeF1, F2, and Q to their vacuum values,
so that the only dynamically accessible Higgs degree
freedom is the fieldnsxd, which parametrizes a two sphere
of nonzero radius. The second set of conditions decoup
the gauge field and ensures that the dynamics ofn is
described by the usual Os3d nonlinears model, without
any additional potential term. The energy functional

Es0d ­
ỹ

2
2

2l1

Z
d2x s≠ind2, (6)

in this limit, admits the Belavin-Polyakov soliton as a
(marginally stable) solution.

Relaxing slightly the limit (5) will introduce a potential,
unfreeze the “heavy Higgs modes”F1 2 ỹ1 ; f1, F2 2

ỹ2 ; f2, and Q 2 py2 ; u, and couple weakly the
gauge fieldWa

i to the “light Higgs mode”n. These
effects can be summarized by a classical (nonloca
effective-energy functional [6],

Eeff ­ Es0d 1
ỹ

2
2

4l1

Z
d2x

"
l̃6ỹ2

1sn3 2 1d2

2
s≠in ? ≠ind2

l̃2ỹ
2
2

1 g̃2ỹ2
2

Z
d2y ja

k sxd

3 Gkisx 2 ydja
i s yd

#
1 . . . , (7)

where ja
k ; eabcnb≠knc, and Gki is the two-

dimensional massive Green function satisfyin
sdjkD 2 ≠j≠k 2 djkdGki ­ dsx 2 yddji and given
by

Gki ­ 2
1

s2pd2

Z
d2p

dki 1 pkpi

p2 1 1
eip?sx2yd. (8)

The first correction in (7) is a potential term. The secon
and the third come from the exchange of a heavy (radia
modef2 and of a vector boson, respectively. All three
are small compared toEs0d, at least in the range of scales
r , 1 that will interest us.

A series of comments on the above energy function
are in order here. First,Eeff contains an infinite series
of terms which come from integrating out classically th
g
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heavy Higgs modes and the vector bosons. Inspection
(4) shows that all higher tree diagrams contain extra heav
propagators and/or extra powers of weak couplings. W
can ensure that such corrections are indeed subleading
insisting, for instance, that all three heavy Higgs masse
be comparable. Second, had we setmW ­ 0, the gauge-
boson exchange diagram would have been IR diverge
for configurations with a simple power decay at infinity
like (3). A consistent stability analysis would thus be im-
possible in this case. Finally, we should point out tha
Skyrme-like and potential terms have been used to st
bilize the Belavin-Polyakov soliton in the past [9]. The
difference is that in our case the nonlocal and nonreno
malizable effective action (7) was derived from theclassi-
cal field equations of the (renormalizable) 2HSM.

Following [6], we can look for a stable solution of
(7) by minimizing the correction terms with respect to
the collective coordinates of the zeroth-order solution
(3). Since Eeff is independent of the center-of-mass
position and of the U(1) anglea, only the sizer of
the soliton is important. The currentja

i for the Belavin-
Polyakov soliton isja

i ­ eij≠jfa, where f1 1 if2 ­
2rsx1 2 ix2dysr2 1 r2d andf3 ­ 22r2ysr2 1 r2d. A
straightforward calculation then gives

dEeffsrd
c

­ ar2 2
b
r2 2

Z `

0
dz

z3fK2
1 szd 1 K2

0 szdg
sz2yr2d 1 1

,

(9)

where K0, K1 are the modified Bessel functions,
dEeff ­ Eeff 2 Es0d, and we have defined the
constants a ; l̃6ỹ

2
1y2g̃2ỹ

2
2 , b ; 8y3l̃2g̃2ỹ

4
2 , and

c ; 2pg̃2ỹ
4
2yl1. The shape ofdEeffsrd, for different

values of the parametersa and b, was analyzed nu-
merically. The results are given in Fig. 1. At every
point below the thick curve the energy has a local mini
mum, corresponding to a classically stable soliton of siz
r ­ r̄sa, bd.

The soliton size stays constant along the thin straigh
lines, as shown in the figure in units of1ymW . The
assumptions that justified our perturbative treatment, an

FIG. 1. The region of stability of winding string solitons.
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in particular the conditionr̄ , 1, are satisfied in a
large part of the stability region. The validity of our
analysis was confirmed independently by a numeric
minimization of the energy functional of the 2HSM. We
use, in an obvious notation, the most general axial
symmetric ansatz

H1 ­

√
0
h

!
, H2 ­ i

√
eiff

h1 1 ih2

!
,

W3 ­ W3
r er 1 W3

fef , (10)

W1 ­
1

p
2

eiffsWr1 1 iWr2der 1 sWf1 1 iWf2defg ,

where W1 ; sW1 2 iW2dy
p

2. The f dependence is
shown explicitly and the ten real unknown function
depend only onr.

Figure 2 shows the profile of the solution forg ­ 0.2,
y2yy1 ­ 0.3, l1 ­ 0.5, l2 ­ 20.0, l5 ­ 1.0, andl6 ­
0.0001 (corresponding to the pointA of Fig. 1) and with
tensionE ­ 31.24pm2

W . We did not plothsrd, which is
essentially equal to 6.7728 everywhere, orh2, Wr1, Wf2,
andW3

r , which to this accuracy are zero. As promised an
contrary to what happens for Nielsen-Olesen strings, t
magnitudes of the Higgs fields are nonzero everywher
Also, Q . py2 at all points.

Let us comment briefly on the parameters whic
were not relaxed from zero in this discussion. From
the analysis in [6] we expect that turning ong0 will
favor larger soliton radii, without affecting our qualitative
conclusions. The U(1) gauge interactions may eve
suffice by themselves to stabilize the soliton again
shrinking. Similarly, turning onl3 should not affect
significantly the discussion. Turning onl4, on the other
hand, to renderH1 massive, presents a technical difficulty
because the corresponding potential term, evaluated
the zeroth-order soliton, diverges. The divergence is d
to the slow approach ofn3 to its vacuum value at large
distances. Although we do not expect this effect to b
physically significant, our minimization procedure would
have to be modified in this case and one must che
numerically whetherH1 can be made heavy enough to

FIG. 2. The profile of a stable string.
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comply with experimental bounds. It is, on the othe
hand, a welcome fact of our analysis thatl̃5 need not be
large for stable strings to exist and thatl̃6 is preferred to
be small. Realistic values of theCP violation parameter
in the Higgs sector, which is proportional to the differenc
l̃5 2 l̃6 [1], may be consistent with string stability even
if j cannot be relaxed to very small values. Thu
there is noa priori indication that the experimental limits
on the parameters of the 2HSM [1] are incompatib
with the existence of our defects, but this must b
decided ultimately by a numerical analysis of the stabili
region [10].

Finally, having anS2 target space in the effective the
ory suggests that one should also search for stable loc
ized solitons classified by the Hopf indexp3sS2d [11].
The analytic methods of this paper are not, however, a
plicable because the zeroth-order sigma model Lagrang
does not admit such Hopf solutions.
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