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Counterterms and M-Theory Corrections to D = 11 Supergravity
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We construct a local on-shell invariant 8 = 11 supergravity from the nonlocal four-point tree
scattering amplitude. Its existence, together with earlier arguments, implies nonrenormalizability of the
theory at lowest possible, two loop, level. This invariant, whose leading bosonic terms are exhibited,
may also express the leading, “zero-slop&f“theory corrections to it9 = 11 supergravity limit.
[S0031-9007(99)08703-7]
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With the advent ofM physics, of which it is the the nonlocalS matrix without loss of SUSY. The basis
local limit, D = 11 supergravity [1], has regained a cen- for our computations is the full action of [1], expanded
tral role. This connection adds a further motivation to ourto the order required for obtaining the four-point scatter-
quest for its explicit on-shell supersymmetric invariants:ing amplitudes among its two bosons, namely the gravi-
Not only would their existence describe specific canditon and the three-form potential,,, with field strength
date counterterms, completing a recent argument for th€,, .z = 49[,A,.p], iNvVariant under the gauge transfor-
field theory’s nonrenormalizability, but they would also mationséA, . = d[ué,e]- From the bosonic truncation
exemplify concrete “zero-slope” corrections from the full of this action (omitting obvious summation indices),

M theory (whatever its ultimate form) similar to the cor-

responding string corrections to their limitingp, = 10, B = j d“x[ —ER( ) — V& 72

supergravities. That such invariants had not been given 1 42 8

earlier is due to the absence of a systematic supersymmet- 2k

ric calculus, or even of a practical way to verify candidate + 1442 e"M"F.Fs. A } 1)
terms. Indeed, it was only very recently [2,3] that the

tensorial structure of the relevant invariant’s four grawtonwe extract the relevant vertices and propagators; note that

sector was found, by explicit one-loop calculations. TheK2 has dimensior{Z]° and that the ®,T) conserving

present effort originated in trying to generalize techniquesCubic Chern-Simons (CS) term depends explicitly ©on

of gravitationsl Bel Rabinon (BR) toncors as auonts pPUL S (Of course) gravity independent. The propagators
9 come from the quadratic terms ., = guy — Muv

constructingD = 4 supgrgravity invariants [4]; despite ndA,,.; they need no introduction. There are three
the strong degeneracy in the number of such currents Al bic li/ertices, namely graviton, pure form and mixed-

D = 4, their extensions will |_ndeed play a key part in our form graviton that we schematically represent as
D = 11 construction. A major step forward in this area

was recently made [5] through peautiful use of the Yang- VE ~ (0hoh)h = KT " h,,, V38FF = kT h

Mills supersymmetry/supergravity (YM SUSY/SUGRA) & H e

open/closed string correspondence, analytically extended Vi ~ keAFF = KAuvaCr (2a)

to its maximal O = 10) dimension. Although there is , , 1

no underlyingD = 11 YM SUSY model, we shall argue ~ T#" = Gy, Tr = FFF" — 3 "' F?,

that the construction of [5] together with the invariant pro-

vided here, lend strong credence to a two-loop nonrenor- _,or 2

malizability verdict forD = 11 supergravity. F = (12)4
Our construction is a physical one, with manifest su-

persymmetry: we calculate the tree-level four-point scat-The form’s currentCr and stress tensofr are both

tering amplitudes of thé® = 11 theory. This procedure manifestly gauge invariant. In our computation, two legs

has several merits: First, there is no fermion-boson mixef the three-graviton vertex are always on linearized

ing in the tree diagrams; hence we are free just to calEinstein shell; we have exploited this fact in writing it

culate the bosonic contributions knowing that they aren the simplified form (2), the subscript on the Einstein

part of a guaranteed SUSY invariant, namely the totatensor denoting its quadratic part ih. [Essentially,

four-point § matrix. Second, because SUSY transfor-the on-shell legs are the ones 7i#"”, the off-shell one

mations are linear to leading order, there is no mixingmultiplies it.] To achieve coordinate invariance to correct,

with higher-point amplitudes. Third, we will see that one quadratic, order one must also include the four-point

can uniformly extract the desired, local, invariant from contact vertices

48
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sIf 8§ _ 2 M1y vy
Vi ~ kX0hohhh, Vi = Kzﬁhaﬁh,w Mg = KP(dstu) g 1
R (3) X Rpspovins R pasvi Rpspvs vs R s v
= (stu)"'L§, (4)

when calculating the amplitudes; these are the remedies
for the unavoidable coordinate variance of the gravitalp to a possible contribution from the quartic Euler
tional stress tensdf#” and the fact thaT}”hW is only density Eg, which is a total divergence to this order
first order coordinate-invariant. The gravitational vertices(if present, it would only contribute ak> level). The
are not given explicitly, as they are both horrible and wellresult (4) is also the familiar superstring zero-slope limit
known [6,7]. We reiterate that gravitinos are decoupleccorrection to D = 10 supergravity, where theg'
at tree level; while four-point amplitudes involving them symbol originates from thed = 8 transverse subspace
would mix with bosonic ones under supersymmetry transt10]. [Indeed, the “true” origin of the ten dimensional
formations, this would merely provide a (useful) check onanalog of (4) was actually traced back o= 11 in the
our arithmetic. one-loop computation of [2,3].] Note that the local part,
We start with the four-graviton amplitude, obtained by LS, is simply extracted through multiplication @f; by
contracting twoV; vertices in all three channels [labeled s7u, which in no way alters SUSY invariance, because all
by the Mandelstam variable@, ¢, u)] through an inter- parts ofM, behave the same way.
mediate graviton propagator (that provides a single de- In many respects, the form (4) for the four-graviton
nominator), adding the contadt; and then setting the contribution is a perfectly physical one. However, in
external graviton polarization tensors on free Einsteirferms of the rest of the invariant to be obtained below, one
shell. The resulting amplitudéz; () will be a nonlo-  would like a natural formulation with currents that encom-
cal (precisely thanks to the loc&l; contribution) quar- Pass both gravity and matter in a unified way as in fact
tic in the Weyl tensor. (We do not differentiate in occurs in, e.g.N =2, D = 4 supergravity [11]. This
notation between Weyl and Riemann here and also exnight also lead to some understanding of other SUSY
press amplitudes in covariant terms for simplicity, evenmultiplets. Using the quartic basis expansion, one may
though they are valid only to lowest relevant order in theféwrite Lj in various ways involving conserved BR cur-
linearized curvatures.) Explicit calculation is, of course,rents and a closed four-forag,, = 1/4Rfy, Raplab,
required to discover the exa&t' combinations involved for example
and things are much more complicated in higher di-
mensions than inD = 4, where there are exactly two L = 48K2|:2B/_LVQBB’U'0”}’8 — Bu,apB"'*P
possible local quartics in the Weyl tensor—for example,
the squares of EuleiE; = R*R*) and Pontryagin®, =
R*R) densities R = 1/2€R). The special property of
the Einstein action (that also ensures its supersymmetriz-

+ PuyapP*"*P + 6B  BE7C

ability) is that this amplitude must be maximally helicity _ (B%)ﬂ, (5a)
conserving (treating all particle as incoming), thereby fix- 49

!ng it_s Ioc_:al part to _be [8](E4 —_1_[’4) (E4 +_P4). This B por 1 por
invariant is also, owing to identities peculiar @ = 4, Buvap = RwpacRyp = 5 8urRaporRp
expressible [4] as the square of the (uniqueDn= 4) |

BR tensorB,ap = (RR + R*R")upap. BUtD =4 is — — 8apRupas R

a highly degenerate case in both respects: generically, 2

there are seven independent quartic monomials [9] in 1 Aot

the Weyl tensor forD = 8 and an intrinsically three- + g 8ur8apRapor R, (5b)

parameter family of BR tensors; as might be expected,

there is no longer any simple equivalence betw¢ggR)>  where () means symmetrization with weight one of the
forms and helicity (though it might be fruitful to explore underlined indices. AD = 4, P,, .z obviously reduces
its extensions to generic D). Still, these descriptions argo €,,,5P, and L$ can easily be shown to have the
robust: for example, one hint for the gravitational ampli-correct B2 form, as must be the case from brute force
tude is provided by its diagrammatic origin in terms of dimensional reduction arguments.

T$, because there is a (highly gauge-dependent) iden- Let us now turn to the pure form amplitude, whose op-
tity of the schematic formB,,.p ~ d925T¢,. Within  erative currents are the Chern-Simaffs,, and the stress
our space limitations, we cannot exhibit the actual caHensorT[fV, mediated, respectively, by the and gravi-
culation here; fortunately, this amplitude has alreadyton propagators; each contribution is separately invariant.
been given (for arbitraryD) in the pure gravity context By dimensions, the building block will b&dFJF; get-
[6]. It can be shown, using the basis of [9], to be ofting hints from D = 4, however, would require using
the form (unwieldy) N = 8 models. Instead, we computed the
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two relevant, CrCr and TrTf, diagrams directly, re- any gauge-field-current coupling, as evidenced by these
sulting in the four-point amplitudésf = (sru)"'Ly =  ubiquitousCC contributions.

(stu)~'k?(9F)*, again with an overalls¢u) factor. (An The remaining amplitudes are the form “bremsstrah-
independent calculation a7 has just been reported in lung” M¥FFs and the graviton-form scatteriri[z[fg. The
[12]; we have not compared details.) An economical waypy/#¥Fs amplitude represents radiation of a graviton from
to organizeL; is in terms of matter BR tensors and cor- the CS term, i.e., contraction of th€s and TF huv

respondingC? extensions, prototypes being the “doublevertices by an mtermedlalzellne yielding
gradients” ofT'},, and ofC*, FFFg

M! — (stu) lLFFFg
B,u.vaﬁ = 8aFMaBF,, + aBFﬂéaF,, r 2 .
1 Ly == CF o pCafy KO PE 8a
- Z T]lwaaFaBF, 4 3 rypiap 1B ( )
_ [A 2
OBl ,ap =0, (6a)  CRF .5 = 40r(R( 5 FLPY) — —R(aB)aAF(‘,“’”. (8b)
1 ; RF N
Cpo’T af = (24)2 €porrpy s Oa 11 g IS, The off-diagonal cgr_renC_ has antecedents iN = 2_
D = 4 theory [11]; it is unique only up to terms vanishing
on contraction withC*. While its (8b) form is com-
a” CpO"T af =0. (6b) .. f .
v pact, there are more promising variants, with better
From (6) we can construdty as conservation and trace properties. Thaffs, ~
2 k*R*(0F)%, has three distinct diagrams: mixet’ 78
LY = % MM[;BMMIBIG"”“”‘”K“““ﬁlﬁ mediated by the graviton; gravitational Compton ampli-
tudes ~(hh)TrTF with a virtual A line, and finally the
_ C , aﬁcgngKaal;ﬁlﬁ‘ (7)  four-point contact vertex'Fhh. The resultingM; ¢
12 e i again proportional taszu) !,
The matrix G*¢F = nraq’f + prentf —2/(D - M = (s) 1L
2)n** n*# is the usual numerator of the graviton propa- )
gator on conserved sources. The origin of":¢f = e = K—(lB BF G
nhtanrP + prantb — nirpeB can be traced back 4 3 APmraBPumaf
o “spreading” thestu derivatives: for example, in the _ CR cRbwre KeaBiB, 9
s channel we can writeu = —1/2K*"*Fpl p>p3 p, wrpiapCaipy ) ©
the analogous identities for the other channeé camp to subleading terms mvolvmg traces Tr}% com-
be obtained by crossing. [It is convenient to define  plete bosonic invariant,, = Lf + L} + L4 + Ly ¢,
(p1p2),t = (p1p3),u = (p1ps), Wwith p + pr= is not necessarily in its most unified form, but it suggests

p3 + ps. Note also the absence 6f, K) factors from  some intriguing possibilities, especially in the matter sec-
(5), they are already incorporated into the BR’s.] It istor. For example, it is worth noting that theC* cur-
these identities that enabled us to writg’s universally  rents can be unified into a unique current, which is the
as(stu)"'Ly’s: Originally the M, have a single denomi- sum of the two, and their contributions to the invariant are
nator (from the intermediate specific exchangey, or  simply its appropriate square. The corresponding attempt
u channel); we uniformize them all téstu)~' through for the BR sector, unfortunately, does not quite work,
multiplication of, say,s™! by (tu)”'(tu). The extra at least with our choice of currents. We hope to return
derivatives thereby distributed in the numerators haveo this point elsewhere; instead we discuss some impor-
the further virtue of turning all polarization tensors into tant consequences of the very existence of this invariant,
curvatures and derivatives of forms, as we have indicatedvhere elegance of its presentation is irrelevant.

It is worth noting that the mattefBR)> form (7) is in Consider first the issue of renormalizability bf = 11

fact valid for any matter-matter four-point amplitude supergravity. As we mentioned at the start, the work
mediated by a grawton through minimal coupllng simply of [5] formally regarded as an analytic continuation to
because of thaMVTmatt vertex and the BRu ~ 9*Tmatt D = 11, states that the coefficient of a two-loop candidate
relation. In particular, one can easily give natural extencounterterm is nonzero. Our result exhibits this invariant
sions of the bosonic results both for the pure fermionicexplicitly; taken together, they provide a compelling basis
four- pomt function, since it too has an associated BRfor the theory’s nonrenormalizability. In this connection
tensor~aaBTﬂ and for mixed Fermi-boson contribu- a brief review of the divergence problem may be useful.
tions. For example, the former resembles (7), with aFor clarity, we choose to work in the framework of
BYBY part as well as &% CY part from the nonminimal dimensional regularization, in which only logarithmic di-
YTy F coupling inl;;. Indeed “current-current” terms vergences appear and, consequently, the local counterterm
are generically present for any amplitude generated bynust have dimension zero (including dimensions of the
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coupling constants in the loop expansion). Now a genericlimensional coupling constant. The opposite guess,
gravitational loop expansion proceeds in powergofwe  however, that some special/¢theory related?) property
will separately discuss the effect of the additional appearef this “maximally maximal” model might keep it finite
ance ofx in the CS vertex). At one loop, one would have (at least to some higher order) could also have been
AI ~ k% [dx" ALy; but there is no candidatAL, of  reasonably entertained priori, so this was an issue
dimension11, since odd dimension cannot be achievedworth settling.

by a purely gravitationalAL;, except at best through  Perhaps more relevant to the future than the field
a ‘“gravitational” ~eI’RRRR or “form-gravitational” theory’s ultraviolet behavior is the light that can be
~€eARRRR CS term [13], which would violate parity: shed on “nearby” properties oM theory, whatever
Thus, if present, they would represent an anomaly, ands ultimate form. Given thatD = 11 supergravity is

so be finite anyway. [In this connection we also noteits local limit, one would expect that there are local,
that the presence of a Levi-Civita symbolusually does *“zero-slope” corrections that resemble the corrections that
not invalidate the use of dimensional regularization (orD = 10 string theories make to their limiting = 10,
reduction) schemes to the order we need. In any case, ogupergravities. Among other things, various brane effects
conclusions would also apply, in a more complicated waymight become apparent in this way. Our local invariant
in other regularization schemes that preserve SUSY.] Th&uite apart from the)”" factors inserted for counterterm
two-loop term would beAL, ~ «? [d''x AL,, so that purposes) is then the simplest such possible correction.
AL, ~ [L]~%° which can be achieved (to lowest order in As we saw, it shares witl® = 10 zero-slope limits the
external lines) byAL, ~ 9'2R*, whered'> means twelve samergtgR* pure graviton term, but now acquires various
explicit derivatives spread among the four curvaturesadditional form-dependent and spinorial contributions as
There are no relevant two-pointd'°R? or three-point well. A detailed version of our calculations will be
~9'“R3 terms because the? can be field-redefined away published elsewhere.
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