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We construct a local on-shell invariant inD ­ 11 supergravity from the nonlocal four-point tree
scattering amplitude. Its existence, together with earlier arguments, implies nonrenormalizability o
theory at lowest possible, two loop, level. This invariant, whose leading bosonic terms are exhib
may also express the leading, “zero-slope,”M-theory corrections to itsD ­ 11 supergravity limit.
[S0031-9007(99)08703-7]
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With the advent ofM physics, of which it is the
local limit, D ­ 11 supergravity [1], has regained a cen
tral role. This connection adds a further motivation to ou
quest for its explicit on-shell supersymmetric invariants
Not only would their existence describe specific cand
date counterterms, completing a recent argument for t
field theory’s nonrenormalizability, but they would also
exemplify concrete “zero-slope” corrections from the fu
M theory (whatever its ultimate form) similar to the cor
responding string corrections to their limiting,D ­ 10,
supergravities. That such invariants had not been giv
earlier is due to the absence of a systematic supersymm
ric calculus, or even of a practical way to verify candidat
terms. Indeed, it was only very recently [2,3] that th
tensorial structure of the relevant invariant’s four gravito
sector was found, by explicit one-loop calculations. Th
present effort originated in trying to generalize technique
known from lower-dimensional models, such as the u
of gravitational Bel-Robinson (BR) tensors as currents
constructingD ­ 4 supergravity invariants [4]; despite
the strong degeneracy in the number of such currents
D ­ 4, their extensions will indeed play a key part in ou
D ­ 11 construction. A major step forward in this area
was recently made [5] through beautiful use of the Yan
Mills supersymmetry/supergravity (YM SUSY/SUGRA)
open/closed string correspondence, analytically extend
to its maximal (D ­ 10) dimension. Although there is
no underlyingD ­ 11 YM SUSY model, we shall argue
that the construction of [5] together with the invariant pro
vided here, lend strong credence to a two-loop nonren
malizability verdict forD ­ 11 supergravity.

Our construction is a physical one, with manifest su
persymmetry: we calculate the tree-level four-point sca
tering amplitudes of theD ­ 11 theory. This procedure
has several merits: First, there is no fermion-boson mi
ing in the tree diagrams; hence we are free just to ca
culate the bosonic contributions knowing that they a
part of a guaranteed SUSY invariant, namely the tot
four-point S matrix. Second, because SUSY transfo
mations are linear to leading order, there is no mixin
with higher-point amplitudes. Third, we will see that on
can uniformly extract the desired, local, invariant from
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the nonlocalS matrix without loss of SUSY. The basis
for our computations is the full action of [1], expande
to the order required for obtaining the four-point scatte
ing amplitudes among its two bosons, namely the gra
ton and the three-form potentialAmna with field strength
Fmnab ; 4≠fmAnabg, invariant under the gauge transfor
mationsdAmna ­ ≠fmjnag. From the bosonic truncation
of this action (omitting obvious summation indices),
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F2
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2k

1442 e1···11F1···F5···A···11

∏
, (1)

we extract the relevant vertices and propagators; note
k2 has dimensionfLg9 and that the (P, T ) conserving
cubic Chern-Simons (CS) term depends explicitly onk

but is (of course) gravity independent. The propagato
come from the quadratic terms inkhmn ; gmn 2 hmn

and Amna; they need no introduction. There are thre
cubic vertices, namely graviton, pure form and mixe
form graviton that we schematically represent as

V
g
3 , s≠h≠hdh ; kTmn

g hmn , V
gFF
3 ; kT

mn
F hmn ,

V F
3 , keAFF ; kAmnaC

mna
F , (2a)

Tmn
g ; G

mn

s2d , T
mn
F ; FmFn 2

1
8

hmnF2 ,

C
rst
F ;

2
s12d4 erstm1···m8 Fm1···F···m8 . (2b)

The form’s currentCF and stress tensorTF are both
manifestly gauge invariant. In our computation, two leg
of the three-graviton vertex are always on linearize
Einstein shell; we have exploited this fact in writing
in the simplified form (2), the subscript on the Einste
tensor denoting its quadratic part inh. [Essentially,
the on-shell legs are the ones inTmn

g , the off-shell one
multiplies it.] To achieve coordinate invariance to correc
quadratic, order one must also include the four-po
contact vertices
© 1999 The American Physical Society 2435
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4 , k2s≠h≠hdhh, V

gF
4 ­ k2 dIF

dgabdgmn

habhmn

(3)

when calculating the amplitudes; these are the remed
for the unavoidable coordinate variance of the gravit
tional stress tensorTmn

g and the fact thatT
mn
F hmn is only

first order coordinate-invariant. The gravitational vertice
are not given explicitly, as they are both horrible and we
known [6,7]. We reiterate that gravitinos are decouple
at tree level; while four-point amplitudes involving them
would mix with bosonic ones under supersymmetry tran
formations, this would merely provide a (useful) check o
our arithmetic.

We start with the four-graviton amplitude, obtained b
contracting twoV

g
3 vertices in all three channels [labeled

by the Mandelstam variablesss, t, ud] through an inter-
mediate graviton propagator (that provides a single d
nominator), adding the contactV

g
4 and then setting the

external graviton polarization tensors on free Einste
shell. The resulting amplitudeM

g
4 shd will be a nonlo-

cal (precisely thanks to the localV
g
4 contribution) quar-

tic in the Weyl tensor. (We do not differentiate in
notation between Weyl and Riemann here and also e
press amplitudes in covariant terms for simplicity, eve
though they are valid only to lowest relevant order in th
linearized curvatures.) Explicit calculation is, of cours
required to discover the exactR4 combinations involved
and things are much more complicated in higher d
mensions than inD ­ 4, where there are exactly two
possible local quartics in the Weyl tensor—for exampl
the squares of Euler (E4 ; RpRp) and Pontryagin (P4 ;
RpR) densities (?R ; 1y2eR). The special property of
the Einstein action (that also ensures its supersymmet
ability) is that this amplitude must be maximally helicity
conserving (treating all particle as incoming), thereby fi
ing its local part to be [8]sE4 2 P4d sE4 1 P4d. This
invariant is also, owing to identities peculiar toD ­ 4,
expressible [4] as the square of the (unique inD ­ 4)
BR tensorBmnab ­ sRR 1 RpRpdmnab. But D ­ 4 is
a highly degenerate case in both respects: generica
there are seven independent quartic monomials [9]
the Weyl tensor forD $ 8 and an intrinsically three-
parameter family of BR tensors; as might be expecte
there is no longer any simple equivalence betweensBRd2

forms and helicity (though it might be fruitful to explore
its extensions to generic D). Still, these descriptions a
robust: for example, one hint for the gravitational ampl
tude is provided by its diagrammatic origin in terms o
Tg

mn because there is a (highly gauge-dependent) ide
tity of the schematic formBmnab , ≠

2
abTg

mn . Within
our space limitations, we cannot exhibit the actual ca
culation here; fortunately, this amplitude has alread
been given (for arbitraryD) in the pure gravity context
[6]. It can be shown, using the basis of [9], to be o
the form
2436
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M
g
4 ­ k2s4stud21t

m1···m8

8 t
n1···n8
8

3 Rm1m2n1n2 Rm3m4n3n4 Rm5m6n5n6 Rm7m8n7n8

; sstud21L
g
4 , (4)

up to a possible contribution from the quartic Eul
density E8, which is a total divergence to this orde
(if present, it would only contribute atR5 level). The
result (4) is also the familiar superstring zero-slope lim
correction to D ­ 10 supergravity, where thet

m1···m8

8
symbol originates from theD ­ 8 transverse subspac
[10]. [ Indeed, the “true” origin of the ten dimensiona
analog of (4) was actually traced back toD ­ 11 in the
one-loop computation of [2,3].] Note that the local pa
L

g
4 , is simply extracted through multiplication ofM

g
4 by

stu, which in no way alters SUSY invariance, because
parts ofM4 behave the same way.

In many respects, the form (4) for the four-gravito
contribution is a perfectly physical one. However,
terms of the rest of the invariant to be obtained below, o
would like a natural formulation with currents that encom
pass both gravity and matter in a unified way as in fa
occurs in, e.g.,N ­ 2, D ­ 4 supergravity [11]. This
might also lead to some understanding of other SU
multiplets. Using the quartic basis expansion, one m
rewrite L

g
4 in various ways involving conserved BR cur

rents and a closed four-formPabmn ­ 1y4Rab
fmnRabgab,

for example

L
g
4 ­ 48k2

∑
2BmnabBmanb 2 BmnabBmnab

1 PmnabPmnab 1 6Br
mraBmsa

s

2
15
49

sBmn
mnd2

∏
, (5a)

Bmnab ; RsmrasR
rs

ndb 2
1
2

gmnRarstR
rst
b

2
1
2

gabRmrstRrst
n

1
1
8

gmngabRlrstRlrst , (5b)

where s d means symmetrization with weight one of th
underlined indices. AtD ­ 4, Pmnab obviously reduces
to emnabP4, and L

g
4 can easily be shown to have th

correct B2 form, as must be the case from brute forc
dimensional reduction arguments.

Let us now turn to the pure form amplitude, whose o
erative currents are the Chern-SimonsCF

mna and the stress
tensorTF

mn , mediated, respectively, by theA and gravi-
ton propagators; each contribution is separately invaria
By dimensions, the building block will bek≠F≠F; get-
ting hints from D ­ 4, however, would require using
(unwieldy) N ­ 8 models. Instead, we computed th
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two relevant, CFCF and TFTF , diagrams directly, re-
sulting in the four-point amplitudeMF

4 ­ sstud21LF
4 ­

sstud21k2s≠Fd4, again with an overall (stu) factor. (An
independent calculation ofMF has just been reported in
[12]; we have not compared details.) An economical wa
to organizeLF

4 is in terms of matter BR tensors and cor
respondingCF extensions, prototypes being the “doubl
gradients” ofTF

mn and ofCF ,

BF
mnab ­ ≠aFm≠bFn 1 ≠bFm≠aFn

2
1
4

hmn≠aF≠bF ,

≠mBF
mnab ­ 0 , (6a)

CF
rst;ab ­

1
s24d2 erstm1···m8 ≠aFm1···m4 ≠bFm5···m8 ,

≠rCF
rst;ab ­ 0 . (6b)

From (6) we can constructLF
4 as

LF
4 ­

k2

36
BF

mnabBF
m1n1a1b1

Gmm1;n1nKaa1;b1b

2
k2

12
CF

mnr;abC
Fmnr
a1b1

Kaa1;b1b . (7)

The matrix Gmn;ab ; hmahnb 1 hnahmb 2 2ysD 2

2dhmnhab is the usual numerator of the graviton propa
gator on conserved sources. The origin ofKmn;ab ;
hmahnb 1 hnahmb 2 hmnhab can be traced back
to “spreading” thestu derivatives: for example, in the
s channel we can writetu ­ 21y2Kmn;abp1

mp2
np3

ap4
b;

the analogous identities for the other channels c
be obtained by crossing. [ It is convenient to defines ;
sp1p2d, t ; sp1p3d, u ; sp1p4d, with p1 1 p2 ­
p3 1 p4. Note also the absence ofsG, Kd factors from
(5), they are already incorporated into the BR’s.] It i
these identities that enabled us to writeM4’s universally
assstud21L4’s: Originally theM4 have a single denomi-
nator (from the intermediate specific exchange,s, t, or
u channel); we uniformize them all tosstud21 through
multiplication of, say, s21 by stud21stud. The extra
derivatives thereby distributed in the numerators ha
the further virtue of turning all polarization tensors int
curvatures and derivatives of forms, as we have indicat
It is worth noting that the mattersBRd2 form (7) is in
fact valid for any matter-matter four-point amplitude
mediated by a graviton through minimal coupling, simp
because of thehmnT

mn
matt vertex and the BRmatt , ≠2Tmatt

relation. In particular, one can easily give natural exte
sions of the bosonic results both for the pure fermion
four-point function, since it too has an associated B
tensor ,≠

2
abTc

mn and for mixed Fermi-boson contribu-
tions. For example, the former resembles (7), with
BcBc part as well as aCcCc part from the nonminimal
c̄GcF coupling in I11. Indeed “current-current” terms
are generically present for any amplitude generated
y
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any gauge-field-current coupling, as evidenced by the
ubiquitousCC contributions.

The remaining amplitudes are the form “bremsstra
lung” MFFFg and the graviton-form scatteringM

Fg
4 . The

MFFFg amplitude represents radiation of a graviton from
the CS term, i.e., contraction of theCS and TF

mnhmn

vertices by an intermediateA line, yielding

M
FFFg
4 ­ sstud21L

FFFg
4 ,

L
FFFg
4 ­ 2

k2

3
CF

mnr;abC
RFmnr
a1b1

Kaa1;b1b , (8a)

CRF
mnr;ab ; 4≠lsRsfl

sabdF
mnrg
s d 2

2
3

Rsl
sabd≠lFmnr

s . (8b)

The off-diagonal currentCRF has antecedents inN ­ 2
D ­ 4 theory [11]; it is unique only up to terms vanishing
on contraction withCF . While its (8b) form is com-
pact, there are more promising variants, with bett
conservation and trace properties. TheMFg, ,
k2R2s≠Fd2, has three distinct diagrams: mixedTFTg

mediated by the graviton; gravitational Compton amp
tudes,shhdTFTF with a virtual A line, and finally the
four-point contact vertexFFhh. The resultingM

Fg
4 is

again proportional tosstud21,

M
Fg
4 ­ sstud21L

Fg
4 ,

L
Fg
4 ­

k2

3
s 1

4 B
g
mnabBF

m1n1,a1b1
Gmm1;nn1

2 CRF
mnr;abC

RFmnr
a1b1

dKaa1;b1b , (9)

up to subleading terms involving traces. The com
plete bosonic invariant,L4 ; LF

4 1 L
g
4 1 L

Fg
4 1 L

FFFg
4 ,

is not necessarily in its most unified form, but it sugges
some intriguing possibilities, especially in the matter se
tor. For example, it is worth noting that the “C” cur-
rents can be unified into a unique current, which is th
sum of the two, and their contributions to the invariant a
simply its appropriate square. The corresponding attem
for the BR sector, unfortunately, does not quite wor
at least with our choice of currents. We hope to retu
to this point elsewhere; instead we discuss some imp
tant consequences of the very existence of this invaria
where elegance of its presentation is irrelevant.

Consider first the issue of renormalizability ofD ­ 11
supergravity. As we mentioned at the start, the wo
of [5] formally regarded as an analytic continuation t
D ­ 11, states that the coefficient of a two-loop candida
counterterm is nonzero. Our result exhibits this invaria
explicitly; taken together, they provide a compelling bas
for the theory’s nonrenormalizability. In this connectio
a brief review of the divergence problem may be usefu
For clarity, we choose to work in the framework o
dimensional regularization, in which only logarithmic di
vergences appear and, consequently, the local countert
must have dimension zero (including dimensions of th
2437
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coupling constants in the loop expansion). Now a gener
gravitational loop expansion proceeds in powers ofk2 (we
will separately discuss the effect of the additional appea
ance ofk in the CS vertex). At one loop, one would have
nI1 , k0

R
dx11 nL1; but there is no candidatenL1 of

dimension11, since odd dimension cannot be achieve
by a purely gravitationalnL1, except at best through
a “gravitational” ,eGRRRR or “form-gravitational”
,eARRRR CS term [13], which would violate parity:
Thus, if present, they would represent an anomaly, a
so be finite anyway. [ In this connection we also not
that the presence of a Levi-Civita symbole usually does
not invalidate the use of dimensional regularization (o
reduction) schemes to the order we need. In any case,
conclusions would also apply, in a more complicated wa
in other regularization schemes that preserve SUSY.] T
two-loop term would benL2 , k2

R
d11x nL2, so that

nL2 , fLg220 which can be achieved (to lowest order in
external lines) bynL2 , ≠12R4, where≠12 means twelve
explicit derivatives spread among the four curvature
There are no relevant two-point,≠16R2 or three-point
,≠14R3 terms because theR2 can be field-redefined away
into the Einstein action in its leading part (toh2 order,E4
is a total divergence in any dimension) whileR3 cannot
appear by SUSY. This latter fact was first demonstrated
D ­ 4 but must therefore also apply in higherD simply
by the brute force dimensional reduction argument. S
the terms we need are, for their four-graviton part,L

g
4

of (5) with twelve explicit derivatives. The companions
of L

g
4 in Ltot

4 will simply appear with the same number of
derivatives. It is easy to see that the additional≠12 can
be inserted without spoiling SUSY; indeed they appear
naturally as did multiplication bystu in localizing theM4
to L4: for example,≠12 might become, in momentum space
language,ss6 1 t6 1 u6d or sstud2. This establishes the
structure of the four-point local counterterm candidate
As we mentioned, its coefficient (more precisely tha
of R4) is known and nonvanishing atD ­ 11 when
calculated in the analytic continuation framework of [5]
which is certainly correct throughD ­ 10. Consider
lastly possible invariants involving odd powers ofk

arising from the CS vertex. One might suppose that the
is a class of one-loop diagrams, consisting of a polygo
(triangle or higher) with form/graviton segments an
appropriate emerging external bosons at its vertices, th
could also have local divergences. The simplest examp
would be a form triangle with three externalF-lines
,k3

R
d11x ≠9eAFF. This odd number of derivatives

cannot be achieved and still yield a local scalar. Th
argument also excludes the one-loop polygon’s gravit
tional or form extensions such asF2R, FR2, or evenF3R
at thisk3 level. One final comment: nonrenormalizability
had always been a reasonable guess as the fate ofD ­ 11
supergravity, given that it does not share theN ­ 4 YM
SUSY theory’s conformal invariance, because of th
2438
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dimensional coupling constantk. The opposite guess,
however, that some special (M-theory related?) property
of this “maximally maximal” model might keep it finite
(at least to some higher order) could also have be
reasonably entertaineda priori, so this was an issue
worth settling.

Perhaps more relevant to the future than the fie
theory’s ultraviolet behavior is the light that can b
shed on “nearby” properties ofM theory, whatever
its ultimate form. Given thatD ­ 11 supergravity is
its local limit, one would expect that there are loca
“zero-slope” corrections that resemble the corrections th
D ­ 10 string theories make to their limitingD ­ 10,
supergravities. Among other things, various brane effe
might become apparent in this way. Our local invaria
(quite apart from the≠n factors inserted for counterterm
purposes) is then the simplest such possible correcti
As we saw, it shares withD ­ 10 zero-slope limits the
samet8t8R4 pure graviton term, but now acquires variou
additional form-dependent and spinorial contributions
well. A detailed version of our calculations will be
published elsewhere.
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