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We propose a novel dynamical method for beating decoherence and dissipation in open qu
systems. We demonstrate the possibility of filtering out the effects of unwanted (not necessarily kn
system-environment interactions and show that the noise-suppression procedure can be combin
the capability of retaining control over the effective dynamical evolution of the open quantum sys
Implications for quantum information processing are discussed. [S0031-9007(99)08754-2]
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All real world quantum systems interact with thei
surrounding environment to a greater or lesser exte
Such systems are said to beopen. No matter how weak the
coupling that prevents the system from being isolated, t
evolution of an open quantum system is eventually plagu
by nonunitary features like decoherence and dissipat
[1]. Quantum decoherence, in particular, is a pure
quantum-mechanical effect whereby the system loses
ability to exhibit coherent behavior by getting entangle
with the ambient degrees of freedom. Decoherence sta
as a serious obstacle common to all applications relyi
on the capability of maintaining and exploiting quantum
coherence. These encompass quantum state enginee
[2], quantum interferometry [3], macroscopic quantum
mechanics [4] and, notably, the whole emerging field
quantum information processing [5].

Recently, considerable effort has been devoted
designing strategies able to counteract the effects
environmental couplings in open-system evolutions.
particular, the theory of quantum error correction has be
developed to meet this challenge [6]. From a physic
point of view, the general underlying question can b
stated in terms of attainingquantum noise control. Unlike
the closed-system limit, where the active manipulation
unitary dynamics is currently realized to be a problem
quantum control theory [7], the possibility ofdirectly ex-
ploiting control techniques to influence open-system pro
erties has not been fully explored yet. Existing approach
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mainly rely on feedback (or closed-loop) control config
rations [8]. In fact, conventional quantum error correctio
protocols can be regarded, in their essence, as a form
quantum feedback control implemented on aredundant
physical system.

In this Letter, we formulate a model fordecoupling a
generic open quantum system from any environmental
teractionthrough simpler so-called open-loop control tec
niques. We show that the resulting description not on
provides a comprehensive framework for decoheren
suppression schemes as first identified in [9] and sub
quently implemented by various authors under spec
assumptions [10], but, in contrast to previous proposa
it also points out a general criterion for engineeringef-
fectiveopen-system evolutions that are, in principle, im
mune to noise and decoherence. More precisely, we
that one can effectively control the system to undergo
wide range of dynamical behavior while still eliminatin
the effects of the environment. The allowable dynam
are generated by asubgroupof the possible system trans
formations. This has potentially important consequenc
for quantum control and quantum computation, in that
can be regarded as a strategy for performingfault-tolerant
control. Even though the effects of the environme
make it impossible to retain control over arbitrary un
tary evolutions of a quantum system, an effective dyna
ics can be still reliably constructed over a restricted set
transformations.
© 1999 The American Physical Society 2417
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The starting point of the method consists in recognizi
that no relaxation process can take place instantaneou
Accordingly, one should be able to interfere with the a
sociated dynamics by inducing motions into the system
which are faster than the shortest time scale accessib
the reservoir degrees of freedom. The usage of tailo
time-dependent perturbations as a tool to improve sys
performances has a long history within high-resolution n
clear magnetic resonance (NMR) spectroscopy, where
satile decoupling techniques are available to manipu
the overall spin Hamiltonian [11]. Despite this enligh
ing similarity, the construction of analogous procedures
open quantum systems faces an important conceptual
ference, for we assume that any decoupling action can
exerted only on the system variables, the environment
ing contributed by a huge number of uncontrollable qua
tum degrees of freedom.

We consider a quantum systemS coupled to an
arbitrary bathB, which together form a closed syste
defined on the Hilbert spaceH ­ HS ≠ HB, HS and
HB denotingS and B Hilbert spaces, respectively. Th
overall Hamiltonian can be written in a concise form as

H0 ­ HS ≠ 'B 1 'S ≠ HB 1 HSB ­
X
a

Sa ≠ Ba ,

(1)

where ' is the identity operator and the bath operato
Ba are supposed to be linearly independent. Be
H0 Hermitian, the linear space spanned by the syst
operatorsSa is a self-adjoint subspace in the vector spa
BsHSd of bounded operators acting onHS . We shall
assume that the unwanted noise-inducing Hamilton
HSB is only contributed by a finite subset of open-syste
couplings. We callinteraction spaceIS # BsHSd the
corresponding finite dimensional subspace. The sec
ingredient we introduce is thecontrol algebra, CS, which
is generated by the repertoire of Hamiltonians we c
turn on for S to implement decoupling. We allow fo
possibilities whereIS fi CS.

If rtots0d ­ rSs0d ≠ rBs0d is the initial state overH ,
the open-system evolution ofS is the coarse-grained dy
namicsrSs0d ° rSstd ­ TrBhrtotstdj, TrB denoting par-
tial trace overHB [1]. The relaxation dynamics forrSstd,
which involves a combination of quantum decoheren
and dissipation mechanisms depending on the natur
the coupling operators, may display a complicated ti
dependence. In the simplest case, the off-diagonal ma
elements ofrSstd behave like exps2tytreld, trel indicat-
ing the time scale for significant departure from unitar
and irreversible loss of quantum coherence.

In order to protect the evolution ofS against the
effect of the interactionHSB, we start by seeking a
perturbationH1std [ CS to be added toH0 as a suitable
decoupling interaction,Hstd ­ H0 1 H1std ≠ 'B. We
restrict here to situations where the control field iscyclic,
i.e., associated to a decoupling operatorU1std that is
2418
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periodic over some cycle timeTc . 0:

U1std ; T exp

(
2i

Z t

0
duH1sud

)
­ U1st 1 Tcd . (2)

In the interaction representation associated withH1std, de-
fined by rtotstd ­ U1stdr̃totstdUy

1 std on H , time evolu-
tion is ruled by a transformed time-varying Hamiltonian

H̃std ­ U
y
1 stdH0U1std ­

X
a

fUy
1 stdSaU1stdg ≠ Ba .

(3)

Since U1sTcd ­ 'S , the evolution in the original
Schrödinger representation can be easily derived. O
can prove that afterN cycles,TN ­ NTc,

UtotsTN d ­ e2iHTN , (4)

where the motion of the system under the time-depend
field H1std has been replaced by astroboscopicdevel-
opment under aneffectiveso-called average Hamiltonia
H [11]. The calculation ofH is performed on the ba-
sis of a standard Magnus expansion of the time-orde
exponential defining the cycle propagatorUtotsTcd ­
exps2iHTcd,

T exp

(
2i

Z Tc

0
duH̃sud

)
­ e2ifH

s0d
1H

s1d
1...gTc , (5)

where the various contributions collect terms of equ
order in the transformed Hamiltonian. In particular,

H s0d ­
1
Tc

Z Tc

0
duH̃sud . (6)

We shall say thatkth-order decoupling is achieved i
the control fieldH1std can be devised so that contribution
mixing S andB degrees of freedom are no longer prese
in H

s0d and the first nonvanishing correction arises fro
Hskd, k $ 1. Owing to the fact that the cycle timeTc

enters the Magnus series as a controllable expan
parameter, we examine the limit offastcontrol, where the
lowest-order terms are expected to provide an accu
description (first-order decoupling). Formally, for a finite
evolution time T , this requires consideringTc ­ TyN
in the limit as N ! `. The Magnus series definin
evolution over a single cycle converges for sufficien
large N wheneverH

srd
­ OsTr

c d ­ Os1yN2d for r $

2. As a result, in the limit of arbitrarily fast control
contributions higher than zeroth order are negligible
(5) and we can focus on the problem of designing t
effective HamiltonianHs0d.

We now show that the time average definingHs0d

can be made identical to a group-theoretical averag
procedure [12]. Since we can apply any Hamiltoni
in the control algebra, full control of the decouplin
propagatorU1std is available over the associated s
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of unitary transformations. LetG be any finite group
of unitary operators that generatesCS , G ; hgjj, j ­
0, . . . , jGj 2 1, jGj ; ordsGd denoting, as usual, the
number of group elements. Then the map

S ° S ; PC sS d ­
1

jGj

X
gj[G

g
y
j S gj , S [ BsHSd ,

(7)

is the unique operation projecting on the so-calledcen-
tralizer of G . Equivalently, since averaged operatorsS
commute with everygj, they belong to the so-calledcom-
mutantC of the control algebra. Notice thatC is closed
under commutation. The map (7) is implemented throu
a simple piecewise constant decoupling operator:

U1std ; gj , jDt # t , s j 1 1dDt , (8)

corresponding to a partition of the cycle timeTc into jGj
intervals of equal lengthDt ; TcyjGj. Then, by (3),

H s0d ­ PC sH0d ­
X
a

S a ≠ Ba , (9)

which, by virtue of the quantum operation (7), display
well-defined symmetry properties.

The decoupling prescription (8) requires the capabili
of instantaneously changing the evolution operator fro
gj to gj11 over successive subintervals, implying arb
trarily strong “kicks” of control field. Such impulsive
full-power control configurations correspond to so-calle
“quantum bang-bang controls” as introduced in [9]. In
fact, this method can be seen to provide an explicit co
trol implementation of an abstract unitary symmetrizatio
procedure recently proposed by Zanardi [13].

Two different situations arise depending on the know
edge available on the system-bath interactionHSB. Let
us first suppose that no knowledge is assumed, in wh
case the environmental coupling is completely arbitra
andIS ­ BsHSd. We can prove the following:

Theorem.—Let S be a finite dimensional system and
let the interaction with the environment be arbitrary,IS ­
BsHSd. Then, in the limit of arbitrarily fast control rate,
the evolution of observables in the control algebra can
suppressed arbitrarily well:

lim
N!`

TrShArSsT ­ NTcdj ­ TrShArSs0dj . (10)

If, in addition, the control algebra is maximal,CS ­
BsHSd, then complete first-order decoupling is achievab
through system manipulations alone:

lim
N!`

rSsT ­ NTcd ­ rSs0d . (11)

Proof.—Let A [ CS. The first statement follows by
Eq. (4) with Hamiltonian (9) and the fact thatfA, S ag ­ 0
for every a. If CS consist of all operators, then the
commutantC only containsc numbers,S a ­ la'S in (9)
and the result follows.h

The group able to average system operators into
commutant ofCS can be chosen as a set of linearly in
gh
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dependent unitary operators realizing a so-calledunitary
error basison HS [14]. Such subgroups always exist fo
finite dimension. Within the class of piecewise consta
decoupling sequences as considered above, it can the
shown that at least dimsCSd ­ jGj steps are needed in a
cycle to attain decoupling. Since the effective system ev
lution is completely quenched by the decoupling proc
dure, we call this configurationmaximal averaging.

When some knowledge is available on the couplin
HSB, this information can be exploited to engineer short
decoupling sequences fulfilling specific symmetry co
straints. For a given (known) interaction spaceIS, the
goal is to devise a control algebra able to selectively a
eraging outIS, PC sISd ­ 0, while leaving invariant the
sector in the operator space of the system containing so
useful dynamics. This requires that the error-inducing a
the desired system operators in (1) transform according
different irreducible representations ofG . By using (9),
the effective open-system evolution over timeT is then
governed by

lim
N!`

rSsT ­ NTcd ­ e2iHST rSs0de1iHST , (12)

the projected HamiltonianHS ­ PC sHSd only consisting
of operators belonging toC . Equivalently, the set of
operators in the commutant ofCS determines the reliable
manipulations left available for effective system contro
For a givenIS , the identification of a minimal groupG
able to produce decoupling is nontrivial. We provide a
illustrative example.

Let us discuss aK-qubits dissipative quantum registe
[5]. The maximum possible complexity of error genera
tion arises in the presence of so-calledtotal decoherence,
whereby combined errors can occur to any number
qubits. In this case,IS ­ BsHSd . sC2d≠K and maxi-
mal averaging is demanded to decouple the regis
from quantum noise. Since an error basis onsC2d≠K

is generated via the tensor product of the standa
Pauli bit /sign-flip error basis [14], a possible choic
is G ­ h'S , ssid

a j≠K , a ­ x, y, z, i ­ 1, . . . , K. Thus,
a number of jGj ­ 4K steps is required for mini-
mal length decoupling sequences. A more efficie
averaging is possible if the relevant register-bath co
pling is known to belinear in single-qubit operators,
HSB ­

P
i,a ssid

a ≠ B sid
a . Under that condition, which is

met for both independent decoherencefdimsISd ­ 3Kg
and collective decoherencefdimsISd ­ 3g, selective
averaging suffices to decouple from errors. On
can show that the tensor power of the Pauli grou
G ­ h'S , ≠K

i­1ssid
a j, a ­ x, y, z, jGj ­ 4, represents a

minimal choice. In terms of the control fieldH1std, de-
coupling is then enacted by cycling the qubits in the reg
ter through sequences ofcollective p pulses along two
axes, e.g.,Dt 2 px 2 Dt 2 p2z 2 Dt 2 p2x 2 Dt 2

p2z, Dt ­ Tcy4. In the special case of a purely decohe
ing coupling,HSB ­

P
i ssid

z ≠ B sid
z , the scheme can be

further simplified by takingG ­ h'S , ≠K
i­1s

sid
x j, jGj ­ 2,
2419
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which reproduces the situation analyzed in [9] forK ­ 1.
In the decoupling regime, the register effectively be
haves as a noiselessquantum memory,which is an
essential ingredient for various quantum cryptograph
and communication schemes [5,15]. In addition, on
can now perform in a fault-tolerant way any logica
operation belonging to the commutant of the tensor pow
Pauli group, which is generated through commutatio
by matrices of the formssid

a
ss jd

a
, i, j [ h1, . . . , Kj,

a ­ x, y, z.
The results discussed so far show that decoherence

decay can be completely suppressed in the limit of i
finitesimally short control time scaleDt ! 0. In order to
convert this mathematical limit into a physically meaning
ful condition, we recall that complete information about th
fluctuation-dissipation properties of a macroscopic bath
encapsulated in the spectral density functionJsvd, mea-
suring the density of modes at frequencyv multiplied by
the square of the system-mode coupling strength. Qu
generally, relaxation ratesg ­ t

21
rel arise from an integra-

tion over the reservoir modes of the effects due to the
mal and vacuum fluctuations, weighted withJsvd. This
integration does not extend to arbitrarily large freque
cies. For every physical spectral density function, a
nite ultraviolet cutoff frequencyvc always exists, such that
Jsvd ! 0 for v . vc. The characteristicmemory time
tc , v21

c , which is often set to be zero as a part of Marko
approximation [1], determines the fastest time scale a
cessible to reservoir correlations. The conditionDt ø
tc replaces, in a realistic scenario, the ideal limitDt ! 0.
Thus, the physical requirement for decoupling isDt & tc

or vcDt & 1, i.e., the motion induced by the decoupling
field needs to be faster than the fastest time scale char
terizing the unwanted interactions.

In the presence of a small but finite decoupling tim
scaleDt, the representation of the average Hamiltonia
H in terms of the lowest-order contributionHs0d is
approximate due to the higher-order terms. Consequen
decoupling is imperfect and relaxation dynamics st
occurs even in the presence of control. For first-ord
decoupling, the leading correction is due toHs1d and the
key observation to estimate the decoupling accuracy
a function ofDt is that the overall coupling strength to
the bath has been renormalized by a factor of the ord
vcDt. Since the spectral density depends quadratica
upon the interaction strength,all the relevant relaxation
effects tend to be suppressed by a factor of the ord
svcDtd2. For a generickth-order decoupling scheme, the
controlled relaxation rate is able to be reduced as

gC

g
ø svcDtd2k ­

µ
Dt
tc

∂2k

, k $ 1 . (13)

Second-order decoupling can be realized via so-cal
symmetric cycles, wherebyU1sTc 2 td ­ U1std. Being
H srd ­ 0 for r odd, the error is improved toOsDtytcd4.
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Iterative pulse sequences forkth-order decoupling can be
designed for specific systems like quantum registers.

In practice, the feasibility of the approach depen
on both the relevant correlation times and the soph
tication of the technology available to manipulate th
specific physical system. In pulsed-NMR experimen
[11], where relaxation mechanisms due to “slow” nu
clear motions may involve correlation times longer tha
1028 s, the main current limitation is represented by th
pulse duration,tP ø 1 ms. In atomic physics, decou-
pling methods could prove to be viable for damped ha
monic oscillators schematizing the vibrational motion
trapped ions, since relevant cutoff frequencies may
estimated around 100 MHz and a variety of experime
tal techniques exist for coherent optical manipulation [2
As another potential area of applications, we menti
semiconductor-based structures. Here, correlation tim
around v

21
Debye ø 10213 s are comparable to the sub-p

time scale where control operations have been dem
strated [16] and longer than the femtosecond scale
modern ultrafast laser technology. Rapid advanceme
in the capabilities of coherent control give hope that,
not within the reach of present technology, implement
tions of decoupling schemes can be envisaged in a cl
future. In particular, since quantum computing resourc
are still a stringent practical requirement, decoupling tec
niques could be valuable compared to conventional err
correction networks in the field of NMR, ion-trap, or soli
state quantum computation.

In summary, we showed how to manipulate the irr
versible component of open-system evolutions through
application of external controllable interactions. Max
mal and selective decoupling were introduced within
common group-theoretical framework and their relevan
to the issue of designing controlled effective open-syste
evolutions elucidated. In the spirit of weakening th
decoupling requirements as much as possible, the m
question raised by the present analysis concerns the cha
terization offault-tolerantdecoupling schemes or, equiva
lently, the degree of decoupling attainable in the presen
of power-limited and imperfect control operations. Wor
is ongoing along these directions.
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