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Generic Transmission Zeros and In-Phase Resonances in Time-Reversal Symmetric
Single Channel Transport
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We study phase coherent transport in a single channel system using the scattering matrix approach. It
is shown that identical vanishing of the transmission amplitude occurs generically in quasi-1D systems
if the time reversal is a good symmetry. The transmission zeros naturally lead to abrupt phase changes
(without any intrinsic energy scale) and in-phase resonances, providing insights to recent experiments
on phase coherent transport through a quantum dot. [S0031-9007(99)08737-2]

PACS numbers: 73.20.Dx, 73.23.Hk, 73.50.Bk

In 1995, it was first demonstrated in an experiment us- In this paper, we present a new theory based on the
ing the Aharonov-Bohm (AB) interference effect that theFriedel sum rule and the time-reversal symmetry. (In
electron transport through a quantum dot contains a phageef. [3], the magnetic flux threading the dot is only
coherent component [1]. This experiment, however, wag small fraction of a flux quantum.) One of the key
found to have some problem due to the so-called phasebservations is that the 1D Friedel sum rule (1) is not
locking effect [2]. Two years later, the experiment wasstrictly valid for quasi-1D systems due to the appearance
refined using the four probe measurement scheme so that the transmission zeros.
the phase of the transmission amplitude through the dot To demonstrate this, we first discuss mirror reflection
can be measured in a reliable way [3]. It was found thasymmetric systems without magnetic fields. Since the
the phase increases ywhenever the gate voltage to the parity is a good quantum number, the scattering states
dot sweeps through a resonance and that the profile of ttean be decomposed into even and odd scattering states:
phase increase is well described by the Breit-Wigner resdor |x| > R, ¢.(x) = e * Il + 20 piklxl and y, (x) =
nance formula [4]. sgn(x) [e Il 4 20 0ikIxI] " (For|x| < R, there are scat-

Unexpected properties were also discovered. The bdering potentials which may have a higher dimensional na-
havior of the phase evolution is identical (up2e) fora  ture asin Ref. [3].) The outgoing waves are phase shifted,
large number of resonances, and between each pair of adnd the Friedel sum ruléAQ./e = Ab. /7, AQ,/e =
jacent in-phase resonances there is an abrupt phase chany, /7) shows that whenever an even (odd) parity quasi-
by 7, whose characteristic energy scale is much smallebound state is occupied, (6,) shifts by« (Fig. 1).
than all other energy scales available in the experiment. Alternatively, left and right scattering states can be
On the other hand, the 1D Friedel sum rule [5], used, which are superpositions of the even and odd

- scattering statesi(x) = [¢e(x) — ¥0(x)]/2, :(x) =
AQ/e = Aargn)/, @) [e(x) + ho(x)]/2. From these relations, one finds that

predicts that all neighboring resonances are off phase be transmission amplitudeand ¢ for the left and right
7, which differs from the experimental findings. Thus scattering states are

two central questions arise: First, how can in-phase VT
resonances occur? Does it imply that the Friedel sum rule t=1t=iesing, (2)
is not valid for the quantum dot? Second, why do abrupwvhereé = 6. + 6, and¢ = 6. — 6,. In terms of the
phase changes occur and why are they so sharp? new angles, the Friedel sum rule becomes

Many theoretical investigations addressed these ques- AQ/e = A§/m. (3)
tions. It was suggested that the Friedel sum rule is still
valid and the abrupt phase changes are due to “hidden”
electron charging events that do not cause conductance®e,8o f (|) f (l) 0,80 e e 00
peaks [2]. It was also speculated that the in-phase reso-
nances are due to the strong Coulomb interaction [6], the
finite temperature [7], or the Fano resonance [8,9]. There
was also a claim that they are due to peculiar properties
of the AB ring instead of their being a true manifestation
of the phase of the transmission amplitude [10]. Regard- (a) E (®) E
m_g the characteristic energy scale, .It was claimed that thE G. 1. (a) Intrue 1D systems, even and odd resonance levels
width of the abrupt phase change is the true measure Qfiernate 'in energy. (b) In quasi-1D systems, they do not
the intrinsic resonance width while the measured reso- necessarily alternate, leading to the transmission zeros since
nance peaks are thermally broadened [11]. t o sin(@. — 6,).
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In true 1D systems, even and odd resonant stateson zeros are generic. The following gedanken experi-
alternate in energy and the anglecan be limited to the ment is useful for discussion. Imagine that one changes
range0 < ¢ < 7 [Fig. 1(a)]. ThenAd = Aargr) and the confining potentiaV (x,y; A) = Vi(x,y) + AV, (x,y)
the 1D Friedel sum rule (1) is recovered. of a dot adiabatically by turning on the parameterhere

In quasi-1D systems, on the other hand, even an®(x,y) = V,(—x,y)andV,(x,y) # V,(—x,y). ForA =
odd levels do not necessarily alternate in energy. Oné, the potential is mirror symmetric and far# 0, the mir-
concrete example is a dot with the anisotropic harmonicor symmetry is broken. Let us assume that transmission
confining potential. The energy levels of the dot arezeros in the mirror symmetric potential disappear aftes
given byE(n,,ny) = hwy(n, + 1/2) + hwy(ny, + 1/2)  turned on. Then, Figs. 2(a) and 2(b) represent the typical
where w, # w,. Here n, determines the parity of a behaviors of the transmission amplitude in the complex
level while n, is a free parameter as far as the paritys plane forA = 0 and A = 61 < 1, respectively. No-
is concerned. Because of the presence of this fretice that there is no transmission zero in 2(b) since the
parameter, situations like Fig. 1(b) occur generically trajectory oft is shifted off the origin. As the energy is
where some of the adjacent levels share the same paritgcanned froma to B, A@ = 0 in Fig. 2(a). In Fig. 2(b),
Notice that the difference betweeh and 6, increases on the other hand\@ = 7 andthusAQ = e. The corre-
from almost zero to almos?27 and then decreases to sponding energy levels of the dot are depicted in the insets.
almost zero. Since the change is continuous, pointsVhile there is no energy level betwegrandB for A = 0,
should exist where the differencé is 7 exactly. At anew levelis present betwegrandB in the level diagram
these points, sieh vanishes identically and as these pointsfor A = § sinceAQ = e. Upon the infinitesimal change
are scanned, sih reverses its sign, causing the abruptof the confining potential, however, new energy levels can-
phase change of. It is straightforward to verify that not appear suddenly although they can drift up and down.
the transmission zeros occur whenever neighboring stat@hus this sudden appearance of a new energy level is un-

share the same parity. physical and to avoid this, the trajectory for= 6 A should
As a result of the transmission zeros, one finds pass through the origin. This argument applies all along
AQ/e = AO/7 # Aargr)/m . (4) the turning on process and it shows that the transmission

. . . ) zeros should still appear generically even if the system is
Thus the 1D Friedel sum rule (1) is not strictly valid for o icror symmetric.

quasi-1D systems. One immediate consequence is thal e can also argue for the in-phase resonances directly,

there aretwo possibilities for adjacent resonances. Theyypioh then establishes the appearance of the transmission
can be either off phase by or in phase, and in the latter ;¢ ¢ gince these two features are linked to each other.
case, a transmission zero occurs in between. ANOtgRyity the time-reversal symmetry, the wave functions can

important implication is that there iso intrinsic energy e taken as real. In true 1D systems, the number of wave
scale for the abrupt phase change, since the transmissiqi,ction nodes increases by 1 When,a new level appears

Zero corresponds to a sing_ular point as far as the Phas§scillation theorem [14]), and each node increases the
is concerned. It also explains naturally the experimental, -« of the transmission amplitude By In quasi-

observation that the abrupt phase changes occur when the, systems, on the other hand, there are two classes

amplitude of the AB oscillation almost vanishes [3]. of nodes: “spanning” nodes [Fig. 3(a)] that connect two

u(Bpposite boundaries of the dot, and “nonspanning” nodes
r'[[Fig. 3(b)] that touch either only one particular boundary
or no boundary at all. Such nonspanning nodes can

the mirror reflection symmetry. The electron transpo
in single channel systems can be described by2the2
scattering matriS,

/ . P o iP2 qf
S=<r t/>26,0<e cos¢ e sm¢>>’ (5)

tor ie'¥>sing e ¢ cos¢p

where the matrix elements are parametrized in a most | @)  Imf4 ®)  Imrp o
general way compatible witsfS = SST = I. When the
time reversal is a good symmetry,= ¢’ [12] and the Re? ) Re?
angle ¢, can be set to zero. Then Eg. (2) is recovered. =~ =
Also the general Friedel sum rule [13], B Ey B Ey

AQ/e = [AInDet(S)]/27i, 6) i i —
reduces to Eq. (3). Thus one again finds that both _ -

possibilities of the off-phase resonances and the in-phase

resonances are compatible with the Friedel sum rule anEIG- 2. Behaviors of the transmission amplitude in the com-
the time-reversal symmetr plex ¢ plane for A = 0 (mirror symmetric systems) (a) and
Yy y: A = 61 < 1 (nonsymmetric systems) (b). The behavior in

To (_examine whether the in-p_hase resonances can appgaj however leads to an unphysical consequence (see text). In-
generically, one has to investigate whether the transmissets show the corresponding energy level diagrams.
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be created, for example, by excitations in the transverse )
direction or by negative impurity potentials in the interior 1(E) = 1'(E) = 1y,
of the dot. The two classes of nodes affect the phase

of the transmission amplitude in different ways. While

ﬁ — &+ ipg/2
=1
N
each spanning node shifts the phasezhynonspanning r(E) = ’bg]!:[l
N
o1
k=1

— Ey + il /2°

k

E
E
E — e +ivy/2
E-—E +i2 ©
nodes donot affect the phase at all. In the experiment
[3], the transverse size of the quantum dot is estimated
to be much larger than the Fermi length. In such a
case, nonspanning nodes are equally plausible as spannin
nodes, and accordingly in-phase resonances can occur W8ere (v)* = (»)* [16]. Then by imposing the con-
generically as off-phase resonances. straints and the condition of no degenerate resonance lev-
Until now, we have demonstrated the generic appear€ls [17], one finds
ance of the transmission zeros and in—'phase resonances wr =0 forallk, (9)
based on the Friedel sum rule and the time-reversal sym-
metry. Next we demonstrate that multiple resonances alswhich implies that all zeros of(E) are located on the real
lead to the transmission zeros naturally if the time reversagnergy axis. (We mention that impurities and irregular
is a good symmetry. (This demonstration, in fact, con-boundaries of the dot generate the level repulsion that lifts
stitutes an alternative derivation of the same conclusiothe degeneracy. The degeneracy is lifted further by the
without using the Friedel sum rule.) Near a resonanceCoulomb blockade effect.)
the scattering matrix becom&&E) = Sy, —.iBo/(E — Evolution of the transmission amplitude is determined
Eo + iT/2) where the2 X 2 matrix Sp, (SEngg = 1) from the locations of poles and zeros. Thus this analysis
is the energy independent background contribution [15]produces the following prediction (Fig. 4): If there is a
If the off-diagonal matrix elements &, are sufficiently ~ transmission zeroB andD) in between, two neighboring
small, S(E) describes the Breit-Wigner resonance. ForfesonancesA-C and C-E) are in phase, and otherwise,

E — e + ivy/2
E— E + il}/2°

r'(E) = ry,

multiple resonances, the scattering matrix becomes they are off phas€E-F). Notice that these predictions
N . are identical to those of the Friedel sum rule.
S(E) = Spy — Z iBy : ' ) Itis instructive to compare the transmission zeros from
& E — E + il /2 the Breit-Wigner resonances and the Fano resonances
[8,9]. Within an energy window that contains two

Here we emphasize that the matrix residuesB; are
not independent. Instead they should be highly corre
lated so thaSt(E)S(E) = I for arbitrary realE. (This

is the origin of the limited phase relations between reso
nances.) From the unitarity relation and the time-revers
symmetry, one finds five constraint8(E)|*> = |t/(E)|?;
lr(E)? = I (E)? 1t(E)* + Ir(E)? = 1; 1(E)/{'(E)" +
r(E)/r'(E)" = 0; t(E) = t'(E).

It turns out that to examine the implications of the con-
straints, it is more convenient to express the matrix ele
ments ofS(E) in the product representation by summing
up allN + 1 termsin Eq. (7),

Breit-Wigner resonances,(E) = —i(By)/(E — E; +
il'y/2) — i(Br+1)21/(E — Exy1 + ilk41/2). By sum-
ming up the two contributions, one findéE) = a(E —
B)/IE — Ex + il'y/2)(E — Exy1 + il'k11/2)] where

= B* due to the time-reversal symmetry. Thus the
transmission zero af = B is due to the completely
“destructive interference” of thievo resonance levels.

The transmission zeros also arise from the Fano reso-
nance [8,9], to which the same expression (7) applies.
Unlike the Breit-Wigner resonances, however, the off-
diagonal matrix elements &, are not small. Thus near

N
ImE 1212
& — N
E
E
FIG. 3. Two classes of wave function nodes (thin solid line) x X T x X ReE
in two dimensions. The markist) and(—) represent the fact A B C D E F

that the wave functions in the marked areas have positive and
negative values, respectively. Notice that while each spannin§lG. 4. Zerog o) and poleq X) of the transmission amplitude
node in (a) shifts the resonance phasesythe introduction #(E) in the complex energy plane. Insets show the correspond-
of nonspanning nodes (b) does not affect the resonance phaseg behaviors of the magnitude|*> and the phase afg as a
Straight lines on the left and right represent 1D electrodes.  function of real energy.
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a Fano resonance, one find¥) = (Spg)21 — i(Br)a1/ The author acknowledges M.Y. Choi for helpful sug-
(E — Ex +il'y/2) = a(E — B)/(E — Ex + il'\/2) gestions at the initial stage of this work, G.S. Jeon for
where 8 = B* = E;. One finds again the transmission helpful discussions, and M. Biittiker for critical comments
zero. It should be noted however that the transmissiolon the manuscript. He also thanks C.-M. Ryu for pro-
zero is now due to the destructive interference of theviding his paper before publication. This work is sup-
background contribution (continuous state of the energyported by the Korea Science and Engineering Foundation
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Fano resonance peak is highly asymmetric si@ce Ey,
which disagrees with the experiment [3].

Below we discuss briefly effects of the electron-
Cion zeros. Langer and Ambegaokar [13] have. shownlL] A Yacoby et al.Phys. Rev. Leti74 4047 (1995)
that even i.n the f the int i th I[2] A. Yeyati and M. Biittiker, Phys. Rev. B2, R14 360

' presence of the interaction, the general " (1gg5)
Friedel sum rule (6) is valid aE = Er provided that 3] R. Schusteet al., Nature (London)385, 417 (1997).
quasiparticle excitations at the Fermi energy remain well [4] G. Breit and E. Wigner, Phys. Re49, 519 (1936).
defined. Then all analyses for noninteracting systems ap{5] See, for example, W.A. Harrison, iSolid State Theory
ply equally to interacting systems if one fixes the probing (Dover, New York, 1979).
energyE at Er and instead varies the depth of the poten- [6] C. Bruder, R. Fazio, and H. Schoeller, Phys. Rev. L&t.
tial well, which amounts to replacing by Er — neV,. 114 (1996).
(Figure 2 can be used to argue against the disappearandé] Y- Oreg and Y. Gefen, Phys. Rev. &, 13726 (1997).
of the transmission zeros upon the adiabatic interactionl8! E'SXUDngSV(\)/I.i dsshgt‘g’ng;'u;e;’ég?&léég)os (1998);
turning on. In this caseAQ = e in Fig. 2(b) can be in- o " 00’ 04 S “Cho, Phys. Rev. 88, 3572 (1998):
terpreted as the sudden charge density jump.)

- . rivate communication).
Magnetic fields, on the other hand, affect the transmls[lo] Sp \I,\\l,u et al. phli,sl_ Rév_ )Lett80 1952 (1998).

sion zeros in a fundamental way since it breaks the timef;1] G, Hackenbroich and H. Weidenmiiller, Europhys. Lett.
reversal symmetry. In this case# ¢’ and the angler, 38, 129 (1997).
in Eq. (5) can have nonzero values. Then the transmission2] P.W. Andersoret al., Phys. Rev. B22, 3519 (1980).
zeros are generically replaced by the rapid but continuoud 3] J.S. Langer and V. Ambegaokar, Phys. R&21, 1090
change ofp, by 7, and thus a finite energy scale appears  (1961). o
for the abrupt phase changes. The precise energy scdfet For example, see L.D. Landau and E.M. Lifshitz, in
depends on the detailed electron dynamics inside the dot, Quantum Mechanics (Non Relativistic Theofiyergamon
which goes beyond the scope of this paper. 5 ?rgss_,r O>|<for§, 1977). Theorv: Th ™ .
Lastly, we discuss the large dominance of the in-phas&->! J: R- Taylor,Scattering Theory: The Quantum Theory o
. Nonrelativistic CollisiongWiley, New York, 1972).
resonances over the off-phase resonances in Ref. [

. . . 6] Equation (8) does not mean however that there is always
Hackenbroichet al. [18] proposed that avoided crossings the same number of zeros and poles. From Eq. (7), it

of single particle levels may result in a long sequence  can pe explicitly verified that when,, — 0, one of &,

of resonances carrying treameinternal wave function. diverges ad /1y, making the numerator in the expression
In view of the present analysis, this mechanism is  for /(E) [Eq. (8)] essentially(N — 1)th polynomial and
overrestrictive since it restricts not only the number of reducing the number of zeros by 1. When matrix
spanning nodes but also the number of nonspanning elements ofB, satisfy certain conditions, the number of
nodes as well. We speculate that a less restrictive and _ zeros can be reduced further. _

possibly more widely applicable mechanism may exisf17] The constraints alone allow nonzep, prowded that
which exploits the “degree of freedom” given by the  S(E) itself includes the factolE — ¢ + ipy/2)/(E =
nonspanning nodes. Further investigation in this direction &~ i#«/2) that is of the magnitude of 1 for arbitrary
is necessary. real E. This factor is equal tol — iA,/(E — & —

. imr/2) where Ay = —uI. One then finds that the
In summary, we demonstrated that the transmission pole e, + i, /2 represents doubly degenerate resonance
zeros and the in-phase resonances are generic features in |gygls since the rank of the residue matrix is equal to the
the time-reversal symmetric single channel transport if the  degeneracy [15] and the rank af; is two.
transverse size of a scatterer (dot) is sufficiently large[18] G. Hackenbroich, W.D. Heiss, and H.A. Weidenmiiller,

than the Fermi wavelength. Phys. Rev. Lett79, 127 (1997).
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