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Peierls Energy of Dislocations: A Critical Assessment
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The normal way to calculate the Peierls energy for dislocations follows the procedure of Peierls and
Nabarro, who summed the atomic misfit energy in the glide plane at the position of the atoms. Since
the misfit energy is not localized but rather contained in the electron distribution, some averaging must
be made. This effect can lead to a considerable lowering of the classic Peierls energy and the resulting
Peierls stress. [S0031-9007(99)08545-2]

PACS numbers: 61.72.Lk, 61.72.Bb, 62.20.Fe

The Peierls energ¥, is the amplitude of the energy =~ Since methods to overcome objections (i) to (iii) are
variations of a dislocation when its center is shifted byalready in the literature we only briefly summarize the
an interatomic distance. In recent time there has been reesults here. The main purpose of this paper is to use these
newed interest in calculatinge (and the Peierls stress,)  results in order to show how a realistic averaging procedure
of dislocations by analytical and numerical methods [1-6]will affect the value of the Peierls energy and the Peierls
This was motivated by the fact that recently reliablestress.
ab initio calculations using the electron density functional The dislocation profile in 2D—We consider a straight
theory with the local density approximation became avail-dislocation with Burgers vectob in a crystalline solid.
able [7—-10] to determined the atomic interaction across th&Vithin the framework of the Peierls model the crystal is
glide plane—the so-calleg surface [11]. Although most bisected along the glide plane and the resulting two semi-
of these calculations df,, are very sophisticated nearly all infinite half-spaces are treated as linear elastic (anisotropic)
of them overlook some very essential details, and, henceontinua. They are subjected to surface displacements
are unable to predict realistic values®f andop which  u(x) corresponding to a dislocation whereis the coor-
can be compared with experimental values. The most selinate perpendicular to the dislocation line. The resulting
rious shortcomings are as follows: surface stresses must be balanced by the atomic interaction

(i) Most calculations are isotropic or pseudoisotropic,forces across the glide plane.
whereas a treatment with full anisotropy is possible and The elastic energ¥.; in the two half-spaces is given
does not require any more computational effort. by [3]

(i) Most calculations are 1D assuming a “constrained w oo
path approximation.” It is known, however, that generally E.; = f / ou(s)/asH/(x — s)ulx)dsdx. (1)
the local relative displacementx) across the glide plane s
deviates from the direction of the Burgers vedidi2] and  Here H is the symmetric Stroh tensor of the anisotropic
hence a treatment in 2D is mandatory. This implies that irelastic constants, which depends on the orientation of
determiningu(x), even for simple dislocations, generally the dislocation line [15,16]. For notational convenience
a system of two coupled Peierls integral equations wouldhe factor 1/47 has been included iff. For certain
have to be solved numerically. high symmetry orientations and for isotrop becomes

(iii) In crystals with fcc Bravais lattices (i.e., also diagonal and in isotropic media it has the components
diamond structures) dislocations can dissociate into twdu/47)[1/(1 — v), 1/(1 — »),1]. Note thatE,; can also
Shockley partials which are connected by a stacking faulttake into account the opening displacements perpendicular
Since the Burgers vectors of the two Shockley partialgo the glide plane caused by the dislocation.
are not parallel a realistic treatment of this important The atomic misfit energ¥, in the glide plane can be
configuration is not possible in 1D. obtained with the aid of the so-calledsurface [11]. Itis

(iv) In order to obtain the variation of the Peierls energythe 2D energy profile which results when the two crystal
Ep with the position of the dislocation, generally the halves above and below the glide plane are shifted by a
atomic interaction energy is summed over the positionvector t in the glide plane, and the atoms are allowed
of the atoms following the procedure of Peierls [13]to relax. Whereas previous calculations using central
and Nabarro [14] (PN). The atomic interaction energy isforces, pair potentials, or embedded atom calculation were
however, not localized at the position of the atomic nucleinot very satisfactory, recerab initio calculations using
but contained to a large part in the kinetic, potential, ancelectron density functional calculations with local density
exchange energy of the electrons. Itis therefore physicallgpproximation are considered to give very reliable results
more realistic to take an average of the energy over an ar¢g@a—10].
with the dimension which is characteristic for the electron Since the potential must reflect the symmetry in the
distribution. glide plane it can be represented by a two dimensional
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Fourier series with the aid of the reciprocal lattice vec-  u(x) = Z(bk/w)arctalﬁ(x —dy)/wie] + bo, (9
tors gy, k

y(t) = > crexd2migt]. (2)  which corresponds to a set of fractional dislocations with
k Burgers vectob; and widthw, situated atc = d;. An
The misfit energy in the glide plane is then obtained asappropriate choice df; can be obtained by the inspection
® of they surface. We must hae b, = b andb, must be
Ey = / y(u(x))dx . (3)  chosen so that(—») = 0 andu() = b. Using this set
- of trial functions has the advantage that the elastic energy
E.) can be obtained analytically [3], but the misfit energy
Er = Eo + E,, (4)  Ea must be evaluated numerically.
This method was originally suggested by Leibfried and

can be considered as functional of the still unknownpat, e [19] and first applied by Seeger and Schoeck
displacemenu(x), which is subject to the condition that [20] to calculate the dissociation width of dislocations

Er must be a minimum. Hence the determination ofiy fec |attices. This method has since been used to

u(x) results in a variational problem. The resulting Eulergpyain the configuration of dissociated dislocation when

equation leads to the y surface or a selected set gfvalues was available

= i [10,21—24].

2 ] _du(s)/asH/(x = s)ds + grady(u(x))] = 0, With the treatment given here we can overcome the
(5) objections (i) to (iii) raised in the introduction and can

realistically describe the dissociation of dislocations.

The Peierls energy and Peierls stressin Eq. (3)

The total energy,

which is a set of two coupled integro-differential equa-
tions of Peierls type. Physically this corresponds to ,bal'the atomic misfit energyE, results from a continuous
ancing the stress components parallel and perpendlculﬁg

. e X . 4 stribution of energy densityy in the glide plane,
to the dislocation line. Since the elastic response in thesg | henceE, is invariant against a translation of the

two directions is different, the corresponding componentgyisioeation center. As pointed out, however, by Peierls
of the local displacement vectar(x) are not proportional [13] and Nabarro [14] in a crystal lattice the misfit
to each other and henagtx) generally deviates from the oparqy should depend on the position of the dislocation

direction of the crystallographic Burgers vectof12]. A center within a lattice cell and hence be periodic. They

treatment if‘ lD.iS therefore not adequat_e, except possiblguggested that these energy variations can be obtained
for dislocations in pure edge or screw orientation. In stlffb

il h he disl ) K y summing the misfit energies at the position of the
potentials, even there the dislocation can take up a o, m rows parallel to the dislocation, when shifting the
ponent perpendicular to the Burgers vector [17], and theriD displacement profile«(x) of Eq. (7) rigidly across a
a 2D treatment is necessary.

o . - lattice cell. They recognized that this implicitly assumes
When the atomic interaction potential in 1D takes thethat no change in elastic energy is allowed for. When

simple form, the atom rows are separated by the perigdhe misfit
y(u) = K[1 — cod27mu/b)], (6) energy becomes in 2D,
the exact solution of the integral equation in 1D obtained _ n 1
by PN is Ey aZY(U(fw 7)), (10)
u = (b/m)arctartx/wo) + /2, (7)) wherez with 0 = z = a denotes the position within the
where the so-called dislocation widih has a value of lattice cell. This procedure has been followed nearly

G exclusively in later treatments.
wo = bHb/27K . 8) This sampling of the energy at the position of the
For more general potentials (with the exception of a veryatoms is, however, not physically realistic. For central
special set [18]), analytical solutions are unknown. Therforces the interaction energy would be “concentrated” at
there are two ways to find approximate solutions: the position of the atomic nuclei. Within the framework
First one can try to solve the PN integral equation (5)of the electron density functional theory this energy
numerically, but to our knowledge no solution for a 2D however is largely contained in the potential, kinetic,
problem has been obtained up to now. The other way isand nonlocal exchange energy of the electron distribution.
to solve the variational problem by the Ritz method. HeréWhen a gradient exists in the displacement of the atoms,
appropriate trial functions fon(x) are assumed with free this distribution is affected and adjusts continuously to
geometrical parameters. The value of these parametersasminimum energy configuration. Therefore the energy
determined by the condition that the total enefgymust  must be averaged over an area around the atom position
be a minimum. over a distance characteristic for the electron distribution
An appropriate set of trial functions is, for instance,  of dimension, let’'s say.
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Thus we obtain for the misfit energy with the averagingover the whole period and witlF(a/2) = 0 we also

procedure, haveEp = 0 which is the result for a continuous energy
distribution.
Ey=a Z I'(xn), (11) The resulting Peierls stress is obtained as the maximum
" forceab = 9E,/dz exerted on the dislocation,
where _
+1 o, = 4mbHbF(1)/(ab) exd—2mwo/a]  (21)
P = (/20 [yt + yar, @2)
~t and depends on the value oin the same way aB,.
and wherdt| < a/2. In the preceding sections we have shown how a realistic
With x, = na + z in Eq. (11) we can make use of the fully anisotropic determination of the displacement path
formula of Poisson for sums and have u(x) in 2D is possible wheab initio calculations electron
density functional theory (DFT) of thg surface are avail-
Ex(z) = D exd—2mikz/all(k), (13)  able. More complex is the calculation of the Peierls en-
] k ergy E, and the resulting Peierls stresg. Their values
with depend sensitively on the distancever which the energy

must be averaged to account for the nonlocal distribu-
tion in energy density. A series development of Eq. (12)
shows thatl'(x + z) = I'(x) + (z2/2)8?I'(x)/0x%, and
hence the averaging will mainly affect the result in re-
" gions wherey(x) has a strong curvature, i.e., mainly in
Ea(z) =] T(u(s)) ds + 2cod27z/a) the inner region of the dislocation core. A finite value of
—oo ¢t will always reduce the energy variations.
o It should be mentioned that the need for some averaging
X f I'(u(s))cod27s/a) ds. (15) was already proposed by Dietze [24] in 1952. He
- constructed a 2D interplanar potential—today called
When we use the classical PN potential of Eq. (6) withsurface—in various crystal planes assuming an atomic
the exact solution for of Eq. (7) we find interaction by short-ranged central forces. At a close
distance one has to consider, however, the finite extension

J(k) = fi I'(u(s)) exd2miks/a]ds . (14)

When we now assume that(x) is symmetric inx, we
obtain the first two terms,

— 2 2 2
y(x) = 2Kwo/(wg + x7) (16)  of the atoms, and he proposed a force distribution by a
and weighted average with a sharp maximum at the position
T(u(s)) = 2K (wo27) {arctari(s + 1)/wo] of the nuclei.

It is difficult to assess a value of from physical
— arcta(s — t)/wolt, (17)  arguments. For central forces the energy would be
With the aid of Eq. (17) we can now evaluate the concentrated at the position of the atoms; however, the

expression forE, [Eq. (15)]. Making use of the fact situation is different considering the energy of the electron

that in equilibrium configuration the first term in Eq. (15) distribution. For free electrons should be of the order
equalsbFb [3], we obtain of the Thomas-Fermi radius but the rearrangement in the

_ displacement gradient also affects the valence electrons.

E4(z) = bHDb[1 + 2F(t) exp(—27wo/a) The model assumes that we can separate the energy in
x cos2mz/a)]. (18) an atomic part in the glide plane 'and in an glastic part in

the surrounding half-spaces. This concept is adequate to
~ The influence of the averaging procedure is containegescribe the global features of the dislocation, and it is
in the functionF (¢) which we have evaluated numerically. syccessful in studying the dissociation of dislocations into

It can be fitted by the interpolation function, partial dislocations [10,21—24]. However, when it comes
F(r) =codmit/a] — 0.08sin271/a] to accounting for the energy density in a displacement

. gradient, the artificial separation into atomic misfit and
+0.03sin(4m1/a]. (19)  elastic energy cannot be maintained, and the solution of

The essential contribution results from the first termthe problem is beyond the scope of the model. Therefore
in Eqg. (19). The Peierls energy is now obtained fromthe value ofs can be fixed only by intuitive reasoning,
the variations in the second term in the seriesEgrof = but before its value is known a comparison between
Eq. (18) with the maximum amplitude of theoretical and experimental valuesf)f ando ), is rather

- arbitrary.
Ep = 4bHbF (1) exp—2mwo/a). (20) Recently Bulatov and Kaxiras [1] tried a different

For + — 0 the function forI" of Eq. (12) degenerates way to resolve the problem of connecting the discrete
into a § function and withF(0) = 1 we have forEp  atomic structure in the glide place with the surrounding
the (corrected) result of PN. Far= a/2 we average elastic continuum. They discretized the elastic energy
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