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Peierls Energy of Dislocations: A Critical Assessment
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The normal way to calculate the Peierls energy for dislocations follows the procedure of Peierls
Nabarro, who summed the atomic misfit energy in the glide plane at the position of the atoms.
the misfit energy is not localized but rather contained in the electron distribution, some averaging
be made. This effect can lead to a considerable lowering of the classic Peierls energy and the re
Peierls stress. [S0031-9007(99)08545-2]

PACS numbers: 61.72.Lk, 61.72.Bb, 62.20.Fe
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The Peierls energyEp is the amplitude of the energy
variations of a dislocation when its center is shifted b
an interatomic distance. In recent time there has been
newed interest in calculatingEP (and the Peierls stresssp)
of dislocations by analytical and numerical methods [1–6
This was motivated by the fact that recently reliabl
ab initio calculations using the electron density functiona
theory with the local density approximation became ava
able [7–10] to determined the atomic interaction across t
glide plane—the so-calledg surface [11]. Although most
of these calculations ofEp are very sophisticated nearly all
of them overlook some very essential details, and, hen
are unable to predict realistic values ofEP andsP which
can be compared with experimental values. The most
rious shortcomings are as follows:

(i) Most calculations are isotropic or pseudoisotropic
whereas a treatment with full anisotropy is possible an
does not require any more computational effort.

(ii) Most calculations are 1D assuming a “constraine
path approximation.” It is known, however, that generall
the local relative displacementusxd across the glide plane
deviates from the direction of the Burgers vectorb [12] and
hence a treatment in 2D is mandatory. This implies that
determiningusxd, even for simple dislocations, generally
a system of two coupled Peierls integral equations wou
have to be solved numerically.

(iii) In crystals with fcc Bravais lattices (i.e., also
diamond structures) dislocations can dissociate into tw
Shockley partials which are connected by a stacking fau
Since the Burgers vectors of the two Shockley partia
are not parallel a realistic treatment of this importan
configuration is not possible in 1D.

(iv) In order to obtain the variation of the Peierls energ
EP with the position of the dislocation, generally the
atomic interaction energy is summed over the positio
of the atoms following the procedure of Peierls [13
and Nabarro [14] (PN). The atomic interaction energy i
however, not localized at the position of the atomic nucl
but contained to a large part in the kinetic, potential, an
exchange energy of the electrons. It is therefore physica
more realistic to take an average of the energy over an a
with the dimension which is characteristic for the electro
distribution.
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Since methods to overcome objections (i) to (iii) a
already in the literature we only briefly summarize th
results here. The main purpose of this paper is to use th
results in order to show how a realistic averaging proced
will affect the value of the Peierls energy and the Peie
stress.

The dislocation profile in 2D.—We consider a straight
dislocation with Burgers vectorb in a crystalline solid.
Within the framework of the Peierls model the crystal
bisected along the glide plane and the resulting two se
infinite half-spaces are treated as linear elastic (anisotrop
continua. They are subjected to surface displaceme
usxd corresponding to a dislocation wherex is the coor-
dinate perpendicular to the dislocation line. The resulti
surface stresses must be balanced by the atomic interac
forces across the glide plane.

The elastic energyEel in the two half-spaces is given
by [3]

Eel ­
Z `

2`

Z `

2`

≠ussdy≠s H̃ysx 2 sd usxd ds dx . (1)

Here H̃ is the symmetric Stroh tensor of the anisotrop
elastic constants, which depends on the orientation
the dislocation line [15,16]. For notational convenienc
the factor 1y4p has been included iñH. For certain
high symmetry orientations and for isotropỹH becomes
diagonal and in isotropic media it has the componen
smy4pd f1ys1 2 nd, 1ys1 2 nd, 1g. Note thatEel can also
take into account the opening displacements perpendic
to the glide plane caused by the dislocation.

The atomic misfit energyEA in the glide plane can be
obtained with the aid of the so-calledg surface [11]. It is
the 2D energy profile which results when the two cryst
halves above and below the glide plane are shifted b
vector t in the glide plane, and the atoms are allowe
to relax. Whereas previous calculations using cent
forces, pair potentials, or embedded atom calculation w
not very satisfactory, recentab initio calculations using
electron density functional calculations with local densi
approximation are considered to give very reliable resu
[7–10].

Since the potential must reflect the symmetry in th
glide plane it can be represented by a two dimensio
© 1999 The American Physical Society
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Fourier series with the aid of the reciprocal lattice ve
torsgk ,

gstd ­
X

k

ck expf2pigktg . (2)

The misfit energy in the glide plane is then obtained a

EA ­
Z `

2`

gsssusxdddd dx . (3)

The total energy,

ET ­ Eel 1 EA , (4)

can be considered as functional of the still unknow
displacementusxd, which is subject to the condition tha
ET must be a minimum. Hence the determination
usxd results in a variational problem. The resulting Eule
equation leads to

2
Z `

2`

≠ussdy≠s H̃ysx 2 sd ds 1 gradfgsssusxddddg ­ 0 ,

(5)

which is a set of two coupled integro-differential equa
tions of Peierls type. Physically this corresponds to ba
ancing the stress components parallel and perpendicu
to the dislocation line. Since the elastic response in the
two directions is different, the corresponding componen
of the local displacement vectorusxd are not proportional
to each other and henceusxd generally deviates from the
direction of the crystallographic Burgers vectorb [12]. A
treatment in 1D is therefore not adequate, except possi
for dislocations in pure edge or screw orientation. In st
potentials, even there the dislocation can take up a co
ponent perpendicular to the Burgers vector [17], and th
a 2D treatment is necessary.

When the atomic interaction potential in 1D takes th
simple form,

gsud ­ Kf1 2 coss2puybdg , (6)

the exact solution of the integral equation in 1D obtaine
by PN is

u ­ sbypd arctansxyw0d 1 by2 , (7)

where the so-called dislocation widthw has a value of

w0 ­ bH̃by2pK . (8)

For more general potentials (with the exception of a ve
special set [18]), analytical solutions are unknown. The
there are two ways to find approximate solutions:

First one can try to solve the PN integral equation (
numerically, but to our knowledge no solution for a 2D
problem has been obtained up to now. The other way
to solve the variational problem by the Ritz method. He
appropriate trial functions forusxd are assumed with free
geometrical parameters. The value of these parameter
determined by the condition that the total energyET must
be a minimum.

An appropriate set of trial functions is, for instance,
c-
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usxd ­
X

k

sbkypdarctanfsx 2 dkdywkg 1 b0 , (9)

which corresponds to a set of fractional dislocations wit
Burgers vectorbk and widthwk situated atx ­ dk. An
appropriate choice ofbk can be obtained by the inspection
of theg surface. We must have

P
bk ­ b andb0 must be

chosen so thatus2`d ­ 0 andus`d ­ b. Using this set
of trial functions has the advantage that the elastic ener
Eel can be obtained analytically [3], but the misfit energ
EA must be evaluated numerically.

This method was originally suggested by Leibfried an
Dietze [19] and first applied by Seeger and Schoec
[20] to calculate the dissociation width of dislocation
in fcc lattices. This method has since been used
obtain the configuration of dissociated dislocation whe
the g surface or a selected set ofg values was available
[10,21–24].

With the treatment given here we can overcome th
objections (i) to (iii) raised in the introduction and can
realistically describe the dissociation of dislocations.

The Peierls energy and Peierls stress.—In Eq. (3)
the atomic misfit energyEA results from a continuous
distribution of energy densityg in the glide plane,
and henceEA is invariant against a translation of the
dislocation center. As pointed out, however, by Peier
[13] and Nabarro [14] in a crystal lattice the misfit
energy should depend on the position of the dislocatio
center within a lattice cell and hence be periodic. The
suggested that these energy variations can be obtain
by summing the misfit energies at the position of th
atom rows parallel to the dislocation, when shifting th
1D displacement profileusxd of Eq. (7) rigidly across a
lattice cell. They recognized that this implicitly assume
that no change in elastic energy is allowed for. Whe
the atom rows are separated by the perioda, the misfit
energy becomes in 2D,

EA ­ a
X
n

gsssusna 1 zdddd , (10)

wherez with 0 # z # a denotes the position within the
lattice cell. This procedure has been followed near
exclusively in later treatments.

This sampling of the energy at the position of th
atoms is, however, not physically realistic. For centra
forces the interaction energy would be “concentrated”
the position of the atomic nuclei. Within the framework
of the electron density functional theory this energ
however is largely contained in the potential, kinetic
and nonlocal exchange energy of the electron distributio
When a gradient exists in the displacement of the atom
this distribution is affected and adjusts continuously t
a minimum energy configuration. Therefore the energ
must be averaged over an area around the atom posit
over a distance characteristic for the electron distributio
of dimension, let’s sayt.
2311



VOLUME 82, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 15 MARCH 1999

y

um

stic
th

n-

u-
2)

e-
n
of

ing
e

ic
se
ion
a

ion

be
the
on

the
ns.
y in
in

e to
is
to

es
nt
d
of

ore
,
en

t
te

ng
gy
Thus we obtain for the misfit energy with the averagin
procedure,

EA ­ a
X
n

Gsxnd , (11)

where

Gsxnd ­ s1y2td
Z 1t

2t
gsssusxn 1 tdddd dt , (12)

and wherejtj # ay2.
With xn ­ na 1 z in Eq. (11) we can make use of the

formula of Poisson for sums and have

EAszd ­
X

k

expf22pikzyagJskd , (13)

with

Jskd ­
Z `

2`

Gsssussdddd expf2piksyag ds . (14)

When we now assume thatgsxd is symmetric inx, we
obtain the first two terms,

EAszd ­
Z `

2`

Gsssussdddd ds 1 2 coss2pzyad

3
Z `

2`

Gsssussdddd coss2psyad ds . (15)

When we use the classical PN potential of Eq. (6) wi
the exact solution foru of Eq. (7) we find

gsxd ­ 2Kw2
0ysw2

0 1 x2d (16)

and

Gsssussdddd ­ 2Ksw02td harctanfss 1 tdyw0g

2 arctanfss 2 tdyw0gj , (17)

With the aid of Eq. (17) we can now evaluate th
expression forEA [Eq. (15)]. Making use of the fact
that in equilibrium configuration the first term in Eq. (15
equalsbH̃b [3], we obtain

EAszd ­ bH̃bf1 1 2Fstd exps22pw0yad

3 coss2pzyadg . (18)

The influence of the averaging procedure is contain
in the functionFstd which we have evaluated numerically
It can be fitted by the interpolation function,

Fstd ­ cosfptyag 2 0.08 sinf2ptyag

1 0.03 sinf4ptyag . (19)

The essential contribution results from the first ter
in Eq. (19). The Peierls energy is now obtained fro
the variations in the second term in the series forEA of
Eq. (18) with the maximum amplitude of

EP ­ 4 bH̃bFstd exps22pw0yad . (20)

For t ! 0 the function forG of Eq. (12) degenerates
into a d function and withFs0d ­ 1 we have forEP

the (corrected) result of PN. Fort ­ ay2 we average
2312
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over the whole period and withFsay2d ­ 0 we also
haveEP ­ 0 which is the result for a continuous energ
distribution.

The resulting Peierls stress is obtained as the maxim
forcesb ­ ≠EAy≠z exerted on the dislocation,

sp ­ 4pbH̃bFstdysabd expf22pw0yag (21)

and depends on the value oft in the same way asEp .
In the preceding sections we have shown how a reali

fully anisotropic determination of the displacement pa
usxd in 2D is possible whenab initio calculations electron
density functional theory (DFT) of theg surface are avail-
able. More complex is the calculation of the Peierls e
ergy Ep and the resulting Peierls stresssp. Their values
depend sensitively on the distancet over which the energy
must be averaged to account for the nonlocal distrib
tion in energy density. A series development of Eq. (1
shows thatGsx 1 zd ­ Gsxd 1 sz2y2d≠2Gsxdy≠x2, and
hence the averaging will mainly affect the result in r
gions wheregsxd has a strong curvature, i.e., mainly i
the inner region of the dislocation core. A finite value
t will always reduce the energy variations.

It should be mentioned that the need for some averag
was already proposed by Dietze [24] in 1952. H
constructed a 2D interplanar potential—today calledg

surface—in various crystal planes assuming an atom
interaction by short-ranged central forces. At a clo
distance one has to consider, however, the finite extens
of the atoms, and he proposed a force distribution by
weighted average with a sharp maximum at the posit
of the nuclei.

It is difficult to assess a value oft from physical
arguments. For central forces the energy would
concentrated at the position of the atoms; however,
situation is different considering the energy of the electr
distribution. For free electronst should be of the order
of the Thomas-Fermi radius but the rearrangement in
displacement gradient also affects the valence electro
The model assumes that we can separate the energ
an atomic part in the glide plane and in an elastic part
the surrounding half-spaces. This concept is adequat
describe the global features of the dislocation, and it
successful in studying the dissociation of dislocations in
partial dislocations [10,21–24]. However, when it com
to accounting for the energy density in a displaceme
gradient, the artificial separation into atomic misfit an
elastic energy cannot be maintained, and the solution
the problem is beyond the scope of the model. Theref
the value oft can be fixed only by intuitive reasoning
but before its value is known a comparison betwe
theoretical and experimental values ofEp andsp is rather
arbitrary.

Recently Bulatov and Kaxiras [1] tried a differen
way to resolve the problem of connecting the discre
atomic structure in the glide place with the surroundi
elastic continuum. They discretized the elastic ener
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by representing the displacement path with a line
spline function between the positions of the atoms. Th
corresponds to a sequence of closely spaced fractio
dislocations with a standard linear core [25] and loc
Burgers vectorbn ­ usxnd 2 usxn21d. By minimizing
the total energy they can determine the set ofhbnj. In
this way they are able to account for changes in t
displacement profile during the shifting, but the proble
of assigning a value of misfit energy to an area where
displacement gradient exists is not resolved.

The summing procedure of PN implicitly assumes th
the displacement profile stays constant, and hence
elastic energy does not change during the shifting of t
dislocation centers within a lattice cell. It can, howeve
be shown that changes in configuration do take place. T
resulting changes in misfit energy and elastic energy a
of opposite sign with the effect that they nearly canc
each other. These results will be published in a follow-u
paper.

Helpful discussions with M. Fähnle concernin
the DFT method and with W. Püschl are gratefull
acknowledged.
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