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Suppression of Transverse Bunch Instabilities by Asymmetries in the Chamber Geometry
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The wake forces produced by a beam bunch can be reduced by making the vacuum chamber cross
section axially asymmetric. Furthermore, the asymmetry results in a betatron tune shift for particles in
the tail of the bunch. As a result, transverse instabilities of the bunch should be significantly suppressed
for an asymmetric vacuum chamber. [S0031-9007(99)08709-8]

PACS numbers: 29.27.Bd, 29.20.Dh
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An ultrarelativistic charged particle generates electr
magnetic fields behind it in the vacuum chamber. The n
effect of these fields on a following charge is determine
by integrating the force over a structure period of the va
uum chamberL. The integrated transverse forceF caused
by a slight offsetr0 of the leading particle from the axis
of a round chamber is conventionally expressed in term
of the wake function [1]:Z

L
F ds ­ 2q2r0Wszd , (1)

where q is the particle’s charge andz is the distance
between head and tail particles. The wake fields (1) s
limits on the beam stability, and usually efforts are mad
to reduce them.

It can be shown using a particular example that th
electrodynamic response to the beam offset (1) can
much smaller for an axially asymmetric chamber. Assum
for this purpose that there is a small cylinder inside th
chamber which lies closer to the beam than any oth
part of the chamber. In this case, the surface charges a
currents responsible for the wake fields reside mainly o
the surface of the cylinder. The value and the location
these screening charges are insensitive to the beam off
because of the small size of this cylinder; that is, the wa
force (1) is suppressed.

However, the influence of the asymmetry is not limite
by this circumstance. Generally, the linear approximatio
for the wake force (1) contains an additional term, pro
portional to the tail offsetr. This term creates a betatron
tune shift along the bunch, but it vanishes for the roun
chamber. Thus, all the particles in the bunch are in res
nance with each other if the chamber is round. For ax
ally asymmetric structures, however, the wake fields n
only drive the oscillations of the tail particles but also de
tune them from the resonance with the driving force [2
Similar electrodynamic properties of external rf fields i
asymmetric structures were used in Ref. [3], where it w
proposed to utilize simultaneous accelerating and focu
ing to provide the acceleration and Balakin-Novokhatsk
Smirnov damping [4] in linacs.

The importance of the betatron tune spread along
bunch in a storage ring was shown in Ref. [5]. It wa
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demonstrated that this spread, introduced by means of a
quadrupole, has a stabilizing role for the transverse bu
oscillations. It is natural to suppose that the tune spre
produced by the wake fields is a stabilizing factor as we
If so, the detuning part of the wake may increase t
thresholds of bunch transverse instabilities.

Driving and detuning wakes.—The transverse wake
forces are regular functions of the transverse offsets
the leading and trailing particles,r0 and r, and can be
expanded in terms of these offsets [2]. Assuming f
simplicity mirror symmetry for at least one transvers
axis and neglecting the nonlinear terms, the forces can
presented as follows:R

LFx ds ­ 2q2x0Wxszd 1 q2xDszd ,R
LFy ds ­ 2q2y0Wyszd 2 q2yDszd ,

(2)

where insignificant constant terms are omitted. The fi
terms on the right hand sides describe the forces cause
the offsets of the leading particle; the functionsWszd can
be referred to as the driving wake functions. The seco
terms are responsible for the tune shifts of the tail partic
the functionDszd can be called the detuning wake functio
The detuning terms for thex andy axes are described in
Eqs. (2) by the single functionDszd. This is a consequence
of the Maxwell equations, which can be demonstrated
means of the Panofsky-Wenzel theorem [6]

≠

≠z

Z
L

F' ds ­ ='

Z
L

Fk ds (3)

for the harmonic function
R

L Fk ds. As follows from the
form of Eqs. (2), there is no detuning for chambers inva
ant over a 90± rotation; Dszd ­ 0 in this case. To give
examples, wake functions caused by the wall resistiv
are presented below for three simplified cases, nam
for a round chamber, then, for an infinite plane, and,
nally, for a small cylinder. The three cases are sketch
in Figs. 1a, 1b, and 1c.

A conventional approach to these problems includ
Fourier transformation over the longitudinal coordina
and treatment of the wall resistivity as a perturbatio
The fields caused by the resistivity are harmonic functio
in the transverse planexy; the tangential electric field
© 1999 The American Physical Society
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FIG. 1. Three types of beam surroundings.

satisfies the Leontovich boundary condition at the me
surface [7]:

Et ­ z Ht 3 n , (4)

where Ht is the magnetic field calculated for perfec
conductivity, andn is a unit normal vector pointed inside
the wall. The so-called surface impedance

z ­

r
v

8ps
s1 2 id (5)

is determined by the finite conductivitys at the given
field frequencyv; this factor is assumed to be smal
jz j ø 1.

For the first case of the round vacuum chamber t
wake functions can be found in Ref. [1]:

Wxszd ­ Wyszd ­ 2
2

pb3

r
c

sz
L, Dszd ­ 0 , (6)

wherec is a velocity of light andb is the vacuum chamber
radius.

For the case of the resistive plane, the bounda
condition (4) can be presented in the following form:

Ek ­ 2z E0
n , (7)

where Ek is the longitudinal component andE0
n is the

normal component of the image charge electric fie
Taking into account that the fieldE0

n satisfies the Laplace
equation, it can be concluded that Eq. (7) describes
resistive wall fieldEk not only on the metal surface bu
everywhere in the volume. After the longitudinal field i
found, the transverse wake forces are calculated from
Panofsky-Wenzel theorem (3), which gives

F'szd ­
2q2

p

r
c

sz
=

nsr 2 r0
0d

sr 2 r0
2d2

(8)

with r0
0 ­ sx0, 2y0d standing for the image charge pos

tion (they axis here is assumed to be normal to the plan
To find the wakes (2), the work corresponding to th

force (8) has to be expanded over the leading and trail
tal
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particle offsets:

Wxszd ­ Wyszd ­ Dszd ­ 2
L

2ph3

r
c

sz
, (9)

where h ­ jhj is the distance from the beam to th
plane. This geometry demonstrates the possibility for t
detuning wake to be equal to the driving wake.

The final example treats the case of the beam pass
along a small resistive cylinder, Fig. 1c; the detuning wa
is shown to dominate here. Taking into account that t
image charge is located at the positionr0 ­ rr2yr2 and
assuming the cylinder radiusr to be much smaller than
the distance between the beam and the cylinder,r ø r0 ­
jdj ­ d, the longitudinal electric field is

Es ­ 2
2zq

r

√
1 1

r2rr0

r2r2
0

!
1 C lnsryrd , (10)

which includes an arbitrary constantC. The small dipole
term in the brackets reflects a weak dependence of
fields on the source positionr0. To find the constant
C, an additional boundary condition is needed. It ca
be assumed that this system is bounded by a conduc
cylinder with the radiusR ¿ r0. Then the constantC is
found by equating the expression for the monopole part
Es to zero at this remote surface, giving

C ­
2zq

r lnsRyrd
.

Using (3) one can obtain the integrated transverse fo
and finally the wakes:

Dszd ­ 2
L

pd2r lnsRyrd

r
c

sz
(11)

Wxszd ­ Wyszd ­ 2
Lr

pd4

r
c

sz
. (12)

Introducing the detuning factorskx ­ DszdyWxszd,
ky ­ DszdyWyszd, the results for the various geometrie
are expressed as

kx ­

8>>>><>>>>:
0, axial symmetry,
1, plane wallnx'h ,
21, plane wallnx k h ,
d2yfr2 lnsRyrdg, small cylindernx'd ,
2d2yfr2 lnsRyrdg, small cylindernx k d .

(13)

Here nx is the unit vector in thex direction, and the
vectorsh, d are defined in Fig. 1.

The driving wake functionWszd for the small cylinder
(12) is a factor ~ ryd ø 1 smaller than the wake
functions of the round chamber (6) or parallel plates (
with the same aperture. This result demonstrates how
2287
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transverse instability can be suppressed by the decreas
the driving wake function. The detuning wakes work i
the same direction; they damp the instability even more

Finally, note that the plane wall resultkx ­ 61 is
valid not only for the resistive wall wake. It applies a
well to the wake generated by a longitudinal variation
the chamber cross section, when the cross section
significantly elongated figure such as a rectangle or ellip

Coherent stabilization by the detuning wake.—The
detuning wake modulates the betatron frequencies alo
the bunch. Such a modulation introduced by means of
rf quadrupole was studied in Ref. [5]. It was shown the
that the transverse instabilities can be strongly damped
this case because the particles are kept out of resona
with each other. Following Ref. [5], the numerical resul
for the influence of the detuning wake on the transver
mode coupling instability are presented below.

Assuming the bunch to consist of particles with the sam
synchrotron amplitudea and a homogeneous distributio
over the synchrotron phase (the so-calledair-bag model
[1]), the transverse equation of motion is written

d2xsfd
dt2 1 v2

bxsfd ­ Fxsfd ,

Fxsfd ­ 2
Nq2

2pgmL

Z jfj

2jfj
fWszdxsf0d 2 Dszdxsfdg df0,

d
dt

­
≠

≠t
1 vs

≠

≠f
, z ­ a cosf 2 a cosf0.

(14)

Heref is the synchrotron phase,vb andvs are, respec-
tively, the betatron and the synchrotron frequencies, andN
is the number of particles in the bunch. An expansion
the deviationxsfd over the synchrotron harmonics

xsfd ­ e2ivbt
1X̀

n­2`

xne2iavst1inf, (15)

reduces Eq. (14) to a set of algebraic equations for
eigenvector componentsxn and the eigenvaluesa:

xnsa 2 nd ­ K
1X̀

m­2`

xmKnm, K ­
Nq2

2p2gmvbvsL
,

Knm ­
Z p

0
cossnfd df

Z f

0
Wszd cossmf0d df0

2
Z p

0
cosfsn 2 mdfg df

Z f

0
Dszd df0,

(16)

where the influence of the coherent interaction is tak
to be small in comparison with the transverse focusin
avs ø vb. To resolve such equations, the sum has
be truncated to a finite number of the modes. In t
numerical calculations, five modes were taken initiall
then, the results were compared with 9- and 15-mo
2288
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truncations. All the resistive wall wake functions hav
the following form:

Wszd ­ 2Qy
p

z , Dszd ­ 2kQy
p

z ,

where Q is the geometry factor. The examples for th
detuning factork are given by Eq. (13).

Figure 2 presents plots for dimensionless eigenvalu
a as functions of the dimensionless intensity paramete

I ­ KQ
p

a (17)

at various detuning factorsk. The dependence of the
mode behavior on this factor is seen to be significant.

The mode coupling instability threshold is least fo
the symmetric case,k ­ 0. At k ­ 1, coupling and
decoupling thresholds merge (degenerate case) and
beam is stable for any current. This result is valid for an
mode truncation, so it appears to be an exact property.
small coupling-decoupling instability area appears again
higherk.

FIG. 2. Eigenvaluesa versus the intensity parameterI for
various detuning factorsk ­ 0 (top) andk ­ 1 (bottom).
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FIG. 3. Intensity threshold of the transverse mode couplin
instability I versus the detuning factork for the 5-mode (solid
line), 9-mode (thick dashed line), and 15-mode (thin dash
line) truncations.

Figure 3 shows the threshold behavior versus coe
cient of asymmetryk for the 5, 9, and 15 modes calcu
lation. The instability threshold has its minimum for th
symmetric chamber,k ­ 0. Then it increases with the
absolute value of the detuning factor and has two asy
metrical maxima atk ø 21.5 andk ø 2.

The results shown in this figure should be interprete
carefully, taking into account that an asymmetry n
only introduces the detuning wake but also changes
driving wake. For instance, the thresholds for the resisti
wall, examples (a) and (b) withh ­ b (Fig. 1), differ
approximately by a factor of4 3 1.5 ­ 6, where the
factor 4 is related to the driving wake damping and th
factor 1.5 is the benefit due to the detuning fork ­ 21,
according to the Fig. 3.

Conclusions.—Only one kind of wake function, called
here the driving wake function, has been conventiona
taken into account for the beam stability analysis. It h
been shown that this conventional approach can lead to s
nificant underestimation of the beam stability thresholds

It has been demonstrated here that the strength of
detuning wake function depends on the geometry of t
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chamber cross section. For any kind of wake, the ra
of the detuning function to the driving function is zer
for round cross sections. This ratio is61 when the cross
section is an elongated rectangle or ellipse whose hei
may vary with the longitudinal coordinate. For the resi
tive wall wake, a geometry was found in which the detu
ing wake function is much higher than the driving wak
It is probable that cross sections with such a prope
exist for the wakes driven by geometry variations as we

It can be concluded that for asymmetric vacuum cha
ber elements, which are usual in practice, the detun
wake function must be taken into account; convention
codes likeMAFIA need to be improved accordingly.

For all of the examples here, an asymmetry-drive
increase of the detuning wake combines with a decreas
the conventional wake; both of these factors favor bea
stability. These properties of asymmetric cross sectio
look promising for the design of future accelerators.
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