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Suppression of Transverse Bunch Instabilities by Asymmetries in the Chamber Geometry
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The wake forces produced by a beam bunch can be reduced by making the vacuum chamber cross
section axially asymmetric. Furthermore, the asymmetry results in a betatron tune shift for particles in
the tail of the bunch. As a result, transverse instabilities of the bunch should be significantly suppressed
for an asymmetric vacuum chamber. [S0031-9007(99)08709-8]

PACS numbers: 29.27.Bd, 29.20.Dh

An ultrarelativistic charged particle generates electrodemonstrated that this spread, introduced by means of an rf
magnetic fields behind it in the vacuum chamber. The netjuadrupole, has a stabilizing role for the transverse bunch
effect of these fields on a following charge is determinedscillations. It is natural to suppose that the tune spread
by integrating the force over a structure period of the vacproduced by the wake fields is a stabilizing factor as well.
uum chambeFL. The integrated transverse forEecaused If so, the detuning part of the wake may increase the
by a slight offsetr, of the leading particle from the axis thresholds of bunch transverse instabilities.
of a round chamber is conventionally expressed in terms Driving and detuning wakes-The transverse wake

of the wake function [1]: forces are regular functions of the transverse offsets of
the leading and trailing particlesy andr, and can be
f Fds = —¢*roW(z), (1) expanded in terms of these offsets [2]. Assuming for
L

simplicity mirror symmetry for at least one transverse

where ¢ is the particle’s charge and is the distance axis and neglecting the nonlinear terms, the forces can be
between head and tail particles. The wake fields (1) sejresented as follows:

limits on the beam stability, and usually efforts are made 5 5
to reduce them. JiFxds = —¢°xoW,(2) + ¢°xD(z),
It can be shown using a particular example that the [,Fyds = —qzyoWy(z) — ¢*>yD(z),

electrodynamic response to the beam offset (1) can be N . '
much smaller for an axially asymmetric chamber. Assumdvhere insignificant constant terms are omitted. The first

for this purpose that there is a small cylinder inside th€'Ms on the right hand sides describe the forces caused by
chamber which lies closer to the beam than any othef€ Offsets of the leading particle; the functio§z) can
part of the chamber. In this case, the surface charges arf 'eferred to as the driving wake functions. The second
currents responsible for the wake fields reside mainly of€/Ms are responsible for the tune shifts of the tail particle;
the surface of the cylinder. The value and the location of1€ functionD(z) can be called the detuning wake function.
these screening charges are insensitive to the beam offsdt@€ detuning terms for the andy axes are described in
because of the small size of this cylinder; that is, the wak&dS- (2) by the single functiab(z). Thisis a consequence
force (1) is suppressed. of the Maxwell equations, which can be demonstrated by

However, the influence of the asymmetry is not limitedM&ans of the Panofsky-Wenzel theorem [6]
by this circumstance. Generally, the linear approximation 9 f P

Iras
L

()

3)

for the wake force (1) contains an additional term, pro- oz LFJ_ ds =V,
portional to the tail offset. This term creates a betatron
tune shift along the bunch, but it vanishes for the roundor the harmonic functiory; Fj ds. As follows from the
chamber. Thus, all the particles in the bunch are in rescform of Egs. (2), there is no detuning for chambers invari-
nance with each other if the chamber is round. For axiant over a 90 rotation; D(z) = 0 in this case. To give
ally asymmetric structures, however, the wake fields noexamples, wake functions caused by the wall resistivity
only drive the oscillations of the tail particles but also de-are presented below for three simplified cases, namely,
tune them from the resonance with the driving force [2].for a round chamber, then, for an infinite plane, and, fi-
Similar electrodynamic properties of external rf fields innally, for a small cylinder. The three cases are sketched
asymmetric structures were used in Ref. [3], where it wasn Figs. la, 1b, and 1c.
proposed to utilize simultaneous accelerating and focus- A conventional approach to these problems includes
ing to provide the acceleration and Balakin-Novokhatsky+ourier transformation over the longitudinal coordinate
Smirnov damping [4] in linacs. and treatment of the wall resistivity as a perturbation.
The importance of the betatron tune spread along dhe fields caused by the resistivity are harmonic functions
bunch in a storage ring was shown in Ref. [5]. It wasin the transverse planey; the tangential electric field
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particle offsets:

L c
q° Wi(z) = W,(z) = D(z) = Ry ,/U—Z, 9)
Ef where h = |h| is the distance from the beam to the

P plane. This geometry demonstrates the possibility for the

-4/ . detuning wake to be equal to the driving wake.

q The final example treats the case of the beam passing

dz—ph’ along a small resistive cylinder, Fig. 1c; the detuning wake
is shown to dominate here. Taking into account that the

image charge is located at the positioh= rp?/r? and

FIG. 1. Three types of beam surroundings. assuming the cylinder radiys to be much smaller than

the distance between the beam and the cylingdeg ry =

satisfies the Leontovich boundary condition at the metaldl = 4. the longitudinal electric field is

surface [7]: 2ta e
Es=——|1+ + Cln , 10
E, = (H, X n, (4) : P ( 2,2 ) (r/p) (10)

where H, is the magnetic field calculated for perfect which includes an arbitrary consta@it The small dipole
conductivity, andh is a unit normal vector pointed inside term in the brackets reflects a weak dependence of the

the wall. The so-called surface impedance fields on the source positiony. To find the constant
C, an additional boundary condition is needed. It can
= [_@ - (5) be assumed that this system is bounded by a conducting
8o cylinder with the radiu > ro. Then the constant is

found by equating the expression for the monopole part of

is determined by the finite conductivity at the given E, to zero at this remote surface, giving

field frequencyw; this factor is assumed to be small,
Il < 1. _ 24
For the first case of the round vacuum chamber the pIn(R/p)

wake functions can be found in Ref. [1]: _ _ .
Using (3) one can obtain the integrated transverse force

2 i :
Wi() = W,(2) = — ULZL’ D) =0, (6) and finally the wakes:

L c
ngjgrec is a velocity of light and is the vacuum chamber D(z) = T adp R/ p) Voz (11)
radius.
For the case of the resistive plane, the boundary Lp [c¢
condition (4) can be presented in the following form: Wi(z) = Wy(2) = T rdt Vcr_z' (12)
E| = 2LE, @)

Introducing the detuning factork, = D(z)/W,(z),
where E is the longitudinal component anl! is the v = D(2)/W,(2), the results for the various geometries

normal component of the image charge electric field2r€ €xpressed as
Taking into account that the fieldl/ satisfies the Laplace

equation, it can be concluded that Eq. (7) describes the (1) alxallﬁles\yvrz;metii
resistive wall fieldE; not only on the metal surface but _ _’1 plane wallnx I h,
everywhere in the volume. After the longitudinal field is > — dz/[ 2In(R/p)] gmall c Iind):ern L,d
found, the transverse wake forces are calculated from the - d2p 2| Rp ’ I yl' d * d
Panofsky-Wenzel theorem (3), which gives /lp*In(R/p)],  small cylindern, || ('13)
FL() — 2_612\/2 n(r - ro) ® . . . .
7 Voz (r— )2 Here n, is the unit vector in thex direction, and the

vectorsh, d are defined in Fig. 1.
with ry = (xo, —yo) standing for the image charge posi- The driving wake functior% (z) for the small cylinder
tion (they axis here is assumed to be normal to the plane)(12) is a factor« p/d < 1 smaller than the wake
To find the wakes (2), the work corresponding to thefunctions of the round chamber (6) or parallel plates (9)
force (8) has to be expanded over the leading and trailingvith the same aperture. This result demonstrates how the
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transverse instability can be suppressed by the decreasetafincations. All the resistive wall wake functions have
the driving wake function. The detuning wakes work inthe following form:
the same direction; they damp the instability even more. _ _

Finally, note that the plane wall resuk}:= +1 is W) = -Q/Vz, D() = —xQ/Vz,
valid not only for the resistive wall wake. It applies as where Q is the geometry factor. The examples for the
well to the wake generated by a longitudinal variation ofdetuning facto are given by Eq. (13).
the chamber cross section, when the cross section is aFigure 2 presents plots for dimensionless eigenvalues
significantly elongated figure such as a rectangle or ellipsex as functions of the dimensionless intensity parameter

Coherent stabilization by the detuning wakeThe _
detuning wake modulates the betatron frequencies along I = KoVa (17)
the bunch. Such a modulation introduced by means of aat various detuning factors. The dependence of the
rf quadrupole was studied in Ref. [5]. It was shown theremode behavior on this factor is seen to be significant.
that the transverse instabilities can be strongly damped in The mode coupling instability threshold is least for
this case because the particles are kept out of resonanttee symmetric casex = 0. At « = 1, coupling and
with each other. Following Ref. [5], the numerical resultsdecoupling thresholds merge (degenerate case) and the
for the influence of the detuning wake on the transverséeam is stable for any current. This result is valid for any
mode coupling instability are presented below. mode truncation, so it appears to be an exact property. A

Assuming the bunch to consist of particles with the samemall coupling-decoupling instability area appears again at
synchrotron amplitude and a homogeneous distribution higher .
over the synchrotron phase (the so-calédbag model
[1]), the transverse equation of motion is written

4.0 T T T
2
D)+ w3 () = P,
2 ] . ]
R = 5t [ @) - p@s@ds’ R
%=%+w3%, 7 = acosS¢ — acose’. 0‘0%

(14) Te— Im v

Here ¢ is the synchrotron phase,, and w, are, respec-
tively, the betatron and the synchrotron frequencies,fand 20 ~—u___ ]
is the number of particles in the bunch. An expansion of
the deviationxt(¢) over the synchrotron harmonics

+o0
i i ; 40 ' : '
x(@) = et Y e iawtting (15) 0.0 1.0 2.0 3.0 4.0

n=-—m

reduces Eq. (14) to a set of algebraic equations for the 4,
eigenvector components and the eigenvalues:

]

Nq2

2mlymwywgL’ 2.0 .
Re v

+oo
xn(a - n) =K Z xmKnm’ K

m=—oo

T )
Ko = fo cognd) e fo W(2) cotme’) d o’

0.0

T ¢
— ] cog(n — m)d)]dg{)f D(z)d¢’,
0 0

(16) 59 ]

where the influence of the coherent interaction is taken
to be small in comparison with the transverse focusing,
aw; K wy,. To resolve such equations, the sum has to 40 . ‘ )
be truncated to a finite number of the modes. In the 0.0 1.0 2.0 3.0 4.0
numerical calculations, five modes were taken initially;FiG. 2. Eigenvaluesr versus the intensity parametdr for
then, the results were compared with 9- and 15-modearious detuning factors = 0 (top) and« = 1 (bottom).
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chamber cross section. For any kind of wake, the ratio
of the detuning function to the driving function is zero
for round cross sections. This ratiodsl when the cross
section is an elongated rectangle or ellipse whose height
may vary with the longitudinal coordinate. For the resis-
tive wall wake, a geometry was found in which the detun-
ing wake function is much higher than the driving wake.
It is probable that cross sections with such a property
exist for the wakes driven by geometry variations as well.
It can be concluded that for asymmetric vacuum cham-
ber elements, which are usual in practice, the detuning
wake function must be taken into account; conventional
codes likemAFIA need to be improved accordingly.
0.0 : ] ' ' t For all of the examples here, an asymmetry-driven
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 . . . g
Gosfficient of asymmetry increase of the detuning wake combines with a decrease of
_ ~ the conventional wake; both of these factors favor beam
i'; Igél?iiit lgt(\a/re]?lstastmgsg‘;tjni?\f tpaitg{agjsr"t?{:% mgg‘; é%?i%“”gstability. These properties of asymmetric cross sections
line), 9-mode (thick dashed line), and 15-mode (thin dashed20K Promising for the design of future accelerators.
line) truncations. The authors are grateful to Bruno Zotter, Sam Heifets,
and Vladimir Shiltsev for interesting discussions. Our
special thanks are to Jim Maclachlan and Jeff Holmes for
Figure 3 shows the threshold behavior versus coeffitheir numerous stylistic corrections of the manuscript.
cient of asymmetryc for the 5, 9, and 15 modes calcu-
lation. The instability threshold has its minimum for the
symmetric chamberg = 0. Then it increases with the
absolute value of the detuning factor and has two asym-[l] A. Chao, Physics of Collective Beam Instabilities in High

metrical maxima ak = —1.5 andx = 2. .
. T . Energy AcceleratorgJohn Wiley Sons, Inc., New York,
The results shown in this figure should be interpreted 1993?}/ { y

carefully, taking into account that an asymmetry not [2] S. Heifets, A. Wagner, and B. Zotter, “Generalized
only introduces the detuning wake but also changes the ~ |mpedances and Wakes in Asymmetric Structures,” SLAC
driving wake. For instance, the thresholds for the resistive  Report No. SLAC/AP110, 1998.

wall, examples (a) and (b) witth = b (Fig. 1), differ [3] W. Schnell, “Microwave Quadrupoles for Linear Collid-
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approximately by a factor o#t X 1.5 = 6, where the ers,” CLIC Note 34, CERN Report No. CERN-LEP-RF/
factor 4 is related to the driving wake damping and the 87-24, 1987. _ _
factor 1.5 is the benefit due to the detuning fer= —1, [4] V. Balakin, A. Novokhatsky, and V. Smirnov, iRroceed-

ings of the 12th International Conference on High Energy

. . . Acceleratorg(Fermilab, Batavia, 1983), p. 119.
Conclusions—Only one kind of wake function, called [5] V. Danilov, “On Possibility to Increase the TMCI Thresh-

here the driving wake function, has been conventionally == °, by RE Quadrupole,” Fermilab Report No. TM-2033,
taken into account for the beam stability analysis. It has 1997: Phys. Rev. ST Accel. Bearis041301 (1998).
been shown that this conventional approach can lead to sigg] w. k. H. Panofsky and W. A. Wenzel, Rev. Sci. Instrum.
nificant underestimation of the beam stability thresholds. 27, 967 (1956).

It has been demonstrated here that the strength of thg7] L.D. Landau and E.M. Lifshitz, Electrodynamics of
detuning wake function depends on the geometry of the  Continuous MedigPergamon, Oxford, New York, 1984).

according to the Fig. 3.
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