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Reduction of Large Dynamical Systems by Minimization of Evolution Rate
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Reduction of a large system of equations to a lower-dimensional system of similar essential dynamics
is investigated. For dynamical systems with disparate time scales, a criterion for determining redundant
dimensions and a general reduction method based on the minimization of evolution rate are proposed.
[S0031-9007(99)08648-2]

PACS numbers: 47.70.Fw, 47.27.Eq, 82.20.Wt

The macroscopic behavior of many complex systemsice is to locally linearize the equations. We will use the
(with a large number of degrees of freedom or scalesgxample of a general two-variable linear system with one
is largely insensitive to the details of the microscopiclarge (—1) and one small<{¢) eigenvalue in our analysis:
features. The macroscopic behavior can then be nearly . :
exactly described by a simpler system with very few* — —x(Cos' 0 + &sin’ 0) + ysing cost(l — 2),
degrees of freedom or scales. In this Letter, a genera} = xsind cosf(l — &) — y(si? @ + £cos ).

method for reducing the description of the macroscopic . ) .
behavior of large systems is presented. The two specifitn€ directions corresponding to the two eigenvalues are

(@)

examples _considered in this_, paper are of importanc_e in x=—ycotd forr=—1;
the modeling and computation of turbulent combustion: 3
the reduction of complex chemical kinetics and algebraic x = +ytand fori = —e¢.

modelln'g of Reynolds stresses. . In a linear system, the slow manifold lies in a space

_ConS|der an autonomous dissipative dynamical SySterEpanned by the eigenvectors corresponding to small (in

with one attracting fixed point: magnitude) eigenvalues. Maas and Pope [1] determine
z = g(z), wherez = (z1,22,...,24). (1)  the slow manifold by requiring it to be orthogonal to the

It is assumed that is suitably scaled and nondimen- Principal directions corresponding to the large (negative)
sionalized. If the system has disparate time scales, thigenvalues of the Jacobian (MP model). In the example
solution exhibits a typical three-stage behavior. (i) Initial-considered the slow manifold is

condition dependent initial transient stage which lasts
until all the small time-scale, fast processes are exhausted;
(i) the intermediate slow-manifold stage in which the so-The determination of the eigenvalues and eigendirections
lutions “bunch” together in a lower-dimensional phaseof the Jacobian and subsequently the slow manifold can be
space as the slow processes dominate; and (iii) the finglrohibitively expensive in a practical nonlinear problem
equilibrium state. In the slow-manifold stage, the degreefvolving several dozen variables. The popular and
of freedom of the system can be reduced if the relationinexpensive steady-state approximation (SSA) method of
ship between fast and slow variables can be found. Imeduction involves setting the rate of change of fast
a nonlinear dynamical system it is difficult to character-variables to zero to obtain algebraic relations between fast
ize the slow manifold accurately, and the current pr:T\cand slow variables. In the sample problem,

x(slow manifold = +ytané . 4)

x(slow manifold = +ytand[1 — ese¢ d + g*sec¢dtart § + 0(&’)], if x is fast variable
y(slow manifold = +xcotd[1 — ecsc 6 + s>csC dcot 8 + 0(&)], if y is fast variable

®)

Judicious choice of the steady-state variable is crucial and Fast variables are those whose evolution is dominated
this is usually made froma priori knowledge. Even with by the large eigenvalues of the Jacobian and the slow
a proper choice, the error incurred is first order in thevariables by the small eigenvalues. In fact, close to
eigenvalue ratio. For further details about these methodthe slow manifold, fast variable evolution can be slower
and other important developments the reader is referred tthan that of slow variables rendering evolution rate an
[2], [3], and [4]. unsuitable selection criterion. A better gauge of the time

Our objectives are to (i) devise a general criterion forscale of a variablez() is the convergence rate of its value
selecting fast variables and (ii) develop a computationallybetween two neighboring trajectories. The differenceg in
viable reduction procedure of higher (than one) ordewalues between two neighboring trajectoriés;, evolves
accuracy in the eigenvalue ratio. according to
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dt = 0z will ensure thaty = /4.

i i . For even better accuracy, minimization of the evolution
Based on this, two approximate measures of the dissip@aies of higher-order derivatives of the variables is pro-

tiveness of individual variables are proposed for the Selecﬁosed. Differentiation has the effect of separating the time

d(6z; = 0g; method. The fast-variable selection criterion given above
0z) _ § 981 5., ) g

tion criterion: 1 scales so that the time scalessofindy are farther apart
9g; a0\ 2 than those ok andy. The higher the order of the deriva-
D;i=—=*, or D;= Z (ﬁ> ) (7) tive, the greater is the separation between the slow and fast
9zi =i\ 9% variable (derivatives). In matrix algebra, this fact is the

basis of the power method of separating small and large

In general, a large magnitude of; implies fast variable ™ X ;
g g g  IMp glgenvalues. Our proposal for higher-order accuracy is

and slow variables are characterized by small magnitude

When the physical variables and eigenvariables coincide e e mo _xe d™zi d"z
it is easy to see thaD;’'s are indeed the eigenvalues. k(y) = minF (xy), whereF"(z) = l; T g
While the second estimate is likely to be more accurate (11)

in general, the first measure may be adequate when the | bl this leads t
off-diagonal terms in the Jacobian are relatively small. n our sample problem, this leads 1o
Each state in phase space is associated with a residence(y) = ytang[1 — (I + tar 6)e*" + 0(s*")]. (12)

time scale which is proportional to the amount of time |n practical problems, minimization @f' may be ade-

a SO|U'[IOI’] tl’ajeC'[OFy re$IdeS N an Inflnlt_eSImal ne|ghb0r'quate. More than one m|n|ma Of the evolution rate may
hood of that point and inversely proportional to the localpe encountered in the proximity of other (unstable) fixed
evolution rate ¥ = 4/>"_, g;g;). Solutions tend to stag- points. (This will also be the case with the SSA method.)
nate near long-time-scale states and pass quickly througHhen, the minimum that has all negative eigenvalues (at-
short-time-scale states. The probability of finding a sotractor) must be chosen.

lution, of unknown time lapse and arbitrary initial condi- (&) Chemical kinetics reduction-The phenomenon of
tion, at a given state along its trajectory is proportionalturbulent combustion encompasses a wide spectrum of
to the residence time scale of that state. This leads tEength and time scales. Typically, the thermochemical
the premise of our reduction procedur&iven the values time scales representing chemical reactions span a wider
of slow variables, an arbitrary solution trajectory is most range than those of turbulent advection and molecular
likely to be found at the state with the longest residencdliffusion. It is desirable to eliminate chemical reactions
time, i.e., smallest evolution rat&his proposal is as valid and species whose characteristic time scales are smaller
for nonlinear systems as it is for linear systems and beaf®an the fluid time scales.

semblance to the maximum likelihood estimator of mathe- Consider chemical reactions amony, chemical
matical statistics and the nonequilibrium potential concep8pPecies involvingV, reactions in an adiabatic, isobaric,
of [5]. When not conditioned by any slow-variable val- well-stirred reactor. The species (mass fractiop)

ues, this criterion selects the equilibrium state as the mogtvolve according to

likely state of the system. If we represent the retained oY, Ne B E.
. - . i_ _ i p.Tbi J
(slow) variables inz by the vectory and the discarded 5 Ri=Wi Z b T exp — gz
(fast) variables by the vectos, the statement of our pro- JN=1
posal can be written as S (Y, \Pr
n X l_[ w.) (13)
x(y) = minF(x:y), whereF = V? = igi. (8 , n=1n s _
(y) = min F(x:y) i;g gi- (8 where W; is the molecular weight of species B;;
In the present example is the stoichiometric coefficient of species in the
dx TP dy T jth reaction; a; = Zi-v;l,B,-j; Aj, bj, and E; are the
F(xty) = [E} + [E} Arrehenius constants; aril is the universal gas constant.
Temperature and density are obtained from
= x%(cog 6 + &2sir? 0) + y*(sir* 0 + £*cos 0) Ns ,
dr INTRLL
— 2xysinf cosf(1 — &2). (9) Co gy = —izzl iol = |
The value ofx that minimizes the evolution rate is Ny ! (14)
i P i
sinf cosé(1 — &2 JT,Y) = = 1 .
x() =3 —_ P ) = Ry (; Wf>

cos 6 + &2sirt 6 _ . . .
We consider the evolution of &,/0, mixture, in

= ytand[l — (1 +tarf 0)s> + O(¢)].  (10)  which the atomic mass fractions of hydrogen and oxy-
When the eigenvariables and physical variables coincidegen are0.15 and 0.85, respectively, from various ini-
there is no error involved; otherwise, it is of ordet tial conditions. The constant total enthalpy lid04 X
which makes this method more accurate than the SSA0’ kJ and the constant pressure2istm. The detailed
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14-step chemical mechanism, described in [6], involveggeneral, excellent. These results demonstrate that the
temperature{) and six species(;, O, H,, H, OH, and present method is an accurate and computationally viable
H,0). The equilibrium state is given by = 3506 K;  option for reducing chemical kinetics.
Yy = 0.024; Yy,0 = 0.556; Yoy = 0.201; Yo = 0.086; (b) Algebraic Reynolds stress modelirgln the field
Yy, = 0.060; andYp, = 0.070. of turbulence modeling, closure of Reynolds stress trans-
Evolution of the species undergoing reactions accordingort equations is the lowest level of sophistication at which
to the detailed chemical kinetics from six arbitrary initial models can be developed in a systematic manner from
conditions is calculated numerically using a second-ordethe governing Navier-Stokes equations. This entails solv-
Runge-Kutta procedure. The evolution trajectories of Hing seven modeled transport equations for turbulence vari-
and OH are shown in Fig. 1. A one-dimensional slowables, five for Reynolds stress anisotropy compongfts
manifold model is constructed with temperature as the onlyand one each for turbulent kinetic enerfyand dissipa-
retained variable: tion ¢,

N,
. - dT dT db;;
~m R + — — ij
Y(7) = min _§ RiR; } (15)

dt dt |’

The mass fractions of H and OH predicted by the one-
dimensional model is also shown in Fig. 1. The agreement
is quite adequate. Next we construct a two-dimensional

= _bij(L(l)% - L%bmnsmn)

i=1

2
+ LSij + L3(buSjx + bjxSix — gblmslmaij)

manifold with water mass fraction as a retained variable + LabaWik + bjpWir), (16)
along with temperature. Comparison between the two- gx
dimensional model and detailed kinetics is made for the ;, — ~KbijSij — .

case IC5 in Fig. 2. The one-dimensional model values )
are also shown for comparison. The agreement betweend € _ _ o e
CelsszSl/ CeZ

the two-dimensional model and detailed kinetics is, in dt K-
Perfectly stirred reactor Perfectly stirred reactor
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FIG. 1. State-space evolution of H and OH as a functionFIG. 2. State-space evolution of H and OH as a function of
of temperature. Different dashed and dotted lines correspontémperature. Solid line: case IC5 with full kinetics; dotted line:
to results from full kinetics simulations from different initial reduced model with temperature as the only retained variable;
conditions. The solid line represents the slow-manifold modeldot-dashed line: reduced model with temperature HR® as
prediction with temperature as the only retained variable. the retained variables.
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Homogeneous shear performed in a three-dimensional discarded variable state

0.00 T T TTTm T T TTTTT] T T T TTTT space O%]l,blz, andbzz.
. — Model | We test the model in homogeneous shear turbulence in
o 580 which the only nonzero values of mean strain and rotation
005~ ¢ I 50 tensor components are
- 15 1 .
&-0.10 I T Stz = S = Wip = =W = . (19)
. L/ \ 7 whereS is a constant. The seven-equation model calcu-
—0.15 o - lations for variousS values are shown in Fig. 3. Each
- \\\ anisotropy is plotted as a function of the self-similarity
~0.20 Ll Ll Loiin (retained) variables/SK. The equilibrium values are
o = 0.166, by; = 0.204, by, = —0.157, by, = —0.149,
0.30 T T T T T andbs; = —0.055. The various solution trajectories ex-
025 i hibit a well-defined slow-manifold behavior. The alge-
) braic model, also shown in the figure, does an excellent
0.20 job of reproducing the behavior of the full set. This alge-
/ I | braic model has been tested in a variety of other homoge-
Foi1s- | [ ! neous flows with good success [8].
- o { \ In summary, we have developed a general procedure
0.10 - | \\;\ for reducing dimensionality of autonomous systems with
o . } \-l}( disparate time scales. The premise of the proposal is that
0.05 = ¢ i 5 the solution trajectories from unknown initial conditions
0.00 T are most I_ikely to be found near the “bottlenecksi’ in state
’ 10-3 1072 107! 10° space which are characte_zrlzed b_y _sma_lll evolution rz?ltes.
These can be found by simply minimizing the evolution
e/ SK velocity subject to constraints (given values of the slow or
FIG. 3. Homogeneous turbulence. Evolutionigf and b, retained variables).
as a function ofw. Solid line: reduced model witlK and & This work was performed while the author was visiting
as the retained variables; dashed and dotted lines: full Reynoldgdjan Institute of Sciences, Bangalore, India. Assistance
stress model calculations from various initial conditions. received from Professors K.N. Lakshmisha and H.S.

The Einstein summation convention is used. In the abow'é/IleunOIa 's gratefully acknowledged.
equationsL’s and C’s are model coefficients, and;;
and W;; are the mean flow strain and rotation rates.
For the coefficient values used the reader is referred to *Electronic address: girimaji@icase.edu
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