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Reduction of Large Dynamical Systems by Minimization of Evolution Rate
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Reduction of a large system of equations to a lower-dimensional system of similar essential dynamics
is investigated. For dynamical systems with disparate time scales, a criterion for determining redundant
dimensions and a general reduction method based on the minimization of evolution rate are proposed.
[S0031-9007(99)08648-2]
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The macroscopic behavior of many complex system
(with a large number of degrees of freedom or scale
is largely insensitive to the details of the microscop
features. The macroscopic behavior can then be nea
exactly described by a simpler system with very fe
degrees of freedom or scales. In this Letter, a gene
method for reducing the description of the macroscop
behavior of large systems is presented. The two spec
examples considered in this paper are of importance
the modeling and computation of turbulent combustio
the reduction of complex chemical kinetics and algebra
modeling of Reynolds stresses.

Consider an autonomous dissipative dynamical syst
with one attracting fixed point:

Ùz ­ gszd, wherez ­ sz1, z2, . . . , znd . (1)

It is assumed thatz is suitably scaled and nondimen
sionalized. If the system has disparate time scales,
solution exhibits a typical three-stage behavior. (i) Initia
condition dependent initial transient stage which las
until all the small time-scale, fast processes are exhaus
(ii) the intermediate slow-manifold stage in which the so
lutions “bunch” together in a lower-dimensional phas
space as the slow processes dominate; and (iii) the fi
equilibrium state. In the slow-manifold stage, the degre
of freedom of the system can be reduced if the relatio
ship between fast and slow variables can be found.
a nonlinear dynamical system it is difficult to characte
ize the slow manifold accurately, and the current pra
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tice is to locally linearize the equations. We will use th
example of a general two-variable linear system with on
large (21) and one small (2´) eigenvalue in our analysis:

Ùx ­ 2xscos2 u 1 ´ sin2 ud 1 y sinu cosus1 2 ´d ,

Ùy ­ x sinu cosus1 2 ´d 2 yssin2 u 1 ´ cos2 ud .
(2)

The directions corresponding to the two eigenvalues are

x ­ 2y cotu for l ­ 21 ;

x ­ 1y tanu for l ­ 2´ .
(3)

In a linear system, the slow manifold lies in a spac
spanned by the eigenvectors corresponding to small
magnitude) eigenvalues. Maas and Pope [1] determi
the slow manifold by requiring it to be orthogonal to the
principal directions corresponding to the large (negativ
eigenvalues of the Jacobian (MP model). In the examp
considered the slow manifold is

xsslow manifoldd ­ 1y tanu . (4)

The determination of the eigenvalues and eigendirectio
of the Jacobian and subsequently the slow manifold can
prohibitively expensive in a practical nonlinear problem
involving several dozen variables. The popular an
inexpensive steady-state approximation (SSA) method
reduction involves setting the rate of change of fa
variables to zero to obtain algebraic relations between fa
and slow variables. In the sample problem,
xsslow manifoldd ­ 1y tanuf1 2 ´ sec2 u 1 ´2 sec2 u tan2 u 1 Os´3dg, if x is fast variable,

ysslow manifoldd ­ 1x cotuf1 2 ´ csc2 u 1 ´2 csc2 u cot2 u 1 Os´3dg, if y is fast variable.
(5)
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Judicious choice of the steady-state variable is crucial a
this is usually made froma priori knowledge. Even with
a proper choice, the error incurred is first order in th
eigenvalue ratio. For further details about these metho
and other important developments the reader is referred
[2], [3], and [4].

Our objectives are to (i) devise a general criterion fo
selecting fast variables and (ii) develop a computationa
viable reduction procedure of higher (than one) ord
accuracy in the eigenvalue ratio.
nd
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Fast variables are those whose evolution is domina
by the large eigenvalues of the Jacobian and the sl
variables by the small eigenvalues. In fact, close
the slow manifold, fast variable evolution can be slow
than that of slow variables rendering evolution rate
unsuitable selection criterion. A better gauge of the tim
scale of a variable (zi) is the convergence rate of its valu
between two neighboring trajectories. The difference inzi

values between two neighboring trajectories,dzi, evolves
according to
© 1999 The American Physical Society
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dsdzid
dt

­
nX

j­1

≠gi

≠zj
sdzjd . (6)

Based on this, two approximate measures of the dissip
tiveness of individual variables are proposed for the sele
tion criterion:

Di ­
≠gi

≠zi
, or Di ­

24 nX
j­1

√
≠gi

≠zj

!2
35

1
2

. (7)

In general, a large magnitude ofDi implies fast variable
and slow variables are characterized by small magnitud
When the physical variables and eigenvariables coincid
it is easy to see thatDi ’s are indeed the eigenvalues
While the second estimate is likely to be more accura
in general, the first measure may be adequate when
off-diagonal terms in the Jacobian are relatively small.

Each state in phase space is associated with a reside
time scale which is proportional to the amount of tim
a solution trajectory resides in an infinitesimal neighbo
hood of that point and inversely proportional to the loca

evolution rate (V ­
qPn

i­1 gigi ). Solutions tend to stag-
nate near long-time-scale states and pass quickly throu
short-time-scale states. The probability of finding a s
lution, of unknown time lapse and arbitrary initial condi
tion, at a given state along its trajectory is proportion
to the residence time scale of that state. This leads
the premise of our reduction procedure.Given the values
of slow variables, an arbitrary solution trajectory is mos
likely to be found at the state with the longest residen
time, i.e., smallest evolution rate.This proposal is as valid
for nonlinear systems as it is for linear systems and bea
semblance to the maximum likelihood estimator of math
matical statistics and the nonequilibrium potential conce
of [5]. When not conditioned by any slow-variable val
ues, this criterion selects the equilibrium state as the m
likely state of the system. If we represent the retaine
(slow) variables inz by the vectory and the discarded
(fast) variables by the vectorx, the statement of our pro-
posal can be written as

xsyd ø min
x

Fsx:yd, whereF ­ V 2 ­
nX

i­1

gigi . (8)

In the present example

Fsx:yd ­

∑
dx
dt

∏2

1

∑
dy
dt

∏2

­ x2scos2 u 1 ´2 sin2 ud 1 y2ssin2 u 1 ´2 cos2 ud
2 2xy sinu cosus1 2 ´2d . (9)

The value ofx that minimizes the evolution rate is

xsyd ­ y
sinu cosus1 2 ´2d
cos2 u 1 ´2 sin2 u

­ y tanuf1 2 s1 1 tan2 ud´2 1 Os´4dg . (10)

When the eigenvariables and physical variables coincid
there is no error involved; otherwise, it is of order´2

which makes this method more accurate than the SS
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method. The fast-variable selection criterion given abov
will ensure thatu # py4.

For even better accuracy, minimization of the evolutio
rates of higher-order derivatives of the variables is pro
posed. Differentiation has the effect of separating the tim
scales so that the time scales ofÙx and Ùy are farther apart
than those ofx andy. The higher the order of the deriva-
tive, the greater is the separation between the slow and f
variable (derivatives). In matrix algebra, this fact is th
basis of the power method of separating small and lar
eigenvalues. Our proposal for higher-order accuracy is

xsyd ø min
x

Fmsx:yd, whereFmszd ­
nX

i­1

dmzi

dtm

dmzi

dtm
.

(11)

In our sample problem, this leads to

xsyd ­ y tanuf1 2 s1 1 tan2 ud´2m 1 Os´4mdg . (12)

In practical problems, minimization ofF1 may be ade-
quate. More than one minima of the evolution rate ma
be encountered in the proximity of other (unstable) fixe
points. (This will also be the case with the SSA method
Then, the minimum that has all negative eigenvalues (a
tractor) must be chosen.

(a) Chemical kinetics reduction.—The phenomenon of
turbulent combustion encompasses a wide spectrum
length and time scales. Typically, the thermochemic
time scales representing chemical reactions span a wi
range than those of turbulent advection and molecul
diffusion. It is desirable to eliminate chemical reaction
and species whose characteristic time scales are sma
than the fluid time scales.

Consider chemical reactions amongNs chemical
species involvingNr reactions in an adiabatic, isobaric
well-stirred reactor. The species (mass fractionYi)
evolve according to

≠Yi

≠t
­ Ri ­ Wi

NRX
j­1

bij

raj
AjTbj exp

√
2

Ej

RT

!

3

NSY
n­1

µ
Yn

Wn

∂bnj

, (13)

where Wi is the molecular weight of speciesi; bij

is the stoichiometric coefficient of speciesi in the
jth reaction; aj ­

PNs
i­1 bij ; Aj, bj, and Ej are the

Arrehenius constants; andR is the universal gas constant.
Temperature and density are obtained from

Cp
dT
dt

­ 2

NSX
i­1

Dhi,0

∑
dYi

dt

∏
,

rsp, T , Yid ­
p

RT

√
NSX

i­1

Yi

Wi

!21

.

(14)

We consider the evolution of aH2yO2 mixture, in
which the atomic mass fractions of hydrogen and oxy
gen are0.15 and 0.85, respectively, from various ini-
tial conditions. The constant total enthalpy is1.104 3

107 kJ and the constant pressure is2 atm. The detailed
2283
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14-step chemical mechanism, described in [6], involv
temperature (T ) and six species (O2, O, H2, H, OH, and
H2O). The equilibrium state is given byT ­ 3506 K;
YH ­ 0.024; YH2O ­ 0.556; YOH ­ 0.201; YO ­ 0.086;
YH2 ­ 0.060; andYO2 ­ 0.070.

Evolution of the species undergoing reactions accord
to the detailed chemical kinetics from six arbitrary initia
conditions is calculated numerically using a second-ord
Runge-Kutta procedure. The evolution trajectories of
and OH are shown in Fig. 1. A one-dimensional slo
manifold model is constructed with temperature as the o
retained variable:

YsT d ø min
Y

24 NsX
i­1

RiRi 1
dT
dt

dT
dt

35 . (15)

The mass fractions of H and OH predicted by the on
dimensional model is also shown in Fig. 1. The agreem
is quite adequate. Next we construct a two-dimension
manifold with water mass fraction as a retained variab
along with temperature. Comparison between the tw
dimensional model and detailed kinetics is made for t
case IC5 in Fig. 2. The one-dimensional model valu
are also shown for comparison. The agreement betw
the two-dimensional model and detailed kinetics is,

FIG. 1. State-space evolution of H and OH as a functio
of temperature. Different dashed and dotted lines correspo
to results from full kinetics simulations from different initia
conditions. The solid line represents the slow-manifold mod
prediction with temperature as the only retained variable.
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general, excellent. These results demonstrate that t
present method is an accurate and computationally viab
option for reducing chemical kinetics.

(b) Algebraic Reynolds stress modeling.—In the field
of turbulence modeling, closure of Reynolds stress tran
port equations is the lowest level of sophistication at whic
models can be developed in a systematic manner fro
the governing Navier-Stokes equations. This entails sol
ing seven modeled transport equations for turbulence va
ables, five for Reynolds stress anisotropy componentsbij,
and one each for turbulent kinetic energyK and dissipa-
tion ´,

dbij

dt
­ 2bijsL0

1
´

K
2 L1

1bmnSmnd

1 L2Sij 1 L3sbikSjk 1 bjkSik 2
2
3

blmSlmdijd

1 L4sbikWjk 1 bjkWikd ,

dK
dt

­ 2KbijSij 2 ´ ,

d´

dt
­ 2Ce1´bijSij 2 Ce2

´2

K
.

(16)

FIG. 2. State-space evolution of H and OH as a function o
temperature. Solid line: case IC5 with full kinetics; dotted line
reduced model with temperature as the only retained variab
dot-dashed line: reduced model with temperature andH2O as
the retained variables.
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FIG. 3. Homogeneous turbulence. Evolution ofb12 and b11
as a function ofv. Solid line: reduced model withK and ´
as the retained variables; dashed and dotted lines: full Reyno
stress model calculations from various initial conditions.

The Einstein summation convention is used. In the abov
equationsL’s and C’s are model coefficients, andSij

and Wij are the mean flow strain and rotation rates
For the coefficient values used the reader is referred
Girimaji [7].

Researchers have long sought to reduce the seve
equation model to a computationally affordable two
equation (for K and ´) model. The Reynolds stress
anisotropies are the discarded variables for which we se
algebraic expressions: hence, the name, algebraic str
model. The evolution rate of this system in state space
given by

F ­ V 2 ­
dbij

dt

dbij

dt
1

dK
dt

dK
dt

1
d´

dt
d´

dt
. (17)

The algebraic stress model assumption for nonequilibriu
turbulent flows is

bsK , ´d ­ min
b

Fsb:K , ´d . (18)

For two-dimensional mean flows, the minimization is
lds

e

.
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performed in a three-dimensional discarded variable st
space ofb11, b12, andb22.

We test the model in homogeneous shear turbulence
which the only nonzero values of mean strain and rotati
tensor components are

S12 ­ S21 ­ W12 ­ 2W21 ­
S
2

, (19)

whereS is a constant. The seven-equation model calc
lations for variousS values are shown in Fig. 3. Each
anisotropy is plotted as a function of the self-similarit
(retained) variablé ySK. The equilibrium values are
v ­ 0.166, b11 ­ 0.204, b12 ­ 20.157, b22 ­ 20.149,
andb33 ­ 20.055. The various solution trajectories ex
hibit a well-defined slow-manifold behavior. The alge
braic model, also shown in the figure, does an excelle
job of reproducing the behavior of the full set. This alge
braic model has been tested in a variety of other homo
neous flows with good success [8].

In summary, we have developed a general proced
for reducing dimensionality of autonomous systems w
disparate time scales. The premise of the proposal is t
the solution trajectories from unknown initial condition
are most likely to be found near the “bottlenecks” in sta
space which are characterized by small evolution rat
These can be found by simply minimizing the evolutio
velocity subject to constraints (given values of the slow
retained variables).
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