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Directed Percolation and Generalized Friendly Random Walkers
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We show that the problem of directed percolation on an arbitrary lattice is equivalent to the problem
of m directed random walkers with rather general attractive interactions, when suitably continued to
m =20. In 1+ 1 dimensions, this is dual to a model of interacting steps on a vicinal surface. A
similar correspondence with interacting self-avoiding walks is constructed for isotropic percolation.
[S0031-9007(99)08735-9]
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The problem of directed percolation (DP), first intro- this holds on an arbitrary directed lattice in any number of
duced by Broadbent and Hammersley [1], continues to atdimensions, and for all variant models of DP, whether
tract interest even though it has so far defied all attempts dtond, site, or correlated. Moreover, the weights for a
an exact solution, even in two dimensions. Although thegiven number of walkers passing along a given bond or
problem was originally formulated statically on a lattice through a given site may be chosen in a remarkably arbi-
with a preferred direction, when the latter is interpreted agrary fashion, still yielding the same resultrat= 0.
time the universal behavior close to the percolation thresh- We now describe the correspondence between these
old is also believed to describe the transition from a noisetwo problems in detail. Adirected latticeis composed
less absorbing state to a noisy, active one, which occurs iof a set of points inR¢ with a privileged coordinate
a wide class of stochastic processes [2]. It also maps ontg which we may think of as time. Pairs of these
Reggeon field theory, which describes high-energy diffracsites (r;, ;) are connected by fixed bonds, oriented in
tion scattering in particle physics [3]. the direction of increasing, to form a directed lattice.

Some time ago, Arrowsmith, Mason, and Essam [4]in the directedbond problem, each bond is open with
argued that the pair connectedness probaltdfity, »') for ~ a probability p and closed with a probability — p,
directed bond percolation on a two-dimensional diagonaand in the site problem it is the sites which have
square lattice can be related to the partition function fothis property. In principle, the probabilities could be
the weighted paths ofrn “friendly” walkers which all inhomogeneous, and we could also consider site-bond
begin atr and end atr/, when suitably continued to percolation and situations in which different bonds and
m = 0. These are directed random walks which maysites are correlated. Our general result applies to all
share bonds of the lattice but do not cross each othdhese cases, but for clarity we shall restrict the argument
(see Fig. 1). In fact, Arrowsmitlet al. [4] represented to independent homogeneous directed bond percolation.
these configurations in other ways: either @sious The pair connectedness(r,r’) is the probability that
walkers, which never intersect, by moving the friendly
walkers each one lattice spacing apart horizontally; or
as integer flowson the directed lattice, to be defined t
explicitly below. Arrowsmith and Essam [5] showed that
G(r,r') is also related to a partition function forlastate
chiral Potts model on the dual lattice, on setting= 1,
thus generalizing the well-known result of Fortuin and
Kasteleyn [6] for ordinary percolation.

In a more recent paper, Tsuchiya and Katori [7] have
considered instead the order parameter of the DP problem,
and have shown that id = 2 it is related to a certain
partition function of the same = 1 chiral Potts model,
and also that, for arbitrary, the latter is equivalent to a
partition function form = (A — 1)/2 friendly walkers.

It is the purpose of this Letter to describe a broad gener-
alization of these results. We demonstrate, in particular, a X
direct connection between a general connectedness func-

tion of DP and a corresponding partition function far  F|G. 1. Typical configuration ofn = 4 friendly walkers on
friendly walkers when continued 8 = 0. We show that the diagonal square lattice.
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the pointsr and r’ (with r < t') are connected by a evaluation of the partition function faall configurations

continuous path of bonds, always following the directionof m walkers which begin at and end at time’. This

of increasing. generalizes the result of Tsuchiya and Katori [7] to an
On the same lattice, let us define the correspondingrbitrary lattice. Although this continuation i@ = 0 is

integer flow problem. Assign a non-negative integer- reminiscent of the replica trick, it is in fact quite different.

valued currentu(r;, r;) to each bond, in such a way that Moreover, it is mathematically well defined, since, as we

it always flows in the direction of increasing and is argue belowZ is a finite sum of terms, each of which, with

conserved at the vertices. At the pointthere is a source the simple weights given above, is a polynomiakin

of strengthm = 1, and atr’ a sink of the same strength. We now give a summary of the proof, which is ele-

There is no flow at times earlier than that ofor later mentary. The connectedness functiétv; r{, r3,..., /)

than that ofr’. Such a configuration may be thought of is given [8] by the weighted sum of all grapig which

as representing the worldlines af particles, or walkers, have the property that each vertex may be connected back-

where more than one walker may share the same bondards tor and forwards to at least one of th}a (Alterna-

The configurations are labeled by distinct allowed valuegively, G is a union of directed paths fromto one of the

of the n(r;, rj), so that they are counted in the same Wayr}.) Each such graph is weighted by a facgofor each

as are those of identical bosons. Alternativelylin- 1 bond and—1) for each closed loop. A simple example is

dimensions, we may regard the walkers as distinct but witlshown in Fig. 2. A given graph corresponds to summing

worldlines which are not allowed to cross. In the partitionover all configurations in which the bonds @ are open,

sum, each bond is counted with a weighftn(r;,r;)].  irrespective of all other bonds in the lattice. The factors of

In the simplest case, we take(0) = 1 and p(n) = p (—1) are needed to eliminate double counting. It is useful

for n = 1 (although we shall show later that this may to decompose vertices iG with coordination number-3

be generalized). Since > p" for n > 1, there is an by inserting permanently open bonds into them in such a

effective attraction between the walkers, leading to thevay that the only vertices are those in which two directed

description friendly. The partition function is then bonds merge to form one (— 1), and vice versa. This
, does not affect the connectedness properties. We may
Z(rirism) = Z l_[ pln(ri, ry)]. then associate the factors @f 1) with eachl — 2 vertex

allowed configs (r,r;)

in G, as long as we incorporate an overall fadterl )’ !
This expression is a polynomial im and so may be in G. With each graphg, we associate a restricted set
evaluated atn = 0. The statement of the correspondenceof integer flows, called proper flows, such that= 1 for
between DP and the integer flow problem for the case otach bond i, andrn = 0 on each bond not i§y. Those
the pair connectedness is then corresponding to the graphs in Fig. 2 are shown in Fig. 3.

G(rir') = Z(r;r';0). Note that the last graph correspondsiio— 1 configura-
tions of integer flows, which gives precisely the required
factor of (—1) when we sein = 0. In general, summing
over all allowed integer flows will generate the sum over
all allowed G, with correct weightsp: The nontrivial
1part is to show that we recover the correct factors-of)
when we sein = 0.

This follows from the following simple lemma:
If A(n) is a polynomial inn, and we define the

olynomial B(m) = Z;ll A(n), then B(0) = —A(0).

e give a proof which shows that the result may
be generalized to other functions: Writé(n) as a
Laplace transformA(n) = [.(ds/2mi)e"A(s). Then
G(rsri,rhy...or) = (=D Z(r;r{,r},...,rsm = 0),  B(m) = [(ds/2mi)[(e* — e™)/(1 — ¢*)]A(s), so that
B(0) = — [-(ds/2mi)A(s) = —A(0). An immediate
rollary is that if A(ny,ny,...) is a polynomial in

Note that since the weigh{s(n) behave nonuniformly as
n — 0, the continuation ofZ(r;r’;m) to m = 0 is not
simply the result of taking zero walkers (which would be
Z = 1):ratheritis the nontrivial answe¥. Similar results
hold for more generalized connectivities. For example, i
we have pointsr{, r5, ..., r/) all at the same time > ¢,
we may consider the probability(r; 1, r5, ..., r]) that all
these points, irrespective of any others, are connected to
The corresponding integer flow problem has a source
strengthm = [ at r, and sinks of arbitrary (but nonzero)
strength at each poinrﬁ. In this case,

where the partition function is defined with the same
weights as before. Since the order parameter for DP mag/o
be defined as the limit a8 — + — « of P(¢' — 1), the
probability thatany site at timer’ is connected to-, and

this may be written using an inclusion-exclusion argu-
ment as + -
P — 1) =Y G(rir) = > G(rirl,rh) + ...
r/

o _ _ FIG. 2. Allowed graphsG corresponding taG ((0,0); (0, 2)).
(where the sums over thé are all restricted to the fixed The first two are counted with weigh€. The last is necessary
time '), we see that it is in fact given by the = 0  to avoid double counting, and comes with weighp*.
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ei(kl—kz) _ e(ei(kl‘*'kz) + e—i(k1+k2))

Au _ _
A e~ ilki—k) — E(gi(k1+k2) + e—i(k1+k2))
m m / men \ ‘n (the same as that which appears in the XXZ spin chain
[10]), where e = p(2)/p(1)> — 1. Requiring that the

FIG. 3. Sets of configurations of: friendly walkers corre- m-particle scattering should factorize into a product of

sponding to each of the graphs in Fig. 2. The last correspond@e_se two-bodyS matrices places con_straints on the
to m — 1 configurations. weights p(n). In general these equations appear too

difficult to solve, except in the weak interaction limit
(e = 1/2), where we find

several variables, andB(m) = >""! A(n,m — n,...), -

then B(0) = —A(0,0,...). We use this to proceed by 2" = 2q(n) + Z g(n — $)g(s)[1 — As(n — 5)]
induction on the number of — 2 vertices inG. Be- s=1

ginning with the vertex which occurs at the earliest time, + 0(\?),

the contribution toZ from the proper flow ong, when

evaluated atn = 0, is, apart from a factof—1), equal whereg(s) = p(s)/[p(1)]*, A = 2e — 1. This may be

to that for another graplg’ which will have one fewer solved for successive(n), but it is easy to see by

1 — 2 vertex. HoweverG’ differs from the previously applying the above lemma that, when continued:te=
allowed set of graphg; in that it may have more than 0, it will always yield the valuel, rather thanp as
one vertex at which current may flow into the graph. Forrequired. We conclude that the = 0 continuation of
this reason, we extend the definition of the allowed set othis integrable case does not correspond to DP. It is
graphs to include those in which every vertex is connectedevertheless interesting that integrable models of such
to at least one “input” pointr;, r,,...) and at least one interacting walkers can be formulated.

“output” point (r1,r3,...). In the corresponding integer In 1 + 1 dimensions, our generalized friendly walker
flow problem, currentgm,, m,,...) flow in at the inputs, model maps naturally onto a model of a step of total
whereas the only restriction on the outputs is that nonzerbeightm on a vicinal surface, by assigning integer height
current should flow out. The partition function is then variablesi(R) to the sitesR of the dual lattice, such
the weighted sum over all such allowed integer flowsthat » = 0 for x — —, h = m for x — +o, and h
Induction on the number of — 2 vertices then shows increases by unity every time the path of a walker
that this partition function, evaluated at; = 0, gives is crossed. The weights for neighboring dual sifes
the corresponding DP graph correctly weighted. (Theand R’ are p(h(R’) — h(R)). This is slightly different
induction starts from graphs with lo— 2 vertices which  from, and simpler than, the chiral Potts model studied
involve no summations and for which the result is trivial.) in [5,7].

Since our main result relies only on the lemma, A similar correspondence between percolation and in-
it follows also for rather general weightg(n). The teracting random walks is valid also for the isotropic
only requirement is thap(n) grow no faster than an case. The pair connectedne€4r,r’) may be repre-
exponential at large, and that, when continued to= 0,  sented by a sum of graphg, just as in DP [8]. Each
it give the valuep # 1. In this caseZ will no longer be  graph consists of a union of oriented paths fremto
a polynomial inm, but, since by the inductive argument r’. As before, each bond is counted with weightand
above it is given by a sum of convolutions pfn), its  each loop carries a factgr1). Note that graphs which
continuation tom = 0 will be well defined through its contain a closed loop of oriented bonds are excluded.
Laplace transform representation. For example, we coul&uch contributions cannot occur in DP because of the
take p(n) = p'™" for n = 1. This raises the possibility time ordering. The correspondence with integer flows
of choosing some suitable set of weights for whichor friendly walkers follows as before. The latter pic-
the integer flow problem, at least ih+ 1 dimensions, ture is particularly simple.m walkers begin atr and
is integrable, for example, by Bethe ansatz methodsend atr’. When two or more walkers occupy the same
Unfortunately our results in this direction are, so far,bond, they must flow parallel to each other. Since they
negative. In the case of bond percolation on a diagonatannot form closed loops, they aself-avoiding. More-
square lattice, letZ(x;,xs,...,x,;t) be the partition over, walkers other than those which begin and end at
function under the constraint that the walkers arrive at- and r/, which could also form closed loops, are not
{x1,x2,...,xn} at time¢, the physical region beinfyx; = allowed. Each occupied bond has weightz) as be-

X = --- = x,}. Turning the master equation f&f in  fore, and the separate configurations are counted using
an eigenvalue problem [9] and writing the eigenfunctionBose statistics. G(r, r) is then given by the continu-
Ym(x1,x2,...x,) in the usual Bethe ansatz form, one ation tom = 0 of the partition function. We conclude
gets foryn(x1, x2) = Appelihitok) 4 A, piiktuk) the  that ordinary percolation is equivalent to the continu-
following condition on the amplitudes: ation tom = 0 of a problem ofm oriented self-avoiding

2234



VOLUME 82, NUMBER 11 PHYSICAL REVIEW LETTERS 15 MRcH 1999

walks, with infinite repulsive interactions between antipar- [1] S.R. Broadbent and J. M. Hammersley, Camb. PhiGs.
allel segments on the same bond, but attractive parallel 629 (1957).

interactions. In two dimensions, this is again dual to an [2] See, for example, R. Dickman, Int. J. Mod. Phys4, 271
interesting height model, in which neighboring heights _ (1993).

satisfy|h(R") — h(R)| = m, but local maxima or minima [3] J.L. Cardy and_ R.L. Sugar, J. Phys.18, L423 (1980). _
of h(R) are excluded. For example, the order parameterl#! D:K. Arrowsmith, P. Mason, and J.W. Essam, Physica
of percolation is given by the continuation t@ = 0 of (Amsterdam) 1774, 267 (1991). The proof given in

" ) . . this paper is incomplete, since it relies on the (false)
the ri[?]rtltlondfulnctlon for a screw dislocation of strength assertion that the minimal integer flow is unique for every
m In this model.

: graphg.
_In summary, we have shown that the DP problem is 5] D.K. Arrowsmith and J.W. Essam, Phys. Rev. Le§,
simply related to the integer flow problem, or equivalently 3068 (1990); J. Comb. Theory &, 349 (1994).
that of m bosonic friendly walkers, when suitably contin- [6] P.W. Kasteleyn and E.M. Fortuin, J. Phys. Soc. Jpn.
ued tom = 0. This holds on an arbitrary directed lat- Suppl.26, 11 (1969); Physica (Utrech§7, 536 (1972).
tice in any number of dimensions, and with rather generall7] T. Tsuchiya and M. Katori, J. Phys. Soc. Ji8¥, 1655
weights. It is to be hoped that this correspondence might _ (1998).
provide a new avenue of attack on the unsolved probleml8] J:-W- Essam, Rep. Prog. Phys3, 833 (1980). _
of directed percolation [9] We note that is necessary to make further assumptions
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