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It is shown that in crystals the semiclassical quantization condition for energy levels of electrons
the magnetic field depends on Berry’s phase. When the electron orbit links to the band-contact lin
the metal (i.e., surrounds it), Berry’s phase is nonzero and the quantization condition differs from
commonly used. This result is closely analogous to the Aharonov-Bohm’s effect provided the ba
contact line plays the role of the infinitely thin “solenoid” with the fixed “magnetic flux.” The predicte
effect must manifest itself in oscillation phenomena for a number of metals. [S0031-9007(99)08623
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In 1984 Berry [1] discovered the important result whic
aroused considerable interest in many fields of physi
(see, e.g., [2,3]). According to Berry, if a Hamiltonian of a
quantum system depends on parameters and the parame
undergo adiabatic changes so that they eventually return
the original values, then the wave function of the syste
can acquire the so-called geometrical phase in additi
to the familiar dynamical one. This additional phas
is completely determined by a closed trajectory of th
system in the parameter space and does not depend
details of the temporal evolution. The manifestations
Berry’s phase were found in molecular physics [4], optic
[5], resonance phenomena in nuclear quadrupole syste
[6], etc. As for solid state physics, Zak [7] argued tha
Berry’s results are applicable to an electron moving
a crystal, with the Brillouin zone playing the role of the
parameter space. In this paper, we consider an electron
a metal in the external magnetic fieldH and show that
Berry’s phase appears in the semiclassical quantizat
condition for its energy levels. Interestingly, when th
phase is nonzero, the condition turns out to be differe
from that commonly used [8,9]. Since the semiclassic
energy levels of electrons provide the basis for the analy
of oscillation phenomena in metals [8,10], the Berry’
phase must manifest itself in a number of the well-know
physical effects (e.g., the de Haas–van Alphen effe
the Shubnikov–de Haas effect, etc.) and, hence, can
detected through their experimental investigation. In o
subsequent analysis, we shall assume that the crystal un
study has a center of inversion (most metals fall into th
class of solids). Besides, to elucidate the heart of t
matter, we completely neglect the spin-orbit interactio
and spin of the electron [11].

It is well known (see, e.g., Refs. [9,12]) that the corre
spondence between a semiclassical electron trajectory
crystal (i.e., in the coordinate space) and the orbit in th
space of wave vectorsk (i.e., in the Brillouin zone) exists.
The latter orbit is the intersection of the constant-energ
surface,́ skd ­ const, with the plane,kz ­ const, where
z is the direction of the magnetic fieldH. In the case of
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the closed orbit, the quantization condition for energy le
els of the electron looks like [13,14]

Ss´, kzd ­

√
2pjejH

h̄c

!
sn 1 gd , (1)

whereS is the cross-sectional area of the orbit ink space,n
is the large integer (n . 0), g is the constant (0 # g , 1),
and e is the electron charge. In what follows we sha
consider only those orbits for which probabilities of intra
band and interband magnetic breakdowns are negligib
In other words, the orbit under study does not come clo
to any other trajectory with the samekz, and its shape dif-
fers noticeably from an intersecting one. In this case, a
cording to Zilberman [15] (see also Ref. [9]),g always has
the value

g ­
1
2

. (2)

It is this value that is commonly used in describing osc
lation phenomena in metals [8]. If a magnetic breakdow
occurs,g essentially depends ońandkz [16] but, as noted
above, we shall not consider this situation.

Now we express the quantityg in terms of the Berry’s
phase. Denote the Bloch wave function of the electron
the band with indexl by cklsrd:

cklsrd ­ expsıkrduklsrd ,

whereuklsrd is the periodic function ofr. Let the closed
semiclassical orbit ink space,G, correspond to some
band with l ­ 0, i.e., it is intersection of the surface
´0skd ­ const with the planekz ­ const. Theng is
determined by the formula that follows from Eqs. (42
and (43) of Ref. [17]:

g 2
1
2

­ 2
1

2p

I
G

M0skd
y'skd

dk , (3)

where y' is the absolute value of the projection of th
electron velocityv ­ h̄21=k´0 on the plane of the orbit;
dk is the length of an infinitesimal element ofG; M0 is
© 1999 The American Physical Society 2147
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M0 ­
1
2

kk0j

"√
p̂
m

1 v

!
3 r̂

#
z

jk0l ,

calculated with the use of the Bloch functionck0srd.
Here,m is the electron mass,̂p is the momentum operator
whose diagonal part ismv, and r̂ is the periodic (in
k) part of the coordinate operator̂R in the Crystal
Momentum Representation [9,18],̂R ­ ı=k 1 r̂. It is
well known [9,18] that the contribution of interband
matrix elements ofp̂ and r̂ in M0 is equal to zero
in crystals with the inversion symmetry. This follows
from the fact that electron statesjkll are invariant
under the transformationU ­ KI, where K and I are
the operators of complex conjugation and inversio
respectively. Hence,

M0 ­ fv 3 Vgz ,

whereV is the intraband matrix element ofr̂ which has
the form [see Eq. (44) in Ref. [17] ]

Vskd ­ ı
Z

dr up
k0srd=kuk0srd .

Here the integration is carried out over a unit cell of th
crystal. Substitution ofM0 in Eq. (3) gives

g 2
1
2

­ 2
1

2p

I
G

V dk , (4)

where dk ; dkfiz 3 vgyy', and iz is the unit vector
parallel to H (dk is aligned with the tangent toG and
jdkj ­ dk). The integral in the right-hand side of Eq. (4
is just the Berry’s phase for the orbitG [7] . When this
phase is equal to zero, we arrive at Eq. (2).

The difference of Berry’s phase from zero is usuall
due to degeneracy of electron states [1,19]. In this co
nection, let us list the various possible types of degene
acy of the electron energy bands in crystals with a cen
of inversion. It is common knowledge that the contac
of the bands in a metal can occurat symmetry pointsand
along symmetry axisof its Brillouin zone. Besides, as was
shown by Herring [20], there arelines of an accidental
contact between the bands in crystals. The term “acc
dental” means that the degeneracy of electron states is
caused by their symmetry. Such band-contact lines m
exist in many metals. This statement is easily understo
when one takes into account Herring’s result: If there is
point of an intersection of two energy bands in an axis
symmetry of the Brillouin zone, and the interband matri
element of the velocity operator is nonzero at this poin
then a band-contact line has to pass through the point.
tersection of bands at points in axes are known to occur
many metals [21]. As for the matrix element of the veloc
ity operator, the necessary information on it follows from
the irreducible representations of the appropriate ban
The simple analysis of literature data shows that the lin
2148
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of the accidental contact must exist, for example, in B
Mg, Zn, Cd, Al, and other metals (see Figs. 1a and 1b).

As early as 1962, Blount [22] established properties o
the integral in the right-hand side of Eq. (4). He foun
that, if the contourG surrounds a line of the contact
between the band under study and some other one, and
energies of the bands separate linearly ink in the vicinity
of the line, then Z

G

V dk ­ 6p , (5)

where the sign in the right-hand side of Eq. (5) i
determined by a direction of the integration [23]. If in
the vicinity of the band-contact line the energy splitting o
electron states is quadratic in the distance of the pointk
from the line, then Z

G

V dk ­ 0 . (6)

It should be emphasized that the integrals in Eqs. (5) a
(6) do not depend on the shape and the size of the cont
G. This is not surprising, since the equation

=k 3 Vskd ­ 0 (7)

holds everywhere outside the band-contact line [22] (b
in the lineuk0 is the nonanalytical function ofk, andV
is undefined).

Now we are able to findg for any semiclassical
electron orbitG. The above-mentioned condition of the
linear separation of the energy bands is fulfilled in th
vicinity of any line of the accidental contact [20] and also
near a threefold symmetry axis when the degeneracy

FIG. 1. The schematic sketch of Fermi surfaces for sever
metals with band-contact lines: the third-band electron “lens” o
Zn and Cd (a); the second-band hole “coronet” (“monster”) o
Be and Mg (b); the self-intersecting Fermi surface of graphi
(c). The band-contact lines are shown as the dash-dotted lin
The semiclassical orbits 3 and 4 link to the band-contact lin
while the orbits 1 and 2 do not.
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states occurs in it. IfG links to such a line or an axis (see
e.g., the orbits 3 and 4 in Fig. 1), it follows from Eqs. (4
and (5) that

g ­ 0 (8)

(g ­ 1 and g ­ 0 are equivalent). If the linking is
absent (the orbits 1 and 2 in Fig. 1), a surface wit
boundaryG necessary exists which does not intersect th
band-contact line [for the surface in the case of the orb
1 (or 2) we can take a part of the constant-energy o
shown in Fig. 1]. Transforming the right-hand side o
Eq. (4) into the integral over this surface with the use o
Stokes’ theorem and taking into account Eq. (7), we arriv
at formula (2). Interestingly, Eq. (2) is also obtaine
when G links to an even number of band-contact line
(such a situation takes place, e.g., for any central cro
section of the second-band Fermi surface of Al). In th
case of a symmetry axis different from a threefold on
the separation of the bands is quadratic in a distance
k from the axis and one always has Eq. (2). The sam
result is true for symmetry points in the Brillouin zone
This follows from the same considerations that have be
used in the case of the absence of the linking.

The obtained result forg is closely analogous to the
Aharonov-Bohm’s effect [24]. As pointed out by Bloun
[18], the quantityV is similar to a vector potential for a
magnetic field. Indeed, the phase transformation,

uk0 ! u0
k0 ­ uk0 expfıwskdg , (9)

wherewskd is some regular function ofk, results in the
change ofV:

V ! V0 ­ V 2 =kw , (10)

which is characteristic of a vector potential. Taking int
account Eqs. (5) and (7), we can treat a band-contact l
as an infinitely thin “solenoid” which carries the fixed
flux of the “field” f=k 3 Vg. With this in mind, the
above-mentioned analogy becomes apparent. Althou
the semiclassical electron moving round the band-conta
line does not reach the region in which the “field” is
nonzero, it experiences the vector potentialV that cannot
be made to vanish along the whole length of the orb
linking to the solenoid. The semiclassical electron sta
with the energy determined by Eq. (1) is the standin
wave. If the electron orbit surrounds the band-contact lin
(i.e., the solenoid), the interference picture correspondi
to this wave is shifted as compared to the case wh
the line is absent. This Aharonov-Bohm’s shift manifes
itself as the change ing.

Berry [1] analyzed the geometrical phase of a quantu
system when the orbit of this system in the parameter spa
is located near the point of degeneracy of its states. T
Hamiltonian of the system was assumed to be a Hermiti
matrix which is linear in deviations of the parameter
from the point. Berry presented his results in the pictori
form. He found that such a point can be considered as
,
)

h
e
it

ne
f
f
e

d
s
ss
e

e,
of
e

.
en

t

o
ine

gh
ct

it
te
g
e

ng
en
ts

m
ce
he
an
s
al
the

“monopole” in the parameter space when the geometri
phase is calculated. In other words, the point “generat
the field which coincides in the form with that of the
monopole, and the flux of this field through the contourG

gives the geometrical phase of the system. In crystals w
the inversion symmetry, the Berry’s phase of electro
has the specific features which are due to the fact t
electron states are invariant under the transformationU
(for the definition ofU, see above). First, in any poin
of the Brillouin zone the Hermitian Hamiltonian can b
transformed into the real one. As a consequence,
character of the energy-band splitting near the point
the degeneracy is changed as compared with the gen
case considered by Berry (now the splitting does n
occur along some direction), and the monopole ink space
disappears. Second, the field of Berryf= 3 Vg satisfies
Eqs. (5) and (7), and Berry’s phase does not depend on
shape and thesizeof the electron orbit but is specified by its
topological characteristics (there is a linking or it is absen
Thus, it is valid to say that, instead of the monopole
the solenoids associated with band-contact lines app
in metals.

The valueg can be experimentally determined throug
the investigation of oscillation effects in metals [8]. Sinc
the measurement ofg is easiest to make for semiclassica
orbits corresponding to small extremal cross sections o
Fermi surface, we point out that such orbits exist, e.g.,
beryllium, magnesium, and graphite, and in these met
they link to the band-contact lines (see Fig. 1). In B
and Mg, the accidental contact between the second
third bands occurs in the basal plane of the crystals.
H lies, e.g., in this plane also, Eq. (8) must be valid f
the orbits on the “necks” of the second-band hole coron
(or monster). It should be noted that in Zn and Cd whic
are akin, in many respects, to Be and Mg the same ba
contact line is located in the third-band electron lens a
does not link to the semiclassical orbits (therefore,
this caseg ­ 1y2). In graphite the degeneracy of two
bands takes place along the vertical edgeHKH of the
Brillouin zone (i.e., along the threefold symmetry axis
Thus Eq. (8) is expected to be true for the extremal or
surrounding the pointK (see orbit 4 in Fig. 1).

In summary, we have shown that in quantizatio
condition (1) g is equal to zero when ink space the
closed electron orbit associated with a certain energy ba
´0skd surrounds the line of degeneracy of this band wi
some other one. This result depends neither on the fo
of ´0skd in the neighborhood of the orbit nor on the shap
and the size of the electron trajectory and is topologic
in nature. It is due to the fact that the electron orbitlinks
to the band-contact line which is the line of singularitie
for the Bloch wave functions. If the linking is absent, th
conventional result,g ­ 1y2, holds. Measurements ofg

can provide a possibility of detecting band-contact lin
in metals (beryllium, magnesium, and graphite appear
have considerable promise on this point).
2149
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