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Manifestation of Berry’s Phase in Metal Physics
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It is shown that in crystals the semiclassical quantization condition for energy levels of electrons in
the magnetic field depends on Berry's phase. When the electron orbit links to the band-contact line of
the metal (i.e., surrounds it), Berry’s phase is nonzero and the quantization condition differs from that
commonly used. This result is closely analogous to the Aharonov-Bohm’s effect provided the band-
contact line plays the role of the infinitely thin “solenoid” with the fixed “magnetic flux.” The predicted
effect must manifest itself in oscillation phenomena for a number of metals. [S0031-9007(99)08623-8]

PACS numbers: 71.70.Di, 03.65.Bz

In 1984 Berry [1] discovered the important result which the closed orbit, the quantization condition for energy lev-
aroused considerable interest in many fields of physicels of the electron looks like [13,14]
(see, e.g., [2,3]). According to Berry, if a Hamiltonian of a
quantum system depends on parameters and the parameters S(e,k.) = (27T|6|H> (n+7y), 1)
undergo adiabatic changes so that they eventually return to hic

the original values, then the wave function of the system, o a¢ is the cross-sectional area of the orbikispacen
can acquire the so-called geometrical phase in additiop {,q large integen( > 0), y is the constanf = y < 1)

to the familiar dynamical one. This additional phase,nq, is the electron charge. In what follows we shall

is completely determined by a closed trajectory of the onsiger only those orbits for which probabilities of intra-
system in the parameter space and does not depend

; ) ; . nd and interband magnetic breakdowns are negligible.
details of the temporal evolution. The manifestations o

) : ) .~ In other words, the orbit under study does not come close
Berry's phase were found in molecular physics [4], opticS oy gther trajectory with the sante, and its shape dif-

[5], resonance phenomena in nuclear quadrupole systengq oticeably from an intersecting one. In this case, ac-
[6], etc. As for solid state physics, Zak [7] argued thatcording to Zilberman [15] (see also Ref. [9})always has

Berry's results are applicable to an electron moving ingq yalue

a crystal, with the Brillouin zone playing the role of the
parameter space. In this paper, we consider an electron of _ 1 2
a metal in the external magnetic fiel and show that Y= 5

Berry's phase appears in the semiclassical quantization is this value that is commonly used in describing oscil-

condition for its energy levels. Interestingly, when thelation phenomena in metals [8]. If a magnetic breakdown

]ycahasetzhlstnonzero,lthe cc()jncgtg)n tg_rns OtLr’]t to be_ ?'ﬁer_engccurs,y essentially depends erandk, [16] but, as noted
rom that commonly used [8,9]. Since the semiclassica bove, we shall not consider this situation.

energy levels of electrons provide the basis for the analysis Now we express the quantity in terms of the Berry's

of oscillation ph_enomena 'in metals [8,10], the Berry’Sphase. Denote the Bloch wave function of the electron in
phase must manifest itself in a number of the well-known[he band with index by ¢i;(r):

physical effects (e.g., the de Haas—van Alphen effect,
the Shubnikov—de Haas effect, etc.) and, hence, can be e (r) = explikr)uy (r),

detected through their experimental investigation. In our _ o _

subsequent analysis, we shall assume that the crystal und@pereuy (r) is the periodic function of. Let the closed

study has a center of inversion (most metals fall into thissémiclassical orbit ink space,I’, correspond to some
class of solids). Besides, to elucidate the heart of th®and with/ =0, i.e., it is intersection of the surface
matter, we completely neglect the spin-orbit interactiongo(k) = const with the planek. = const. Theny is

and spin of the electron [11]. determined by the formula that follows from Egs. (42)
It is well known (see, e.g., Refs. [9,12]) that the corre-and (43) of Ref. [17]:

spondence between a semiclassical electron trajectory in a 1 1 My(K)

crystal (i.e., in the coordinate space) and the orbit in the y— —=—"—¢ ——dk, 3)

space of wave vectols (i.e., in the Brillouin zone) exists. 2 2m Jr vi(K)

The latter orbit is the intersection of the constant-energyhere v, is the absolute value of the projection of the
surface,s(k) = const, with the planes, = const, where electron velocityy = /i~ !V gq on the plane of the orbit;
z is the direction of the magnetic fieH. In the case of d«x is the length of an infinitesimal element bf M, is
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the matrix element, of the accidental contact must exist, for example, in Be,
| . Mg, Zn, Cd, Al, and other metals (see Figs. 1a and 1b).

My = — (kO [(3 + V) X f'j| |kO), As early as 1962, Blount [22] established properties of

2 m z the integral in the right-hand side of Eq. (4). He found

that, if the contourl’ surrounds a line of the contact
between the band under study and some other one, and the
energies of the bands separate linearlkim the vicinity

of the line, then

calculated with the use of the Bloch functiaf(r).
Here,m is the electron mass, is the momentum operator
whose diagonal part iszv, and £ is the periodic (in
k) part of the coordinate operatdR in the Crystal
Momentum Representation [9,18R = iV + . It is
well known [9,18] that the contribution of interband fﬂdk ==*7, (5)
matrix elements ofp and & in M, is equal to zero r

in crystals with the inversion symmetry. This follows where the sign in the right-hand side of Eq. (5) is
from the fact that electron statekk/) are invariant determined by a direction of the integration [23]. If in
under the transformatiol’ = KI, where K and I are the vicinity of the band-contact line the energy splitting of
the operators of complex conjugation and inversionglectron states is quadratic in the distance of the point

respectively. Hence, from the line, then
My =[v X Q],,

0o =lv >l [Qdk=0. 6)
whereQ is the intraband matrix element éfwhich has r
the form [see Eq. (44) in Ref. [17]] It should be emphasized that the integrals in Egs. (5) and

(6) do not depend on the shape and the size of the contour
Qk) = zf dr uy o (r)Viuko(r) . I'. This is not surprising, since the equation

Here the integration is carried out over a unit cell of the Vi X Q(k) =0 (1)

crystal. Substitution oM, in Eq. (3) gives holds everywhere outside the band-contact line [22] (but

1 1 in the line uyo is the nonanalytical function df, and {2
YT 5T _Ej{rﬂdk’ @ s undefined).

. o ) Now we are able to findy for any semiclassical
where dk = d«li; X v]/v,, andi. is the unit vector gjectron orbitl. The above-mentioned condition of the
parallel toH (dk is aligned with the tangent 6" and |inear separation of the energy bands is fulfilled in the
|dk| = d«). The integral in the right-hand side of Eq. (4) yicinity of any line of the accidental contact [20] and also

is just the Berry’s phase for the orhit [7] . When this  neay g threefold symmetry axis when the degeneracy of
phase is equal to zero, we arrive at Eq. (2).

The difference of Berry’s phase from zero is usually

due to degeneracy of electron states [1,19]. In this con-
nection, let us list the various possible types of degener-
acy of the electron energy bands in crystals with a center
of inversion. It is common knowledge that the contact a

of the bands in a metal can occatr symmetry pointand
along symmetry axigf its Brillouin zone. Besides, as was
shown by Herring [20], there arénes of an accidental
contactbetween the bands in crystals. The term “acci-
dental” means that the degeneracy of electron states is not
caused by their symmetry. Such band-contact lines must
exist in many metals. This statement is easily understood
when one takes into account Herring’s result: If there is a
point of an intersection of two energy bands in an axis of
symmetry of the Brillouin zone, and the interband matrix
element of the velocity operator is nonzero at this point,
then a band-contact line has to pass through the point. IrFIG. 1. The schematic sketch of Fermi surfaces for several
tersection of bands at points in axes are known to occur imetals with band-contact lines: the third-band electron “lens” of
many metals [21]. As for the matrix element of the veloc-Zn @nd Cd (a); the second-band hole “coronet” (‘monster”) of

it tor. th inf i it foll £ Be and Mg (b); the self-intersecting Fermi surface of graphite
Ity operator, the necessary information on it follows IT0M ¢y - The hand-contact lines are shown as the dash-dotted lines.

the irr_educible rep_resentations of the appropriate ba_ndﬁ-he semiclassical orbits 3 and 4 link to the band-contact lines
The simple analysis of literature data shows that the lineghile the orbits 1 and 2 do not.

b
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states occurs in it. If" links to such a line or an axis (see, “monopole” in the parameter space when the geometrical
e.g., the orbits 3 and 4 in Fig. 1), it follows from Egs. (4) phase is calculated. In other words, the point “generates”
and (5) that the field which coincides in the form with that of the
y =0 8) monopole, and the flux of this field through the contbur
gives the geometrical phase of the system. In crystals with
(y =1 and y = 0 are equivalent). If the linking is the inversion symmetry, the Berry’s phase of electrons
absent (the orbits 1 and 2 in Fig. 1), a surface withhas the specific features which are due to the fact that
boundaryl’ necessary exists which does not intersect thelectron states are invariant under the transformation
band-contact line [for the surface in the case of the orbi{for the definition ofU, see above). First, in any point
1 (or 2) we can take a part of the constant-energy onef the Brillouin zone the Hermitian Hamiltonian can be
shown in Fig. 1]. Transforming the right-hand side of transformed into the real one. As a consequence, the
Eq. (4) into the integral over this surface with the use ofcharacter of the energy-band splitting near the point of
Stokes’ theorem and taking into account Eq. (7), we arriveéhe degeneracy is changed as compared with the general
at formula (2). Interestingly, Eq. (2) is also obtainedcase considered by Berry (now the splitting does not
when I' links to an even number of band-contact linesoccur along some direction), and the monopolk ispace
(such a situation takes place, e.g., for any central crosdisappears. Second, the field of BefFy X Q] satisfies
section of the second-band Fermi surface of Al). In theEgs. (5) and (7), and Berry’'s phase does not depend on the
case of a symmetry axis different from a threefold oneshape and theizeof the electron orbit but is specified by its
the separation of the bands is quadratic in a distance dbpological characteristics (there is a linking or it is absent).
k from the axis and one always has Eq. (2). The sam@&hus, it is valid to say that, instead of the monopoles,
result is true for symmetry points in the Brillouin zone. the solenoids associated with band-contact lines appear
This follows from the same considerations that have beein metals.
used in the case of the absence of the linking. The valuey can be experimentally determined through
The obtained result foly is closely analogous to the the investigation of oscillation effects in metals [8]. Since
Aharonov-Bohm's effect [24]. As pointed out by Blount the measurement of is easiest to make for semiclassical
[18], the quantityQ is similar to a vector potential for a orbits corresponding to small extremal cross sections of a
magnetic field. Indeed, the phase transformation, Fermi surface, we point out that such orbits exist, e.g., in
;o beryllium, magnesium, and graphite, and in these metals
ko = theo = txo Xfrg (K], ©) they link to the band-contact lines (see Fig. 1). In Be
where ¢ (k) is some regular function dt, results in the and Mg, the accidental contact between the second and
change of(}: third bands occurs in the basal plane of the crystals. If
;o H lies, e.g., in this plane also, Eq. (8) must be valid for
Q=0 =0 - Ve, (10) the orbits on the “necks” of the second-band hole coronet
which is characteristic of a vector potential. Taking into (or monster). It should be noted that in Zn and Cd which
account Egs. (5) and (7), we can treat a band-contact linare akin, in many respects, to Be and Mg the same band-
as an infinitely thin “solenoid” which carries the fixed contact line is located in the third-band electron lens and
flux of the “field” [V, X ©]. With this in mind, the does not link to the semiclassical orbits (therefore, in
above-mentioned analogy becomes apparent. Althougthis casey = 1/2). In graphite the degeneracy of two
the semiclassical electron moving round the band-contadiands takes place along the vertical eddi¢H of the
line does not reach the region in which the “field” is Brillouin zone (i.e., along the threefold symmetry axis).
nonzero, it experiences the vector potenfiathat cannot Thus Eq. (8) is expected to be true for the extremal orbit
be made to vanish along the whole length of the orbitsurrounding the poiriK (see orbit 4 in Fig. 1).
linking to the solenoid. The semiclassical electron state In summary, we have shown that in quantization
with the energy determined by Eq. (1) is the standingcondition (1) v is equal to zero when ik space the
wave. If the electron orbit surrounds the band-contact linelosed electron orbit associated with a certain energy band
(i.e., the solenoid), the interference picture corresponding,(k) surrounds the line of degeneracy of this band with
to this wave is shifted as compared to the case whesome other one. This result depends neither on the form
the line is absent. This Aharonov-Bohm'’s shift manifestsof g¢(k) in the neighborhood of the orbit nor on the shape
itself as the change in. and the size of the electron trajectory and is topological
Berry [1] analyzed the geometrical phase of a quantunin nature. It is due to the fact that the electron ofinks
system when the orbit of this system in the parameter spade the band-contact line which is the line of singularities
is located near the point of degeneracy of its states. Thir the Bloch wave functions. If the linking is absent, the
Hamiltonian of the system was assumed to be a Hermitianonventional resulty = 1/2, holds. Measurements of
matrix which is linear in deviations of the parameterscan provide a possibility of detecting band-contact lines
from the point. Berry presented his results in the pictorialin metals (beryllium, magnesium, and graphite appear to
form. He found that such a point can be considered as thieave considerable promise on this point).
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