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Successful Test of a Seamless van der Waals Density Functional
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We report the first microscopic (RPA) calculation of the van der Waals interaction between two self-
consistent jellium metal slabs—from asymptotic separations down to full contact. We also present the
first test of a recently proposed seamless van der Waals density functional, which reproduces the RPA
results satisfactorily at all separations. [S0031-9007(99)08626-3]

PACS numbers: 71.15.Mb, 34.20.-b, 71.45.Gm

Dispersion or van der Waals (vdW) forces play a crucialz(¥). Our broad philosophy for van der Waals function-
role in many situations. Examples occur in the “docking”als is to use exact, or asymptotically exact, correlation en-
of pharmaceutical or biological compounds, in colloidalergy expressions involving susceptibilities/polarizabilities.
systems, in noble-gas chemistry, and in soft matter genet-ocal approximations for the susceptibility [12] or polar-
ally. These systems typically contain so many electrongzability [13] then give the desired functionals. Used with
that traditional quantum methods for predicting forces areCoulomb perturbation theory [14], this approach can yield
unworkable. Local and gradient density functional meth-good vdW energies for nonoverlapping pairs of atoms [4],
ods, usually employed for large systems, cannot reprodudeut only if a drastic cutoff is imposed [1,2].
the asymptotic vdW interaction. New algorithms for ef- Our nonperturbative, seamless vdW functional [6,7]
ficient calculation of vdW forces have therefore been theallows overlap and is only loosely related to that just
goal of many recent works [1-7]. While good numbersdescribed. It starts from the exact adiabatic connection-
have been obtained for the case of widely separated sufluctuation dissipation (ACFD) formula
systems, a practical demonstration has not yet been given i 1 o
of a “seamless” density-based method which works at all E. = —— / d)t[ ds Tr{[Veour * (Xas — Xo0s)]
separations. This must include the difficult case of large 27 Jo 0

systems in the overlapped and intermediate regimes, where (1)
neither traditional local-density nor existing asymptotic,for the correlation energy of an inhomogeneous sys-
perturbative van der Waals approaches angriori reli- tem [8,15,16]. Herey,, = x.(7,7,w = is) is the

able, and where vdW forces are inextricably mixed withkKubo density-density response function of the whole
other types of force. This Letter addresses this problemrgystem, with an additional external potential added so
at the random-phase approximation (RPA) level, using &s to maintain the trueA(= 1) ground-state density
new, numerically exact calculation to validate a seamlesf the presence of a modified electron-electron interac-
van der Waals density functional proposed recently [6,7]tion AVcow = Ae?/|7 — 7|. In (1), [f = g] (7, 7)) =

We treat a pair of parallel smooth self-consistent jeIIiumff(a FNg(#", 7)) d7" and Trf = [ f(7, ;)Qr_ A direct
slabs, and find that the correlation energies from these twgca| density approximation [12] for,, in (1) yields

methods show rather good agreement at all slab separgre LDA [7] and thus misses the vdW interaction. The
tions, from complete overlap to the asymptotic van definteracting dynamic respongg, can, however, be related
Waals regime. to the independent-particle (Kohn-Sham) inhomogeneous

We will first motivate the seamless functional used heredynamic responsgo; by the exact Dyson_”ke screening
We will then describe our RPA slab calculation, which is equation [17]

novel in its use of smooth self-consistent density profiles at .
all separations. (Previous detailed nonasymptotic van der ~ XA — Xos + Xos * (AVeour + freas) * Xas- (2)
Waals calculations for the two-slab problem used artificiaHere fxcas = fxea(F.7,w = is) is the exchange-
hard walls. See, e.g., [8,9]. They were thus inapplicabl€orrelation kernel of the inhomogeneous system. While
to overlapped regimes.) Finally, we will give the resultsfxc is not known, some information is available for the
from our seamless functional, and compare them with th&niform electron gas [17-19]. Our seamless functional
exact numerical RPA results, and also with asymptotid6,7] now follows from two distinct approximations.
semianalytic results from electron hydrodynamics. (@) The Kohn-Sham independent-electron response is
Motivation of seamless vdW functionalThe well-  approximated as [7]
known local density (LDA)_[lO] and generalized g_radient Xos = xo(F, 7, is)
(GGA) [11] approaches fail to produce the vdW interac-
tion at large separations because the relevant correlations
are very nonlocal functionals of the ground-state density 3)

=~ %r . %r/agom(no =a(r, ¥, |IF — r'l,w = is).
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Here the inputs are the actual inhomogeneous ground-state 0.03 ; ; ;
densityn(7) and the polarization responsg"(n, |# —
#'|, o = is) of a uniform gas of density,. Without such
an approximation one would need to calculate many one-
electron wave functions to obtaipy, for the inhomoge-
neous system.

(b) The xc kernel is locally approximated also:

0.02

n(z) (a.u.)

FrealE,7is) = g = A7), 17 = r'l, 0 = is], o
(@)
and here the frequency anddependence could also be 0.00 - 0 - 5 m - 0
simplified [6,7]. The average density used in (3) and 2 (au)
4) is detailed below [7].
( )Despite the local r1[a1ure of approximations (a) and (bFG' 1-D E'%C”O" dgnsgcy g folgn separgéig@_j 20 (””brgkek’]‘_
above, the essential long-ranged, nonlocal aspect of tl}%?t)e'd ”ng) a.u. (dashe €), and> =12au. (das
vdW interaction is retained because the nonlocality of the '
real-space screening integral equation (2) is retained in fullge nyially that described in Ref. [21]. We then solved
Nevertheless, our method still has a local-density charactey, screening equation (2) in which the convolutions
and should not be expected to give significantly bettegmmy a separate linear 1D integral equationzirspace,
results than th? LDA in compact systems where IO_”gTor each value of interaction strengiq of frequencyis,
ranged correlations cannot occur. Gradient correctiong ¢ of surface-parallel wave vectgy. This was treated
COUIS be added for |kmp.roveme_nt n these Cﬁsesﬁ_ tby real-space discretization, resulting in a set of linear
The present work aims to investigate the efficacy Ofgq ations (of dimension up to 250 for the largest slab
approximation (a) for the calculation of van der Waalsseparatiorl) = 12 a.u.) which we solved by LU decom-
energies, and accordingly we S'”?p.'yf%‘ = 0. .(W€ wil position. Equation (1) was then computed by discretizing
describe elsewhere the very minimal numerical changeg,o \ and g integrations, and also theandz’ inte-

caused by inclusion of a static local xc kernel.) Thus We§rations implied by the convolution and trace. Typical

work here at the RPA level, as indeed did most workergy, g meters used werdz — 0.15 a.u., dg; = 0.05 a.u.,

in the early days of gradient fun_ctlonal_s. An advantege 95 = 0.1 a.u., dA = 0.3. The D-dependent part of the
that we can compare our functional with our numericallyyog \ting RPA correlation energy per unit area is shown
exact RPA solutions. by the open circles in Fig. 2. The RPA correlation

Ground state ‘?'ef?s“y celculationTWe carried out our energy of two isolated slabs has been subtracted to give
tests upon twin jellium withry; = 2.07 a.u.. Our model ESoS = [E(L + D + L) — 2E.(L)]/A This RPA

c

has two parallel uniform slabs of positive background,qmmity measures theross-correlationenergy per unit

each of thicknesg =5 a.u., with an adjustable spacing 5re, hetween the slabs. For comparison, the same cor-

D between their nearest edges. A neutralizing electropg)ation energy quantitge™ calculated in the ordinary
gas is added, resulting in a smooth ground-state electron

density profile n(z) and Kohn-Sham potentiaVks(z)
which we solved in the self-consistent LDA [20]. We did
this for a variety of separation® ranging from zero to
12 a.u. See Fig. 1, in which three cases are shawns

0 (complete contact forming a single slab of widiha.u.,
unbroken line);D = 6 a.u. (partial overlap, dashed line);
and D = 12 a.u. (negligible overlap of electron clouds,

'
iy

5))/A (107 a.u.)
[

dash-dotted line). =50/ -~ Hydro L=5+5 :
Numerically exact RPA calculation-To find the & Iy ——~ 2DEG

. . . a o ! —-— 2Semi ]
RPA correlation energy of this system we first calcu- Sad o * ORPA i
lated, for each value ofD, the independent-particle T ,’/ * IGADEL ]
(“Kohn-Sham”) density-density response functigp, = . % / /
xks(q|.z.2'» @ = is) for particles moving in the ground- ' = ; 5 2 6 8 0 s
state potentiaVks(z). The coordinates used are appropri- D (a.u.)

=7 - -2 [ 72
ate to slab geometrnyf (s, 7', w) = (2) jd q1 Xpx FIG. 2. Cross-correlation energy per unit area. Circles: Full

. ) _ / / H > —

(z[?x(x Ax) +ay(y = Y)Df(qn.z.2 ",”) W'th 4l =  RPA. Asterisks: Seamless vdW functional. Unbroken line:
qxX T qy). _The method of (?alcmatlon [nVOlVed NU- | DA using RPA uniform-gag.. Dashed lines: Hydrodynamic
merical solution of 1D Schrddinger equations, and waspproximations.
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LDA is shown as an unbroken line in Fig. 2 [22]. It is total correlation energies. Nevertheless the calculations
clear that the LDA cross correlation disappears once thare reasonably converged, with a typical error bar, judged
ground-state densities no longer overlap, whereas in thigom variation of the above parameters, of less than half
the full RPA ES™ decays much more slowly. the size of the open circles as shown in Fig. 2.

These full RPA vdW calculations were substantial, but Evaluation of seamless vdW functioralNext we
the screening part of the problem was made much morevaluated our approximate vdW functional for the same
efficient by a rearrangement of Eq. (2) so that evaluatiorsystem. The particular form of local approximation, cho-
of yxs was the time-limiting step. The cross-correlationsen to implement approximation (a) above in slab coordi-
energies plotted here are small differences of much Iar|ge1ates, was

. . = 92 ,
xks (2.2, q).is) = xra Nz, 2 qy is) = [V - V’ahom anz = (m + qﬁ)aﬂosm[anA(Z,Z/)JZ =2, q, @ = is],
(5)

where the average ground-state density is

94 (2, 7)) = exp{ p ! /z In[n(z")] dz”j|. (6)
0 — Z z

In (5), the dynamic polarization response of a homogeneous gas of independent electrons is

. 1 * 1 ; . .
aks(n,z,qis) = — | dg. X —— x"™(n,Vq? + qi ,is) expliq.2) 7
27 ) -

a2 + qj

where y“"4(n, ¢, w = is)is the Lindhard function evalu—| pled gases, and since the hydrodynamic response func-
ated at imaginary frequency [23]. tion has poles at these frequencies (with no cuts) one
The choice of the particular local approximations (5)—can show from (1) that th& = 0 K cross-correlation en-
(7) is not unique but has the following advantages: (i) Theergy is the change in total zero-point ene@yq” fiw;/2
double-gradient form in (5) ensures charge conservationf these modes, due to proximity of the slabs. In this
[4]; and (ii) the “integral geometrical Ansatz” (6) ensuresway one shows analytically th&:* = —0.00501,/4 X
[7] that no unphysical charge flow occurs across a/27N,e2/m D~5/2 for two 2D electron gases with sepa-
vacuum region despite a long-ranged tail in the real-spaceation D, whereN, is the areal electron number density
Lindhard function. The use of (5)—(7), instead of theof each gas. This is shown by the long-dashed curve in
numerically exact calculation gfgxs from wave functions Fig. 2. Similarly by using electromagnetic boundary con-
as in our RPA calculation, reduced the computation timalitions at each jellium edge one shows for semi-infinite
by a large factor, especially for highgj values. slabs thaE™ = —0.01105(fiwp/2+/2)D ~* (dot-dashed
Comparison of seamless functional with full RRPA. curve) wheravp/+/2 is the surface plasma frequency. For
Our local-density-RPA procedure [Egs. (6), (5), (2), andjellium slabs of finite thicknes, no analytic expression
(1) in that order] provides an explicit path to the correla-emerges, but our simple numerical hydrodynamic calcu-
tion energy, starting with the ground-state density) as  lations gave the dashed curve in Fig. 2 (with= 5 a.u.
the only system-specific input. We thus have a genuingé match our microscopic results). The nonhydrodynamic
and highly nonlocal density functional. Itis quite success£* values (symbols), both from our new functional and
ful in reproducing the cross-correlation energy betweenhe RPA, are clearly similar to these hydrodynamic results
two jellium slabs at all separations, as seen from the stait large separations. In this regime of very small resid-
symbols in Fig. 2 compared with the RPA (open circles).ual differences in a large total correlation energy, our nu-
As discussed above for compact systems, the quality aherics are subject to noise. In this well-separated regime
the results in the fully overlapped regime is comparable tmne would in practice want to use asymptotic results such
the LDA, though the error in the present case is in the opas the present (or more sophisticated) hydrodynamic ones.
posite direction. In the separated and weakly overlappetiowever, it is important that we have demonstrated the
cases, however, the present functional is dramatically beseamless quality of our functional: the same prescription
ter than the LDA. works at all separations. Itis in the weakly to moderately
Comparison with hydrodynamic theortTo aid the overlapped cases (heies D =< 8) that our methods are
understanding of our vdW results at large separation, wékely to be most useful.
also used dispersionless (zero-pressure) electron-gas hy-Note that, in contrast to some asymptotic vdW func-
drodynamics, with self-consistent Poisson’s equation. Weional calculations in use for small highly confined systems
calculated plasmon dispersion relations(g)) for cou-  such as atoms [1,2}ye have used no low-density cutoff in
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our new functional. We believe this is not needed here also acknowledge a grant from the Australian Research
for two reasons. (A) At large separatiofs the coupled Council and support from the Queensland Parallel Super-
plasmon motions which dominat&™* occur in thexy = computing Facility.
directions where there is no confinement. Their disper-

sion can be shown to follow from Poisson’s equation and

a form of thef-sum rule for the independent-particle re-
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