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Renormalized SO(5) Symmetry in Ladders with Next-Nearest-Neighbor Hopping
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We study the occurrence of SO(5) symmetry in the low-energy sector of two-chain Hubbard-like
systems by analyzing the flow of the running couplings (g-ology) under renormalization group in the
weak-interaction limit. It is shown that SO(5) is asymptotically restored for low energies for rather
general parameters of the bare Hamiltonian. This holds also with the inclusion of a next-neares
neighbor hopping which explicitly breaks particle-hole symmetry if one accounts for a different single-
particle weight for the quasiparticles of the two bands of the system. The physical significance of thi
renormalization SO(5) symmetry is discussed. [S0031-9007(99)08601-9]
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Recently, it was shown that both the two-dimension
(2D) Hubbard and thet-J model enjoy an approximate
SO(5) symmetry [1,2], unifying antiferromagnetism (AF
with d-wave superconductivity (dSC) [3]. This symmetry
principle gives a definite microscopic description o
the AF ! dSC transition as the chemical potential i
varied. From the SO(5) multiplet structure verified b
exact cluster diagonalization, one can see how the SO
superspin vector is rotated from the AF to dSC directio
and can show that, at the critical chemical potentia
the energy barrierDE between AF and dSC states
is an order of magnitude smallers,Jy10d than the
exchange couplingJ, i.e., the natural parameter in the
model. This finding is clearly of importance: While it
is well established that botht-J and Hubbard models
reproduce very successfully the “high”- and “medium”
energy physics of orderU andJ , t2yU of the cuprates,
the low-energy content of order of the superconductin
gap has so far eluded theoretical investigations. T
varianceDE of the multiplet splitting is a well-defined
measure of “how good” the SO(5) symmetry is realized
the bare model considered for a given system size. It th
seems natural to ask whether this deviation from exa
SO(5) symmetry remains small or even vanishes if on
goes to the infinite-volume limit and to lower energies
i.e., under renormalization-group (RG) flow.

In this Letter, we demonstrate that the low-energ
regime of rather general Hubbard-type models, includin
finite-ranged interactions (provided they are weak) b
tween one and two dimensions, i.e., ladders [4], is inde
dominated by the scaling towards an SO(5)-invaria
model. This is a remarkable result, since it is the fir
model which is non-SO(5) invariant at the bare startin
(microscopic) level, where the existence of SO(5) sym
metry is proven for low energies. We first show tha
this holds for theparticle holesphd symmetric case with
nearest-neighbor hopping only [5,6]. In addition, w
consider the effect of a next-nearest-neighbor (intracha
hoppingt2 which produces an explicit breaking of theph
symmetry. We demonstrate that, also in this case, t
system becomes SO(5) symmetric for low energies (
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least up to ordert2
2) provided one considers arenormal-

ized SO(5) transformation [7] which takes into accoun
a different renormalization of the single-particle weigh
of the bonding and antibonding bands. This result is o
importance because of two points: (i) It sheds light on th
effect of the longer-range hoppings in general on the fa
of SO(5) symmetry. This issue is also under intensiv
discussion in the case of 2D systems [2,8,9]:t2 is known
to strongly affect AF correlations and the Fermi-surfac
topology in the cuprates. (ii) In addition, the renormalize
SO(5) representation, introduced here for the first tim
is likely to be realized in a significantly larger class o
physical systems allowing, for example, for asymmetrie
in the AF and dSC phases, such as different transitio
temperatures.

Specifically, we consider two coupled chains in th
band representation with total “low-energy” actionS ­
S0 1 SI , where the noninteracting partS0 can be written
at a given pointt in the RG flow as

S0 ­
X
k,s

C
y
ksZ21

k'tfiv 2 nVk'tkkgCks . (1)

Here, Cks sCy
ksd are Grassmann variables associate

with the destruction (creation) of a fermion, ands is
the spin. k ; hiv, k', kk, nj is a shorthand notation
for the Matsubara frequencyiv, and the momentum
perpendicularfk' ­ s0, pdg and parallelskkd to the chain
direction. The latter momentum is measured relative
the Fermi pointnkF,k'

associated with the “band”k'

with Fermi velocity Vk't , and n ­ 61 refers to right-
and left-moving fermions, respectively. This action i
restricted to modes withjkkj , L with L ­ L0e2t. This
weak-coupling RG method has previously been applie
to obtain the phase diagram of the two-chain Hubba
model [4]. In order to study the occurrence of SO(5
symmetry in Hubbard-like models, it is convenient to
rewrite the interaction partSI of the action in terms of
SO(5)-invariant and SO(5)-breaking terms [10]. Definin
the SO(5) spinor as in Ref. [11],

Ck ; hCk", Ck#, 2cosk'C
y

k"
, 2cosk'C

y

k#
jt , (2)
© 1999 The American Physical Society 2115
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where k stands for h2iv, 2k' 1 p , 2kk, nj and the
interacting actionSI can be shown to be expressable i
terms of the4 3 4 charge-rotation Dirac matrixG15 [11]:

SI ­
1

2bN

X
k1,...,k4

0
g0s· · ·dCy

k1
f1 1 as· · ·dG15gCk2

3 C
y
k3

f1 1 bs· · ·dG15gCk4 1 sk1, k3d $ sk2, k4d .

(3)
Here, s· · ·d represents the sets of variables on whic
the couplingsg0, a, and b depend. As usual, each
coupling can be considered as dependent only
the Fermi momenta closest to where the correspon
ing process takes place, i.e., thes· · ·d are labeled by
sn1, k'1; n2, k'2 j n3, k'3; n4, k'4d. Moreover,

P0 de-
notes a sum with conservation of frequency and lattic
momentum.

The SO(5) symmetric partS
s0d
I of SI is given by Eq. (3)

with as· · ·d ­ bs· · ·d ­ 0 [12,13]. For a general SO(5)-
invariant actionS

s0d
I , it can be shown that one can re

strict oneself to the seven independent couplingsg
s4d
0 ,

g
s4;02pd
0 , g

s2d
0 , g

s2;02pd
0 , g

s1d
0 , g

s1t,02pd
0 , and g

s1,02pd
0 , de-

fined in analogy with theg-ology formalism [14–16]. The
SO(5)-breaking termS

s1d
I of the interacting action with

ph symmetry can be demonstrated to be the term pr
portional tog0s· · ·das· · ·dbs· · ·d in (3), and thus we define
the corresponding SO(5)-breaking couplings asg1s· · ·d ;
g0s· · ·das· · ·dbs· · ·d. In this case, we can restrict ourselve
to only five independent couplings (it can be shown that th
others are redundant), namely,g

s4d
1 , g

s2d
1 , g

s1d
1 , g

s1t;02pd
1 , and

g
s1;02pd
1 [14]. At half-filling and with t2 ­ 0, the Hamil-

tonian is ph symmetric, since the velocities of the two
bandsVk'­0 andVk'­p are equal. Since theph-breaking
terms in (3) are proportional toG15, one can set in the
ph-symmetric caseas· · ·d ­ 2bs· · ·d, and consider the RG
flow of the couplingsg

s d
0 andg

s d
1 only.

To begin with, we have evaluated the RG equations f
the g

s d
0 and g

s d
1 couplings [16] at one loop by using the

standardg-ology procedure (cf. Refs. [4,15]), including
the interband umklapp processes. As already sho
for the two-chain case [4], the system always flows
strong coupling, i.e., theg’s diverge at a value oft ­
tc ~ 1ygst ­ 0d, gstd being the scale of the interaction
[proportional to the maximum of allg

s d
i std]. This signals

an instability towards some gapped state. Neverthele
the striking new result is that, even in non-SO(5)-invaria
system, such as, e.g., the Hubbard model, the SO(
invariant couplingsg

s d
0 dominate with respect to the

symmetry-breaking couplingsg
s d
1 , when approachingtc

[17]. This can be seen from the ratio of the maxima o
these two types of couplings,g

smaxd
1 stdyg

smaxd
0 std, going

to zero, as shown in the inset of Fig. 1. Here,g
smaxd
i std is

defined as the largest absolute value, and thus the sc
of the couplings of a given typei si ­ 0, 1, phd at a
given t. This result implies thatthe low-energy modes
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FIG. 1. RG flow of the SO(5)-breaking terms3g
smaxd
1 yg

smaxd
0

(solid line), 3g
smaxd
ph yg

smaxd
0 (dashed line),DVtyDVt­0 (dot-

ted line), andDZ21
t (dash-dotted line), as a function oft ­

2logsLyL0d for U ­ 1, t ­ t' ­ 1, t2 ­ 0.5, and half-filling.
Here, DVt ­ V0t 2 Vpt , and DZ21

t ; fsZ21
0t yZ21

pt d2 2

1gysV0t­0yVpt­0 2 1d. The inset shows3g
smaxd
1 yg

smaxd
0 vs tU

for t2 ­ 0.

of the system can be described by an effectiveSO(5)-
symmetric action, at least for sufficiently smallgst ­ 0d
[5,17]. In fact, we have verified that this occurs fo
very general values of the Hamiltonian, including longe
ranged interactions.

A next-nearest-neighbor hoppingt2 breaksph sym-
metry explicitly and requires the introduction of aph-
breaking interactionS

sphd
I . Here, as· · ·d fi 2bs· · ·d in

Eq. (3), and thus we need extra couplingsgphs· · ·d, which
we have defined asgphs· · ·d ­ g0s· · ·d fas· · ·d 1 bs· · ·dgy2.
In this case, one can show that the couplings can be
stricted tog

s4d
ph, g

s2d
ph, andg

s1d
ph [14,16]. The initialst ­ 0d

source ofph-symmetry breaking fort2 fi 0 stems from the
noninteracting part of the actionS0, due to the difference
of the Fermi velocitiesDV0 of the two bands. In the fol-
lowing, we will show that SO(5) symmetry is restored [
least up toO st2d2], at low energies, even in the presenc
of this ph [and thus SO(5)]-breaking term.

These results are obtained on the basis of two co
plementary RG calculations. Calculation (i) considers t
RG flow of the self-energy parametersVk't and Z21

k't at

two loops, and of the coupling parametersg
s d
i std at one

loop, taking thet dependence of all of the paramete
at each RG step fully into account. This first calcul
tion (i), although not rigorously controlled (see below
is motivated by the fact that we are interested in stud
ing the RG flow of the self-energy, which is the leadin
symmetry-breaking term whent2 is included [16]. In a
second calculation (ii), we will show how our main resul
about the renormalizedfSOs5d symmetry obtained within
this first procedure can also be achieved in an alternat
more controlled way, where we consider only the reno
malization of theg

s d
i . Nevertheless, the first calculatio

(i) is instructive, in order to provide a physical interpre
tation for the single-particle renormalization factorsZ as
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discussed in the conclusions. Indeed, in procedure (i)
Z factors, and thus the renormalized SO(5) transform
tion, derive naturally from the RG flow, while in (ii) they
are introduced right at the outset.

In calculation (i), the relevant part of the renormalize
action has the form of Eq. (1) witht-dependent Fermi
velocities and single-particle weights.

The flow of these parameters is shown in Fig. 1. A
the barest ­ 0d Hamiltonian, we take the half-filled Hub-
bard ladder with isotropic intrachain and interchain ho
pings t ­ t' ­ 1, next-nearest-neighbor hoppingt2 ­
0.5 (corresponding toDVt­0 ø 1.9), andU ­ 1. Actu-
ally, we have verified that the results we discuss below a
rather general and hold also in the presence of anisotro
t' fi t and nearest-neighbor interactionss*2Ud. The
t2 ­ 0 case [6], discussed above, is plotted in the ins
for comparison.

For thet2 fi 0 case,DVt (Fig. 1, dotted line) flows to
zero, butDZ21

t (Fig. 1, dash-dotted line, initially zero)
scales to unity. Therefore, the initial asymmetry betwe
the bands due to the different Fermi velocities is tran
ferred into a difference in the single-particle weightsZ,
such that, for larget, Z21

0t yZ21
pt !

p
V0t­0yVpt­0. In

order to restore the coefficient of theiv term in Eq. (1)
to unity, the standard procedure [15] is to reabsorb th
renormalization into the definition of new Grassman
variableseCks and to set

q
Z21

k't Cks ­ eCks . This stan-
dard procedure is dictated by the requirement to ident
the canonical Fermi operators with correct anticommu
tation relations, as will be discussed later. In this wa
the noninteracting part of the (renormalized) action w
again be symmetric under the exchange of the two ban
(and thus SO(5) symmetric in the new fields). This tran
formation, however, also affects the interaction part, a
one should consistently redefine the renormalized SO
spinor in Eq. (2) toeCk, whereby theCks are again re-
placed with theeCks . The couplings defined in this way
are of course different from the original ones and we w
distinguish them with a tilde, i.e.,g

s d
i ! egs d

i . The re-
markable result is thatthe transformation which makes the
noninteracting part of the actionSO(5)symmetric also re-
storesSO(5)in the interacting part.This is demonstrated
in Fig. 2a, which plots the ratio of theegsmaxd

i as a func-
tion of the flow parametert. We note that the non-SO(5)
couplingsegsmaxd

1 andegsmaxd
ph all flow to zero (relative to theegsmaxd

0 ). Thus, at larget, SO(5) symmetry is restored for
low energies in the “,” basis. However, at the energy
scale whereDVt starts to decrease andDZ21

t starts to be-
come finite (t , 7 in Fig. 1), the renormalized couplings
can be shown to become large and the weak-coupling
pansion is no longer controlled, as anticipated.

To support this physically appealing yet uncontrolle
calculation, we verify, in terms of acontrolled RG cal-
culation [17] (i.e., at one loop), thatfSOs5d symmetry
is indeed recovered at least up toO st2

2d. This alterna-
tive derivation clarifies why the single-particle weight
the
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FIG. 2. fSOs5d-breaking couplings3egsmaxd
1 yegsmaxd

0 (solid line)
and 3egsmaxd

ph yegsmaxd
0 (dashed line) as a function oft. (a) shows

the results of the RG procedure (i) and (b) shows the results
(ii) as defined in the text. The parameters are the same as
Fig. 1.

renormalize proportionally tos
p

Vt­0 d21, as obtained
asymptotically in the two-loop calculation. In this RG
procedure (ii), we start from the actionS0 1 SI and carry
out the transformationeT on the Grassmann variables
right at the outset,where eT is defined aseTCiv,kk,k'

­

1yp
uk'

eCiv0,k0
k,k0

'
, with iv0 ­ ivyuk'

and k0
k ­ kkuk'

,
and uk'

­
p

Vk'
[18]. Such a transformation, which is

always possible with Grassmann variables, is motivate
by our first calculation (i). By changing the sum over
iv and kk into a sum overiv0 and k0

k separately for
each band, the noninteracting part of the action aga
recovers its explicit SO(5) symmetry. Furthermore, b
defining a new SO(5) spinoreCk in terms of theeC, we
obtain new couplingsegs d

0 , egs d
1 , andegs d

ph, as in step (i). In
Fig. 2b, we show the corresponding RG flow of the ra
tios of the egsmaxd

i . With increasing RG parametert the
ph-symmetry breaking termegsmaxd

ph yegsmaxd
0 vanishes (full

line), while thefSOs5d-breaking termegsmaxd
1 yegsmaxd

0 goes to
a finite but rather small value [19] (Fig. 2, dashed line)
The fSOs5d symmetry thus is recovered up to a very high
degree of precision for low energies [5]. In contrast with
the results of procedure (i), the result of (ii) iscontrolled
for small gst ­ 0d [17,20]. In this way, we have shown
in a controlled way thatfSOs5d is restored for low en-
ergiesat least up to ordert2

2 for small gst ­ 0d. Our
two-loop calculation (i) further suggests that even thifSOs5d-breaking term of ordert2

2 might be removed by the
self-energy renormalization.

The renormalizedfSOs5d symmetry introduced here, and
the related renormalization of the single-particle weight
Zk't, can be understood in terms of a simplified schem
which renormalizes the Hamiltonian, by restricting the
Hilbert space to a subspace with energyv smaller
than a certain cutoffv0 ~ L0 exps2td. In the restricted
2117
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subspace, the total integrated spectral density (whi
we identify with Zk't) will be less than 1. Since the
spectral sum rule identifiesZk't with the anticommutator
of the Fermi operatorsCk, the canonical Fermi operators
with anticommutator equal to 1 in this subspace are th
transformed field operatorseCk introduced above [21].

In conclusion, we have shown that the effective low
energy action (or Hamiltonian) of a ladder with weak in
teraction is asymptotically SO(5) symmetric [5]. With the
inclusion of a next-nearest-neighbor hoppingt2 the ac-
tion is invariant under a generalizedfSOs5d transformation
[7], which performs a “stretched” SO(5) rotation of the
order parameters. Physically, thisfSOs5d symmetry may
be present in the low-energy sector of alarger and more
genericclass of physical systems than the ordinary SO(5
Moreover, since this stretched rotation does not conser
the norm of the superspin (order-parameter) vector [3],
renormalizedfSOs5d theory can possibly admit asymme-
tries between the antiferromagnetic and superconducti
phases, such as, for example, the difference inTc’s [3,8].
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