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Renormalized SO(5) Symmetry in Ladders with Next-Nearest-Neighbor Hopping
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We study the occurrence of SO(5) symmetry in the low-energy sector of two-chain Hubbard-like
systems by analyzing the flow of the running couplingsology) under renormalization group in the
weak-interaction limit. It is shown that SO(5) is asymptotically restored for low energies for rather
general parameters of the bare Hamiltonian. This holds also with the inclusion of a next-nearest-
neighbor hopping which explicitly breaks particle-hole symmetry if one accounts for a different single-
particle weight for the quasiparticles of the two bands of the system. The physical significance of this
renormalization SO(5) symmetry is discussed. [S0031-9007(99)08601-9]

PACS numbers: 71.10.—w, 11.10.Hi, 11.30.Ly

Recently, it was shown that both the two-dimensionaleast up to order3) provided one considers r@normal-
(2D) Hubbard and the-J model enjoy an approximate ized SO(5) transformation [7] which takes into account
SO(5) symmetry [1,2], unifying antiferromagnetism (AF) a different renormalization of the single-particle weight
with d-wave superconductivity (dSC) [3]. This symmetry of the bonding and antibonding bands. This result is of
principle gives a definite microscopic description ofimportance because of two points: (i) It sheds light on the
the AF— dSC transition as the chemical potential iseffect of the longer-range hoppings in general on the fate
varied. From the SO(5) multiplet structure verified by of SO(5) symmetry. This issue is also under intensive
exact cluster diagonalization, one can see how the SO(@liscussion in the case of 2D systems [2,8,8]is known
superspin vector is rotated from the AF to dSC directionto strongly affect AF correlations and the Fermi-surface
and can show that, at the critical chemical potentialtopology inthe cuprates. (i) In addition, the renormalized
the energy barrierAE between AF and dSC states SO(5) representation, introduced here for the first time,
is an order of magnitude smallei~J/10) than the s likely to be realized in a significantly larger class of
exchange coupling/, i.e., the natural parameter in the physical systems allowing, for example, for asymmetries
model. This finding is clearly of importance: While it in the AF and dSC phases, such as different transition
is well established that both-/ and Hubbard models temperatures.
reproduce very successfully the “high”- and “medium”-  Specifically, we consider two coupled chains in the
energy physics of ordely andJ ~ ¢>/U of the cuprates, band representation with total “low-energy” actién—
the low-energy content of order of the superconductingsy + S;, where the noninteracting past can be written
gap has so far eluded theoretical investigations. That a given pointr in the RG flow as
variance AE of the multiplet splitting is a well-defined +
measure of “how good” the SO(5) symmetry is realized in So = D CxoZi liw — vVi +ky1Cke - 1)
the bare model considered for a given system size. It then k.o
seems natural to ask whether this deviation from exadliere, ¢, (C/,) are Grassmann variables associated
SO(5) symmetry remains small or even vanishes if Ongith the destruction (creation) of a fermion, amd is
goes to the infinite-volume limit and to lower energies,the spin. k = {iw, k., k), »} is a shorthand notation
i.e., under renormalization-group (RG) flow. for the Matsubara frequencyw, and the momentum

In this Letter, we demonstrate that the low-energyperpendiculafk, = (0, )] and parallelky) to the chain
regime of rather general Hubbard-type models, includingjirection. The latter momentum is measured relative to
finite-ranged interactions (provided they are weak) béhe Fermi pointvky,, associated with the “bandk,
tween one and two dimensions, i.e., ladders [4], is indeegith Fermi velocity ’Vkm and v = =1 refers to right-
dominated by the scaling towards an SO(5)-invariangng left-moving fermions, respectively. This action is
model. This is a remarkable result, since it is the firStestricted to modes withky| < A with A = Age 7. This
model which is non-SO(5) invariant at the bare startingyeak-coupling RG method has previously been applied
(microscopic) level, where the existence of SO(5) syMyg ghtain the phase diagram of the two-chain Hubbard
metry is proven for low energies. We first show thatmgge| [4]. In order to study the occurrence of SO(5)
this holds for theparticle hole(ph) symmetric case with  symmetry in Hubbard-like models, it is convenient to
nearest-neighbor hopping only [5,6]. In addition, wereyrite the interaction pars; of the action in terms of
consider the effect of a next-nearest-neighbor (intrachaingo(s)-invariant and SO(5)-breaking terms [10]. Defining

hoppingr, which produces an explicit breaking of thé  the SO(5) spinor as in Ref. [11],
symmetry. We demonstrate that, also in this case, the +

system becomes SO(5) symmetric for low energies (at Yy = {Cx1, Ckl, _COSkLCET,_COSkLCEl}ts (2)
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where k stands for{—iw,—k, + 7, —kj,»} and the 1.0 — —
interacting actionS; can be shown to be expressable in R 7/
terms of thet X 4 charge-rotation Dirac matrik'> [11]: - '
1 / +
Si= 5o D gl W[l + al- )T PIW,
ZBN ki,...Ks RG
flow
f 15 0.5
X \Pk3[1 + b(--)l ]\Pk4 + (k1, k3) < (ko, ks) .
3 =0
Here, (---) represents the sets of variables on which
the couplingsgg, a, and b depend. As usual, each 0 51U &
coupling can be considered as dependent only on , ==
the Fermi momenta closest to where the correspond- 0 2 4
ing process takes place, i.e., tlie-) are Iabeled by FIG. 1. RG flow of the SO(5)-breaking termgmax) gémax)
(v1,ki13va, k1ol va, ki3 va, ki4).  Moreover, > de- solid line), 3¢ /g™ (dashed line),AV,/AV,_, (dot-
notes a sum with conservation of frequency and latticggg jine) andAz =1 (((j)ash-dotted line), as a function of —
momentum. —log(A/Ao)for U = 1,1 =1, = 1,1, = 0.5, and halffilling.

'The SO(5) symmetric paﬂ}o) of S;is given by Eq. (3) Here, AV, = Vi — V.., and AZ' = [(Z,/Z2))? —
with a(---) = b(";)) = 0 [12,13]. For a general SO(5)- 1]/(Vy,—o/Vss—o — 1). The inset showsg™™ /¢ vs rU
invariant actionS§ ), it can be shown that one can re- for &, = 0.

strict oneself to the seven independent coupli@é‘g,

g0 o) 0T (DM and 807, de-  of the system can be described by an effecB@(5)-

fined in analogy with thg-ology formalism [14—16]. The Symmetric action, at least for sufficiently smallr = 0)
SO(5)-breaking termS}l) of the interacting action with [5,17]. In fact, we have verlf!ed _that_thls occurs for
ph symmetry can be demonstrated to be the term proY®Y general vqlues of the Hamiltonian, including longer-
portional togo(- - )a(--)b(---) in (3), and thus we define anged interactions.

the corresponding SO(5)-breaking couplingseas - ) = A next-nearest-neighbor hopping breaks ph sym-

go(--a(--)b(---). In this case, we can restrict ourselves Metry explicitly and r(e%uires the introduction of -
p

to only five independent couplings (it can be shown that théreaking interactions,”. Here, a(---) # —b(--+) in
others are redundant), nam AP, 8(12), 8(11), gglt;o_”), and Eq.h(3), e:jno]l_thl:js;pe (ne§d extr(a c)o[uellrg;,ﬁi- bz V\;?}czh

(1,0~ ) : _ . we have define n(-) = go-- ) [al--- - 91/2.
81 [14]. At half-filling and with 7, = 0, the Hamil In this case, one can show that the couplings can be re-

tonian is ph symmetric, since the velocities of the two
bandsV,,—o andV, —, are equal. Since thegh-breaking

terms in (3) are proportional td's, one can set in the
ph-symmetric casea(---) = —b(---), and consider the RG

flow of the couplingSg(()) andgﬁ) only.

stricted tngh) , gfh), andgﬁ,l;? [14,16]. The initial(z = 0)

source ofph-symmetry breaking for, # 0 stems from the
noninteracting part of the actiasy, due to the difference
of the Fermi velocitie\ V, of the two bands. In the fol-

C . lowing, we will show that SO(5) symmetry is restored [at
To begin with, we have evaluated the RG equations foTeast up 100 (1,)%], at low energies, even in the presence

0 0 : ;
the go° and g, couplings [16] at one loop by using _the of this ph [and thus SO(5)]-breaking term.
standardg-ology procedure (cf. Refs. [4,15]), including  These results are obtained on the basis of two com-
the interband umklapp processes. As already showpiementary RG calculations. Calculation (i) considers the

for the two—qhain. case [4], t_he system always flows toRg flow of the self-energy parametevs, , and Z; . at
strong coupling, i.e., the's diverge at a value of = ’ .

7. « 1/g(r = 0), g(7) being the scale of the interaction two loops, and of the coupling paramet@rg(r) at one

ional to th . ¢ o' his sianal loop, taking ther dependence of all of the parameters
[proportional to the maximum of all; (7)]. Thissignals 54 650k RG step fully into account. This first calcula-

an ms'ta.blllty towards some gappgd state. Nev_erttheSﬁon (i), although not rigorously controlled (see below),
the striking new result is that, even in non-SO(5)-|nvar|ant5S motivated by the fact that we are interested in study-
system, such as, e.g., the Hubbard model, the SO(5 ng the RG flow of the self-energy, which is the leading
invariant couplingsg,” dominate with respect to the symmetry-breaking term when is included [16]. In a
symmetry-breaking couplingg(l , when approaching.  second calculation (ii), we will show how our main results
[17]. This can be seen from the ratio of the maxima ofabout the renormalize8Q(5) symmetry obtained within
these two types of couplingz.™"(r)/"(r), going this first procedure can also be achieved in an alternative,
to zero, as shown in the inset of Fig. 1. Hegé“ja")(q-) is more controlled way, where we consider only the renor-

defined as the largest absolute value, and thus the scaiealization of theg,(-). Nevertheless, the first calculation
of the couplings of a given type (i = 0,1,ph) at a (i) is instructive, in order to provide a physical interpre-
given 7. This result implies thathe low-energy modes tation for the single-particle renormalization factafsas
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discussed in the conclusions. Indeed, in procedure (i) the 10
Z factors, and thus the renormalized SO(5) transforma-
tion, derive naturally from the RG flow, while in (i) they
are introduced right at the outset. 05
In calculation (i), the relevant part of the renormalized
action has the form of Eq. (1) witk-dependent Fermi
velocities and single-particle weights. L. . - =~ - =
The flow of these parameters is shown in Fig. 1. As 10
the barg(r = 0) Hamiltonian, we take the half-filled Hub- RG
bard ladder with isotropic intrachain and interchain hop- flow
pings t = t, = 1, next-nearest-neighbor hopping = 05 (b)
0.5 (corresponding t&AV,—y = 1.9), andU = 1. Actu-
ally, we have verified that the results we discuss below are ——————____
rather general and hold also in the presence of anisotropy . . . . L =
t, # t and nearest-neighbor interactiofs—U). The '
1, = 0 case [6], discussed above, is plotted in the insefiG. 2. SO(5)-breaking couplings3z™ /3™ (solid line)
for comparison. . . and 3z /2™ (dashed line) as a function ef (a) shows
For ther, # 0 case, AV, (Fig. 1, dotted line) flows to the results of the RG procedure (i) and (b) shows the results of
zero, butAZ! (Fig. 1, dash-dotted line, initially zero) (ii) as defined in the text. The parameters are the same as in
scales to unlty Therefore, the initial asymmetry betweerfig. 1.
the bands due to the different Fermi velocities is trans-
ferred into a difference in the single-particle weights  renormalize proportionally to\/V,—y)~ ', as obtained
such that, for larger, ZO}l/Z;T1 — /Vor=0/Vzr=0. In asymptotically in the two-loop calculation. In this RG
order to restore the coefficient of thhe term in Eq. (1) procedure (ii), we start from the actiéy + S, and carry

to unity, the standard procedure [15] is to reabsorb thigut the transformatior? gn the Grassmann variables
renormalization into the definition of new Grassmannright at the outsetwhere T is defined asTClwk” K =

varlablekag and to set/Z; TCk(, = Ck,, This stan- /\/Wcmfk ) With ie’' = iw/u;, and k” — kyur,
dard procedure is dictated by the requirement to identify, - u/: \/V_;: [18]. Such a tran;formatlon WhIClh is

the canonical Fermi operators with correct anticommu- . . . ; .
P always possible with Grassmann variables, is motivated

tation relations, as will be discussed later. In this way, o our first caleulation (). By changing the sum over
the noninteracting part of the (renormalized) action will ; y . y g, 9
and k| into a sum overiw’ and k; separately for

again be symmetric under the exchange of the two bandé” h band, th £ th
(and thus SO(5) symmetric in the new fields). This trans- each band, the noninteracting part of the action again
formation, however, also affects the interaction part, and©CoVers its explicit SO(5) symmetry. Furthermore by
one should consistently redefine the renormalized SO(E@ef'nmg a new 50(5) spmcﬂlfk in terms of theC, we

~() 0]
spinor in Eq. (2) toW,, whereby theCy, are again re- obtain new couplingg?), 31, andg,;, as in step (i).
placed with theCy,. The couplings defined in this way 9- 20, We show the corresponding RG flow of the ra-
are of course different from the original ones and we willtios of theg; With increasing RG parameter the

~(max) ,~(max) .
distinguish them with a tilde, i.eg!’ — 3. The re- ph-symmetry breaking terng,, /2o vanishes (full

markable result is thahe transformation which makes the line), while theSQ(5)-breaking terng ™™ /2™ goes to
noninteracting part of the actioBO(5)symmetric also re- g finite but rather small value [19] (Fig. 2, dashed line).

storesSO(5)in the interacting part. This(ilfagemonstrated The SO(5) symmetry thus is recovered up to a very high
in Fig. 2a, which plots the ratio of thg; ~ * as a func-  degree of precision for low energies [5]. In contrast with
tion of the flow parameter. We note that the non-SO(5) the results of procedure (i), the result of (ii)dentrolled

couplingsz ™™ andgﬁ,“ﬁax) all flow to zero (relative to the for small g(r = 0) [17,20]. _In this way, we have shown

”“m")) Thus, at larger, SO(5) symmetry is restored for in a controlled way thatSQ(5) is restored for low en-
low energies in the " basis. However, at the energy ergiesat leastup to orders; for small g(r = 0). Our
scale where\ V; starts to decrease adZ ! starts to be-  two-loop calculation (i) further suggests that even this
come finite ¢ ~ 7 in Fig. 1), the renormalized couplings SO(S) -breaking term of orders might be removed by the
can be shown to become large and the weak-coupling exself-energy renormalization.
pansion is no longer controlled, as anticipated. The renormalize®0(5) symmetry introduced here, and
To support this physically appealing yet uncontrolledthe related renormalization of the single-particle weights
calculation, we verify, in terms of aontrolled RG cal- 7, _ can be understood in terms of a simplified scheme,
culation [17] (i.e., at one loop), thaSO(S) symmetry  which renormalizes the Hamiltonian, by restricting the
is indeed recovered at least up @(s3). This alterna- Hilbert space to a subspace with energy smaller
tive derivation clarifies why the single-particle weightsthan a certain cutoftoy < Agexp(—7). In the restricted
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subspace, the total integrated spectral density (which G(iw/VVo, kj/Vo. ki = @) = (Vo/V,) '? X
we identify with Z; ,) will be less than 1. Since the Gliw/\Vo/Va,kj\Vo/Va, m) = 1/(iw — Voky).  Our
spectral sum rule identifieg, , with the anticommutator RG calculation additionally shows that the invariance
of the Fermi operator€’y, the canonical Fermi operators under R also holds (asymptotically) for the interacting

with anticommutator equal to 1 in this subspace are the case, which is a nontrivial result.

transformed field operatoig introduced above [21]. [g] (S:é '}ehnley’ Phyj' Ret\//§7|_§£g'93590 (1998).
In conclusion, we have shown that the effective low- [9] S.-C. Zhang, cond-ma )
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teraction is asymptotically SO(S) symmetric [S]. With the 11) \we use the notation of S. Rabello, H. Kohno, E. Demler,

inclusion of a next-nearest-neighbor hoppingthe ac- and S.-C. Zhang, Phys. Rev. Le0, 3586 (1998).
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Fierz identity (see also Ref. [13]).

be present in the low-energy sector olaager and more )[13] D. Scalapino, S.-C. Zhang, and W. Hanke, Phys. Rev. B

genericclass of physical systems than the ordinary SO(5 58, 443 (1998)
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> 1 > 2 ’ 3

the norm of the superspin (order-parameter) vector [3], & ~ ,, x, ) and are defined in analogy with theology of

renormalizedSQ(5) theory can possibly admit asymme- Ref. [15], asg\” = g;(+,0;+,0| +,0; +,0), g™ =
tries between the antiferromagnetic and superconducting  ¢.(+,0; +, 7 | +, 7; +,0), ¢ = g,(+,0;+,0] —,0;
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