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Theory of the Ablative Richtmyer-Meshkov Instability
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Theory of the ablative Richtmyer-Meshkov instability is presented. It is shown that the main
stabilizing mechanism of the ablation-front perturbations during the shock transit time is the dynamic
overpressure that causes perturbation oscillations. The amplitude of the oscillation is proportional to
csy

p
VaVbl and its frequency isv  k

p
VaVbl , wherek is the wave number, andcs, Va, andVbl are

sound speed, ablation, and blow-off plasma velocities, respectively. [S0031-9007(99)08686-X]

PACS numbers: 52.35.Py, 52.40.Nk
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In inertial confinement fusion (ICF) implosions, a lase
irradiation induces a shock wave propagating throug
the target. During the shock transit time, the ablatio
front travels at a constant velocity, and any surfac
perturbations could grow due to the Richtmyer-Meshko
(RM)-like instability [1–4]. It is important to study
such a growth because it determines the seed of
Rayleigh-Taylor (RT) instability that develops during the
acceleration phase of implosion.

Similarity between the classical RM instability and
the instability of the corrugated ablation front during th
shock transit time is apparent. In the first case, a sho
wave interacts with a distorted interface between tw
fluids [1]. As a result, the interface perturbation star
to grow because the transmitted shock creates a press
excess behind the concave part of the shock ripple a
a pressure deficiency behind the convex part. Such
pressure disturbance accelerates one fluid into another
leads to an interface instability. Theory of the classic
RM instability [1] shows that the interface perturbation
asymptotically grow linearly in timehskcst ¿ 1d ,
h0kcst, whereh is the perturbation amplitude,k is the
mode wave number, andcs is the sound speed. In the cas
of corrugated ablation front, ablation pressure generate
rippled shock which also induces a pressure perturbati
that could lead to an interface instability similar to the RM
instability; we refer to such an instability as the “ablativ
RM instability.” During the last two years, severa
researchers have made attempts to develop an anal
theory of the ablative Richtmyer-Meshkov instability. In
Ref. [3] the perturbation evolution was derived by usin
the Chapman-Jouguet deflagration model. This mod
idealizes the region between the sonic point and t
ablation front as a surface of discontinuity. Howeve
as will be shown later, the thermal conduction insid
such a region creates a restoring force that suppres
the perturbation growth. Because the deflagration mod
developed in [3] fails to capture the main stabilizing
mechanism, such a model cannot be used to carry
the stability analysis of ablation fronts. In Ref. [4]
saturation of the perturbation growth was found (i
agreement with the results of Ref. [3]); at the ablatio
front, however, the authors used the so-called “Landa
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Darrieus” boundary condition (prefront velocity norma
to the ablation front remains unchanged) which is n
applicable in the presence of the finite heat conducti
[5] (see also the discussion later in the text). In th
paper, we develop a sharp-boundary model to stu
the imposed mass-perturbation growth during the shoc
transit time. The boundary conditions at the shock fro
are derived by using the Hugoniot relations. At th
ablation front the result of the self-consistent analysis [5
7] is applied, and it is shown that the asymptotic behavi
of the ablation-front perturbations is quite different from
the earlier theoretical predictions [3,4]. In particula
the finite thermal conduction in the hot plasma coron
produces a dynamic overpressure that causes perturba
oscillations (in agreement with the numerical results [2,4
with the frequencyv  k

p
VaVbl and the amplitude

h0csy
p

VaVbl, where Va and Vbl are the ablation and
the characteristic blow-off velocities, respectively. I
addition, the mass ablation and vorticity convection dam
the oscillation amplitude on a time scale1ykVa ¿ 1yv.

As mentioned in the introduction, the interface pe
turbations subject to the classical RM instability grow
with a constant velocitysh , td. In the presence of
ablation, there are several physical mechanisms t
suppress such a growth [5–8]. To specify the stab
lizing mechanisms, next we turn our attention to th
process of ablation itself. During the ICF implosion
the laser energy is absorbed near the critical surfa
and transported by thermal conduction towards the co
target material increasing the target temperature a
pressure. Then, the heated material (plasma) expan
creating a mass flow in the direction opposite to th
direction of the heat wave. Because the ablative he
wave propagates at a speed much less than the so
speedVa ø cs, the expansion region follows immediately
after the heat front (target material ablates from the he
wave interface). The velocity of the expanding plasm
is referred to as a “blow-off velocity.” The ablative
process in the vicinity of the heat front can be describ
by the diffusion equationrcpDtT  2=q  =sk=T d,
whereDt  ≠t 1 v=, q is the heat flux,k , Tn is the
nonlinear thermal conductivity, andcp is specific heat
at constant pressure (any pressure variation terms in
© 1999 The American Physical Society 2091
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energy equation are neglected because they scale as
ablation Mach numberMa  Vaycs ø 1). This equa-
tion shows that after the heat front passes through
region of the thicknessL  VaDt (Va is the heat front ve-
locity or ablation velocity), the enthalpyh  cpT of that
region increasesmDh . sk≠yT dRDt, where the subscript
R denotes the boundary through which the heat fro
enters into the region (right boundary), andm  rL is
the region mass. This enthalpy increase goes to thep dV
work of the expanding plasma (note that according to t
law of thermodynamics,De  Dh 1 PDryr2, it is ener-
getically more efficient for plasma to expand towards th
lower density corona than towards the higher density ta
get material, hence such an expansion does not change
velocity of the heat frontVa). Assuming the constant pres
suresrT  constd, the enthalpy variation can be rewritten
as rDh . 2cpT Dr; and using the mass-conservatio
equationDm  DrL  2rV Dt, the blow-off velocity
becomesVbl . sk≠yT dRyP. Next, we consider propaga-
tion of the perturbed heat front through the same region
thicknessL. As a result of perturbation growth, the pea
of the heat front distortion protrudes into the hot plasm
corona, and the front trough moves towards the co
material. This leads to a slight steepening of the tempe
ture profile at the peak and flattening at the trough. T
relative change in the temperature gradient along the h
front results in the following two effects. First, becaus
the blow-off velocity is proportional to the heat flux, the
region adjacent to the front peak expands faster then
region behind the front trough. The resulting dynam
overpressure creates a restoring force that stabiliz
perturbations (observe that in the deflagration model d
veloped in [3], the described effect of increasing blow-o
velocity behind the perturbation peak is absent becau
such a model treats the ablation front as a Chapma
Jouguet point, i.e., the fluid right behind the ablation fro
moves with the local sound speed). The second effec
an increase in the ablation velocity in the region of high
temperature gradients. Indeed, the ablation velocity c
be estimated from the diffusion equation. If we assum
that the temperature distribution in the heat-front fram
of reference is steady,T  T s y 1 Vatd, the diffusion
equation becomescprVaTyLT ø kaTyL2

T , whereLT is
the temperature gradient scale length andka is the thermal
conduction calculated at the density maximum. The
the ablation velocity isVa , kaysrLT cpd. One can
conclude that steepening of the temperature profile at
ablation front increases the ablation velocity. Thus, th
perturbation peak ablates faster than the perturbat
trough (perturbations change the prefront velocity,
opposite to the “Landau-Darrieus” boundary conditio
[4]). This effect leads to an additional stabilization.

To perform a quantitative stability analysis of the ab
lation front, one has to solve the system of conservati
equations inside the following four regions: (1)y , ys,
undriven target; (2)ys , y , ya, material compressed by
the shock; (3a)ya , y , ya 1 La, ablation region; and
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(3) y . ya 1 La, blow-off plasma. Then, asymptotically
matching the solution at the boundaries of each regio
the temporal evolution of the shock and ablation front pe
turbations can be derived. For modes withkLa . 1 the
problem is too complicated to be analytically solved; how
ever, in the regime when the density-gradient stabiliz
tion is not important,kLa ø 1, the ablation region (but
not the entire conduction zone [3]) can be approximat
as a surface of discontinuity. Because of the sharp
terfaces at the shock and ablation fronts, such a mode
commonly referred to as a “sharp-boundary model” (SBM
[7,8]. The SBM is solved in the standard fashion. First, a
perturbed quantities are decomposed in the Fourier sp
Q1  Q̃s y, tdeikx. Then, in the frame of reference movin
with the compressed-region velocity, the linearized co
servation equations are combined into a single partial d
ferential equation for the pressure perturbationp̃ [1,3,9],
≠2

t p̃ 2 c2
s ≠2

yp̃ 1 k2c2
s p̃  0, wherecs is the sound speed

of the compressed material. The boundary conditions
derived by integrating the conservation equations acr
the shock front and the ablation region and taking the lim
of La ! 0. Integration across the shock front gives th
standard Hugoniot jump conditions for the oblique shoc
[9]. At the ablation front, it is straightforward to integrat
the mass- and momentum-conservation equations. Ho
ever, the jump condition derived from the energy equati
( jump in the transverse velocity) contains an additional u
known: the perturbed heat flux in the blow-off region. Th
problem was addressed in Ref. [8] where the SBM to stu
the RT instability was developed. it was shown that a
proximating the ablation front by an isotherm, first, it i
possible to define the perturbed heat flux in the blow-off r
gion, and, second, the result of the SBM (with the approp
ately chosen value of the blow-off velocity) reproduces t
result of the self-consistent stability analysis of accele
ted ablation fronts [5–7]. In the present model we use t
same approximation of the isothermal ablation front, a
derive the same jump condition for the transverse veloc
[8]: ỹ3s yad 2 ỹ2s yad  sVbl 2 Vadkha, whereha is the
ablation front perturbation, and the subscript 3(2) deno
the region number. An increase in transverse velocity,
mentioned earlier, is due to the finite thermal conductivi
and the consequence of the fact that heat flux increase
the perturbation peak leading to an additional plasma
pansion and an increase in the blow-off velocity.

Next, solving the partial differential equation for th
pressure perturbation and applying the appropriate bou
ary conditions, we derive the ablation-front evolution
The details of such a derivation will be published els
where; here we report the final result. The asympto
behavior skcst ¿ 1d of the ablation-front perturbations
takes the following form:

ha

h0
. hystd

1 hS2 sinvt 1 fS1 2 hys0dg cosvtje22kVat ,

(1)
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where

hystd 
2cs

Vbl
ekVat

Z kVat

`

e2hVshd dh ,

v  k
p

VaVbl , Vs yd  is= 3 vdzyskcsd is the normal-
ized vorticity created by the rippled shock,

Vs yd .
sM2

s 2 1dS0 coshus

2M2
s sg 1 1d sinh2 us

J1s ŷd ,

and

S0 
16sM2

s 2 1d
6gM2

s 2 g 1 3
,

S1  1 2 2S0
M2

s s5g 2 1d 1 2sg 1 3d
M2

s s17g 2 7d 1 2sg 1 9d
,

S2 
kcs

3v
s1 1 S0 2 S1d ,

us  tanh21

s
2 1 sg 2 1dM2

s

2gM2
s 2 sg 2 1d

.

HereMs is shock Mach number,g is the ratio of specific
heats,J1sxd is the Bessel function, and̂y  yy sinhus.
Equation (1) shows that the ablation substantially mod
fies perturbation behavior: linear in time asymptot
growth (h , t for Va  0) in the presence of abla-
tion turns into surface oscillations. Such oscillations a
caused by the finite thermal conductivity which increas
fluid velocity behind the perturbation peak (see discu
sion earlier in the text); a higher fluid velocity lead
to a dynamic overpressureDPd and a restoring force
sFr , 2≠y DPd , 2kr2Va Dỹ , 2k2r2VaVblhad that
stabilizes perturbations. The perturbation amplitude
this case obeys a simple differential equationr2d2

t ha 
Fr  2k2r2VaVblha or

d2
t ha 1 k2VaVblha  0 (2)

that describes oscillations with the frequenc
v  k

p
VaVbl . The estimate of the oscillation fre-

quency can be also obtained by using the result
the self-consistent theory of the ablative RT instab
ity [5–7]. For the ablation fronts with large Froude
numbersfFr  V 2

a ysgLadg, the perturbation growth rate
is g .

p
kg 2 k2VaVbl 2 2kVa. Taking the limit of

g ! 0 sFr ! `d in the last expression gives the oscilla
tion frequencyv  ig  k

p
VaVbl, in agreement with

Eq. (1). Next, we turn our attention to the termhy [see
Eq. (1)] which is due to the vorticity convection from the
rippled shock towards the ablation front (in the ablatio
front frame of reference, the compressed material mov
with the ablation velocity). The vorticity convection from
the shock produces a destabilizing effect because it brin
additional perturbations (in particular, the perturbation
of the velocity gradients) towards the ablation regio
Velocity gradients lead to a dynamic pressure gradie
≠yPd . rV s≠yỹds that generates a destabilizing force
i-
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Such a force modifies Eq. (2) to

d2
t ha 1 v2ha  Vas≠yỹds . (3)

In addition to the dynamic overpressure stabilization, t
difference in the ablation velocity at the perturbation pe
and trough (see discussion earlier in the text) and also
vorticity convection away from the ablation front dam
the oscillation amplitude. These effects, similar to t
case of the ablative RT instability, introduce a dampi
term in the wave equation [5–8],

d2
t ha 1 4kVadtha 1 v2ha  Vas≠yỹds .

As a result, the oscillation amplitude decays expone
tially in time [factor e22kVat in Eq. (1)], and the late-
time perturbation evolution is determined by a balan
of the dynamic overpressure and the vorticity force
The last oscillates in time with a decaying amplitud
,sinskVatdy

p
kVat. The fact that the planar shock i

stable and the shock ripple and the perturbations ins
the compressed region oscillate in time is well know
[1,3,4,9]. The stabilizing mechanism is due to the cr
ated by the shock lateral flow that increases press
behind the concave part of the shock front and d
creases it behind the convex part. As pressure increa
(decreases), the shock speeds up (slows down), re
ing the front distortion. The frequency of the shoc
oscillations is proportional tokcs, and the oscillation
amplitude decays in time as1y

p
kcst. Note that the de-

caying rate is determined by the symmetry of the sou
waves transporting the pressure disturbances. In the
nar foil, the cylindrical pressure waves attenuate as1y

p
r

(r  cst is the radius of the wave front), thus the ove
all pressure perturbation behind the shock front decays
1y

p
cst. Because of the shock front oscillations, the pe

turbations inside the compressed region oscillate in sp
Q̃ , sinfkcss yyUsdgy

p
ky, whereUs is the shock speed;

hence at the ablation fronty  Vat hydrodynamic quan-
tities evolve according toQ̃ , sinskVatdy

p
kVat. Ap-

plying the last formula to the velocity gradient≠yỹ, we
recover the asymptotic limit ofhy.

In order to apply Eq. (1) to the flat foils commonl
used in ICF experiments, one needs to estimate the va
of blow-off velocity Vbl. In general, the velocity of
ablated plasma is not uniform, and it increases in t
direction towards the plasma corona. However, as sho
in [6–8], the appropriate value of the blow-off velocity t
be substituted into the SBM isVbl  Vayfmsnd skL0d1yng,
where n is the power index for the thermal conduc
tion, L0 is the characteristic thickness of ablation fron
m  s2ynd1ynyGs1 1 1ynd 1 0.12yn2, and Gsxd is the
Gamma function. The parametersn andL0 can be deter-
mined by using the fitting procedure described in Ref. [1
For plastic (CH) targets directly driven by a flattop las
pulse with an intensity of50 200 TWycm2, such a proce-
dure givesL0 . 0.1 mm andn . 1, thus the oscillation
period isTCH  2pyv . 3yfVasmmynsd

p
ksmm21dg ns.
2093
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FIG. 1. Time evolution of the ablation-front perturbatin of CH
(solid line) and solid DT (dashed line) foils calculated using th
result of the SBM (a) and 2DORCHID simulations (b).

Cryogenic (DT) targets have much smaller density
gradient scale lengthL0 . 0.01 mm, n . 2, and
TDT . 2yfVasmmynsdk3y4smm21dg ns. Figure 1(a)
shows the ablation-front evolution (as predicted by th
SBM) of the solid DT and CH foils driven by a square
pulse with an intensity of100 TWycm2. The initial
amplitude of perturbation is0.1 mm, and its wavelength is
20 mm. Observe the change in the oscillation frequenc
after the vorticity force balances the dynamic overpressu
force stCH . 3.5 ns, tDT . 2.5 nsd. For comparison, the
2094
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results of the 2DORCHID [11] simulations are plotted
in Fig. 1(b). Although the oscillation frequency is well
reproduced by the model, the predicted amplitude is low
then the one observed in the simulation. This could b
related to the fact that the size of the conduction zon
changes in time at the beginning of implosion, and th
corrections due to a time variation in the ablation and th
blow-off velocities become important. This problem will
be addressed in future work.

In summary, the analytic theory of the ablative
Richtmyer-Meshkov instability was developed. It wa
shown that the main stabilizing mechanism of th
ablation-front perturbations is the dynamic overpressu
created by the finite thermal conduction.
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