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Theory of the Ablative Richtmyer-Meshkov Instability
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Theory of the ablative Richtmyer-Meshkov instability is presented. It is shown that the main
stabilizing mechanism of the ablation-front perturbations during the shock transit time is the dynamic
overpressure that causes perturbation oscillations. The amplitude of the oscillation is proportional to
cs/\V.Vy and its frequency iso = k+/V,Vy;, wherek is the wave number, and,, V,, andV,,; are
sound speed, ablation, and blow-off plasma velocities, respectively. [S0031-9007(99)08686-X]

PACS numbers: 52.35.Py, 52.40.Nk

In inertial confinement fusion (ICF) implosions, a laserDarrieus” boundary condition (prefront velocity normal
irradiation induces a shock wave propagating througho the ablation front remains unchanged) which is not
the target. During the shock transit time, the ablationapplicable in the presence of the finite heat conduction
front travels at a constant velocity, and any surfacg5] (see also the discussion later in the text). In this
perturbations could grow due to the Richtmyer-Meshkowaper, we develop a sharp-boundary model to study
(RM)-like instability [1—-4]. It is important to study the imposed mass-perturbation growth during the shock-
such a growth because it determines the seed of theansit time. The boundary conditions at the shock front
Rayleigh-Taylor (RT) instability that develops during the are derived by using the Hugoniot relations. At the
acceleration phase of implosion. ablation front the result of the self-consistent analysis [5—

Similarity between the classical RM instability and 7] is applied, and it is shown that the asymptotic behavior
the instability of the corrugated ablation front during theof the ablation-front perturbations is quite different from
shock transit time is apparent. In the first case, a shocthe earlier theoretical predictions [3,4]. In particular,
wave interacts with a distorted interface between twahe finite thermal conduction in the hot plasma corona
fluids [1]. As a result, the interface perturbation startsproduces a dynamic overpressure that causes perturbation
to grow because the transmitted shock creates a pressuscillations (in agreement with the numerical results [2,4])
excess behind the concave part of the shock ripple andith the frequencyw = k/V,V, and the amplitude
a pressure deficiency behind the convex part. Such agc,/+/V.V,, whereV, and V,, are the ablation and
pressure disturbance accelerates one fluid into another atite characteristic blow-off velocities, respectively. In
leads to an interface instability. Theory of the classicaladdition, the mass ablation and vorticity convection damp
RM instability [1] shows that the interface perturbationsthe oscillation amplitude on a time scdlgkV, > 1/w.
asymptotically grow linearly in timen(kcgt > 1) ~ As mentioned in the introduction, the interface per-
nokcst, where 7 is the perturbation amplitude, is the turbations subject to the classical RM instability grow
mode wave number, ang is the sound speed. In the casewith a constant velocityn ~ ¢). In the presence of
of corrugated ablation front, ablation pressure generatesablation, there are several physical mechanisms that
rippled shock which also induces a pressure perturbatiosuppress such a growth [5-8]. To specify the stabi-
that could lead to an interface instability similar to the RMlizing mechanisms, next we turn our attention to the
instability; we refer to such an instability as the “ablative process of ablation itself. During the ICF implosion,
RM instability.” During the last two years, several the laser energy is absorbed near the critical surface
researchers have made attempts to develop an analytnd transported by thermal conduction towards the cold
theory of the ablative Richtmyer-Meshkov instability. In target material increasing the target temperature and
Ref. [3] the perturbation evolution was derived by usingpressure. Then, the heated material (plasma) expands,
the Chapman-Jouguet deflagration model. This modeatreating a mass flow in the direction opposite to the
idealizes the region between the sonic point and thelirection of the heat wave. Because the ablative heat
ablation front as a surface of discontinuity. However,wave propagates at a speed much less than the sound
as will be shown later, the thermal conduction insidespeedV, < c;, the expansion region follows immediately
such a region creates a restoring force that suppressafier the heat front (target material ablates from the heat
the perturbation growth. Because the deflagration modekave interface). The velocity of the expanding plasma
developed in [3] fails to capture the main stabilizingis referred to as a “blow-off velocity.” The ablative
mechanism, such a model cannot be used to carry ogrocess in the vicinity of the heat front can be described
the stability analysis of ablation fronts. In Ref. [4] by the diffusion equatiorpc,D,T = —Vq = V(kVT),
saturation of the perturbation growth was found (inwhereD, = 9, + vV, q is the heat fluxx ~ T" is the
agreement with the results of Ref. [3]); at the ablationnonlinear thermal conductivity, and, is specific heat
front, however, the authors used the so-called “Landauat constant pressure (any pressure variation terms in the
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energy equation are neglected because they scale as %y > y, + L, blow-off plasma. Then, asymptotically
ablation Mach numbeM, = V,/c; < 1). This equa- matching the solution at the boundaries of each region,
tion shows that after the heat front passes through the temporal evolution of the shock and ablation front per-
region of the thickness = V,At (V, is the heat front ve- turbations can be derived. For modes with, > 1 the
locity or ablation velocity), the enthalpy = ¢, T of that  problem is too complicated to be analytically solved; how-
region increasesAh = (kd,T)rAt, where the subscript ever, in the regime when the density-gradient stabiliza-
R denotes the boundary through which the heat frontion is not importantkL, < 1, the ablation region (but
enters into the region (right boundary), and= pL is  not the entire conduction zone [3]) can be approximated
the region mass. This enthalpy increase goes tpti€  as a surface of discontinuity. Because of the sharp in-
work of the expanding plasma (note that according to theerfaces at the shock and ablation fronts, such a model is
law of thermodynamicshe = Ah + PAp/p?,itisener-  commonly referred to as a “sharp-boundary model” (SBM)
getically more efficient for plasma to expand towards thg7,8]. The SBM s solved in the standard fashion. First, all
lower density corona than towards the higher density tarperturbed quantities are decomposed in the Fourier space
get material, hence such an expansion does not change thg = Q(y, r)e’**. Then, in the frame of reference moving
velocity of the heat fronV,,). Assuming the constant pres- with the compressed-region velocity, the linearized con-
sure(pT = cons}, the enthalpy variation can be rewritten servation equations are combined into a single partial dif-
as pAh = —c,T Ap; and using the mass-conservation ferential equation for the pressure perturbatjoi,3,9],
equationAm = ApL = —pV At, the blow-off velocity 925 — c202p + k*c2p = 0, wherec, is the sound speed
becomes/,; = (kd,T)g/P. Next, we consider propaga- of the compressed material. The boundary conditions are
tion of the perturbed heat front through the same region ofierived by integrating the conservation equations across
thicknessL. As a result of perturbation growth, the peak the shock front and the ablation region and taking the limit
of the heat front distortion protrudes into the hot plasmaof L, — 0. Integration across the shock front gives the
corona, and the front trough moves towards the coldtandard Hugoniot jump conditions for the oblique shocks
material. This leads to a slight steepening of the temperg9]. At the ablation front, it is straightforward to integrate
ture profile at the peak and flattening at the trough. Thehe mass- and momentum-conservation equations. How-
relative change in the temperature gradient along the heater, the jump condition derived from the energy equation
front results in the following two effects. First, because(jump in the transverse velocity) contains an additional un-
the blow-off velocity is proportional to the heat flux, the known: the perturbed heat flux in the blow-off region. This
region adjacent to the front peak expands faster then theroblem was addressed in Ref. [8] where the SBM to study
region behind the front trough. The resulting dynamicthe RT instability was developed. it was shown that ap-
overpressure creates a restoring force that stabilizgsroximating the ablation front by an isotherm, first, it is
perturbations (observe that in the deflagration model depossible to define the perturbed heat flux in the blow-off re-
veloped in [3], the described effect of increasing blow-offgion, and, second, the result of the SBM (with the appropri-
velocity behind the perturbation peak is absent becausstely chosen value of the blow-off velocity) reproduces the
such a model treats the ablation front as a Chapmanesult of the self-consistent stability analysis of accelera-
Jouguet point, i.e., the fluid right behind the ablation frontted ablation fronts [5—7]. In the present model we use the
moves with the local sound speed). The second effect isame approximation of the isothermal ablation front, and
an increase in the ablation velocity in the region of higherderive the same jump condition for the transverse velocity
temperature gradients. Indeed, the ablation velocity ca[8]: v3(y,) — 92(v.) = (Viy — Va)kn,, wheren, is the
be estimated from the diffusion equation. If we assumeablation front perturbation, and the subscript 3(2) denotes
that the temperature distribution in the heat-front framethe region number. An increase in transverse velocity, as
of reference is steadyl’ = T(y + V,t), the diffusion mentioned earlier, is due to the finite thermal conductivity
equation becomes,pV,T/Ly = KaT/L%, whereLr is  and the consequence of the fact that heat flux increases at
the temperature gradient scale length apds the thermal the perturbation peak leading to an additional plasma ex-
conduction calculated at the density maximum. Thenpansion and an increase in the blow-off velocity.
the ablation velocity isV, ~ «,/(pLrc,). One can Next, solving the partial differential equation for the
conclude that steepening of the temperature profile at thgressure perturbation and applying the appropriate bound-
ablation front increases the ablation velocity. Thus, theary conditions, we derive the ablation-front evolution.
perturbation peak ablates faster than the perturbatioMhe details of such a derivation will be published else-
trough (perturbations change the prefront velocity, aswhere; here we report the final result. The asymptotic
opposite to the “Landau-Darrieus” boundary conditionbehavior (kc;t > 1) of the ablation-front perturbations
[4]). This effect leads to an additional stabilization. takes the following form:

To perform a quantitative stability analysis of the ab-
lation front, one has to solve the system of conservation n—“ = 7,(t)
equations inside the following four regions: ()< y;, 0 ) B
uﬂdriven target; (2y, < y < y,, material compressed by + {Sasinwr + [ — 7, (0)]coswrte >,
the shock; (3ay, <y <y, + L,, ablation region; and 1)
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where Such a force modifies Eq. (2) to

kV,t ~
%/CS ekVat[ 6_"9(77)6177, dzzna + wzna = Va(ayv)s‘ (3)
bl £

Ny (1) =
_ In addition to the dynamic overpressure stabilization, the
o = ky/V Vi, Q(y) = i(V X v);/(kcs) is the normal-  difference in the ablation velocity at the perturbation peak

ized vorticity created by the rippled shock, and trough (see discussion earlier in the text) and also the

(M2 — 1), coshe, A vorticity. cqnvection away from the ablation.frqnt damp

Q(y) = 5 - J1(9), the oscillation amplitude. These effects, similar to the

2M3(y + 1)sint? 6, case of the ablative RT instability, introduce a damping

and term in the wave equation [5—-38],
20 = M , dtzna + 4kVadl77a + wzna = Va(ayi))s-
6yM? — vy +3
5 As a result, the oscillation amplitude decays exponen-
S, =123, M;(5y — 1) +2(y +3) tially in time [factor e=2*V«’ in Eq. (1)], and the late-

MX(17y —7) +2(y +9)° time perturbation evolution is determined by a balance

ke of the dynamic overpressure and the vorticity forces.

So=—(1+ 30— 21, The last oscillates in time with a decaying amplitude

3w ~sin(kV,t)/\/kV,t. The fact that the planar shock is
L2+ (= m2 stable and the shock ripple and the perturbations inside

¢s = tanh 2yM? — (y — Sl)- the compressed region oscillate in time is well known

[1,3,4,9]. The stabilizing mechanism is due to the cre-
HereM; is shock Mach numbety is the ratio of specific ated by the shock lateral flow that increases pressure
heats,/J;(x) is the Bessel function, anfl = y/ sinhg;. behind the concave part of the shock front and de-
Equation (1) shows that the ablation substantially modicreases it behind the convex part. As pressure increases
fies perturbation behavior: linear in time asymptotic(decreases), the shock speeds up (slows down), reduc-
growth (n ~ ¢ for V, = 0) in the presence of abla- ing the front distortion. The frequency of the shock
tion turns into surface oscillations. Such oscillations areoscillations is proportional tdkc,, and the oscillation
caused by the finite thermal conductivity which increasesamplitude decays in time as/+/kcyz. Note that the de-
fluid velocity behind the perturbation peak (see discuscaying rate is determined by the symmetry of the sound
sion earlier in the text); a higher fluid velocity leads waves transporting the pressure disturbances. In the pla-
to a dynamic overpressurAP,; and a restoring force nar foil, the cylindrical pressure waves attenuatd Agr

(F, ~ =30y APy ~ —kp2V, AD ~ —k?p2V,Viima) that  (r = ¢, is the radius of the wave front), thus the over-
stabilizes perturbations. The perturbation amplitude irall pressure perturbation behind the shock front decays as

this case obeys a simple differential equatjoni’n, = 1/\/cst. Because of the shock front oscillations, the per-
F, = —k>p,V,Vyim, OF turbations inside the compressed region oscillate in space

2 2 _ 0 ~ sinke,(y/U,)]/\/ky, whereUs; is the shock speed;
diMa + kK VaVpina =0 @) hence at the ablatior}/;mz V,t hydrodynamic quan-
that describes oscillations with the frequencytities evolve according ta) ~ sin(kV,t)/kV,t. Ap-

w = k/VaVp. The estimate of the oscillation fre- plying the last formula to the velocity gradient#, we
quency can be also obtained by using the result ofecover the asymptotic limit of,.

the self-consistent theory of the ablative RT instabil- In order to apply Eq. (1) to the flat foils commonly
ity [5-7]. For the ablation fronts with large Froude used in ICF experiments, one needs to estimate the value
numbers[Fr = V2/(gL,)], the perturbation growth rate of blow-off velocity V,,. In general, the velocity of

is vy = kg — k*V,V, — 2kV,. Taking the limit of ablated plasma is not uniform, and it increases in the
g — 0 (Fr— <o) in the last expression gives the oscilla- direction towards the plasma corona. However, as shown
tion frequencyw = iy = k/V,V,;, in agreement with in [6—8], the appropriate value of the blow-off velocity to
Eq. (1). Next, we turn our attention to the tenp [see  be substituted into the SBM ig,; = V,/[u(v) (kLo)'/"],

Eqg. (1)] which is due to the vorticity convection from the where v is the power index for the thermal conduc-
rippled shock towards the ablation front (in the ablationtion, L, is the characteristic thickness of ablation front,
front frame of reference, the compressed material moveg = (2/»)"/”/T'(1 + 1/v) + 0.12/v?, and I'(x) is the
with the ablation velocity). The vorticity convection from Gamma function. The parametersandL, can be deter-
the shock produces a destabilizing effect because it bringsined by using the fitting procedure described in Ref. [10].
additional perturbations (in particular, the perturbationg~or plastic (CH) targets directly driven by a flattop laser
of the velocity gradients) towards the ablation region.pulse with an intensity c§0-200 TW/cn?, such a proce-
Velocity gradients lead to a dynamic pressure gradientlure givesLy = 0.1 um andv = 1, thus the oscillation
dyPs = pV(d,v), that generates a destabilizing force. period isTcy = 27/w = 3/[V.(um/n9y/k(um=1)] ns.
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results of the 2DORCHID [11] simulations are plotted

02Fy T T T TTTr
f"‘ @) ] in Fig. 1(b). Although the oscillation frequency is well
g 01 ] reproduced by the model, the predicted amplitude is lower
2 r . then the one observed in the simulation. This could be
S 00f ] related to the fact that the size of the conduction zone
= 3 ] changes in time at the beginning of implosion, and the
5 -0.1} ] corrections due to a time variation in the ablation and the
; ] blow-off velocities become important. This problem will
_0_2:_| ‘ L |: be addressed in future work.' '
0 4 p 3 10 _In summary, the_ analyt_|c theory of the ablative
Richtmyer-Meshkov instability was developed. It was
Time (ns) shown that the main stabilizing mechanism of the
- — , — ablation-front perturbations is the dynamic overpressure
02 E AN (b) 3 created by the finite thermal conduction.
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