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Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension
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We demonstrate that a system of self-propelled particles exhibits spontaneous symmetry breaking
and self-organization in one dimension, in contrast with previous analytical predictions. To explain
this surprising result we derive a new continuum theory that can account for the development of the
symmetry broken state and belongs to the same universality class as the discrete self-propelled particle
model. [S0031-9007(98)07911-3]

PACS numbers: 64.60.Cn, 05.60.Cd

The transport properties of systems consisting of self/ — —U symmetry breaks spontaneously. This result is
propelled particles (SPP) have generated much attenticas surprising as breaking of the rotational symmetry in
lately [1-6]. This interest has been largely motivated by2D. This nonequilibrium phenomenon was not foreseen
analogous processes taking place in numerous biologicaly the existing analytical approaches, which motivated
phenomena (e.g., bacterial migration on surfaces [7], flockus to introduce a new continuum theory describing the
ing of birds, fish, quadrupeds [8], correlated motion of antsSPP model in one dimension. Numerical investigations
[9] and pedestrians [10]), as well as in various other sysindicate that the continuum theory and the discrete SPP
tems, including driven granular materials [11,12] and traf-model belong to the same universality class.
fic models [13]. The models describing these phenomena The 1D SPP modek-Let us considerN off-lattice
are distinctively nonequilibrium, exhibiting kinetic phase particles along a line of lengtih. The particles are
transitions and self-organization, and are of particulacharacterized by their coordinate and dimensionless
interest from the point of view of modern statistical velocity u; updated as

mechanics [14]. . xi(t + 1) = x;(0) + vou (1),
In the simplest version of the SPP model [1]— (1)
introduced to study collective biological motion—each ui(t + 1) = G(u())) + &

particle’s velocity is set to a fixed magnitude,. The  The |ocal average velocityu); for the ith particle is
the direction of motion: the particles tend to align their A . + A] where we fixA = 1[18]. The antisymmetric
orientation to the local average velocity. Numericalfynction G incorporates both the propulsion and friction
simulations in 2D provided evidence of a second ordeforces which set the velocity in average to a prescribed
phase transition [15] between an ordered phase in whicQajue vo: G(u) > u for 0 < u < 1 and G(u) < u for

the mean velocity of the entire syste(m,, is nonzeroand ,, > | [19]. The distribution functionP of the noiseé;

a disordered phase wittv) = 0, as the strength of the s uniform in the interval—7/2, /2].

noise is increased or the density of the particles decreased. keepingwv, constant(v, = 0.1), the adjustable control

This SPP model is similar to theY model of classical parameters of the model are the average density of the
magnetic spins because the velocity of the particles, sucharticles, p = N/L and the noise amplitude). We

continuous rotational symmetry. In thg = 0 and low w+1)/2 foru>0
u u 9

noise limit the model reducesxactlyto a Monte Carlo Gu) = { )
dynamics of thexY model. Since th&Y model doesot (u—1/2 foru<o,
exhibit a long-range ordered phase at temperatfires0  and applied random initial and periodic boundary
[16], the ordered state observed in [1] is surprising. Toconditions.
explain this discrepancy, Toner and Tu (TT) [3] proposed In Fig. 1 we show the time evolution of the model for
a continuum theory that included in a self-consistent wayy = 2.0. In a short time the system reaches an ordered
the nonequilibrium effects as well. They have shown thastate, characterized by a spontaneous broken symmetry and
their model is different from th&Y model ford < 4 and clustering of the particles. In contrast, for larger values of
found an ordered phasedh= 2 [17]. While TT provided 7 a disordered velocity field can be found.
the first theoretical demonstration of the ordered phase in Scaling and exponents:To capture quantitatively the
2D SPP models, the nonlinearity responsible for the longtransition from an ordered to a disordered state, in Fig. 2a
range order in their continuum model is absentdo= 1.  we plot the order parametef = (u) vs n for variousp.

Here we demonstrate that a kinetic phase transitiols in two dimensions [1,15], the ordered phase emerges
and ordering takes place in 1D as well; i.e., the discretéhrough a second order phase transition. Near the critical
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200 300 development of the system. On the other hand, the emer-
‘ ‘ gence of the ordered phase in 1D is not predicted either by
the equilibrium theories or by the TT model. This is why
we introduce and investigate a set of continuum equations
(which can be generalized to any dimension) in terms of
U(x,t) andp(x,t), whereU andg represent the coarse-
grained dimensionless velocity and density fields, respec-
tively. Analogous approaches were fruitful in the study of
a similar SPP system, one-lane traffic flow [22].
Continuum theory—Let us denote byi(u, x, 1) dudx
the number of particles moving with a velocity in the
range of[vou, vo(u + du)] at timet in the [x,x + dx]
interval. The particle densitg (x, 7) is then given ap =
[ ndu, while the local dimensionless average velocity
U(x,t) can be calculated agU = [nudu. According
to the microscopic rules of the dynamics, in a given time
interval [7,t + 7] all particles choose a certain velocity
v/vg = [G(u)) + £] and travel a distancer. Thus,
FIG. 1. The dynamics of the 1D SPP model fbr= 300, the time development of the ensemble average (denoted

n =20, and N = 600. The darker gray level represents by the overline) ofn is governed by the master equation
higher particle density. Note that the particles exhibit clustering(u, x, ¢ + 7) = o(x’,t) p(u| U(x’, 1)), wherex’ = x —
and the spontaneous broken symmetry of motion. vour and p(u | U) denotes the conditional probability of
finding a particle with a velocity when the local velocity
noise amplitude.(p,L), which separates the ordered field U is given. From Eq. (1) we have(u | U) = P(u —
from the disordered phase, vanishes as G(U))). Sincen is finite, the actual occupation numbers
in a given system differ from. This fact can be accounted

b p) (%)ﬁ for n < n.(p,L), 3) for by adding an intrinsic noise term to the master equation
P for n > n.(p.L), as

whose finding is supported by the increasing scaling n(u,x,t + 7) = o(x,0)p(u| U, 1) + v(u,x',1),

regime with the system sizé (Fig. 2b) and by the ©6)
convergence of.(p, L) to a nonzeron.(p, ) value for . . o
increasing system sizes. We find that= 0.60 + 0.05, Where » has the following properties: ()7 = 0;

which is different from both the mean-field valugz [21] (i) because of the conservation of the particles du =
andB = 0.42 + 0.03 found ind = 2 [15]. 0; and (iii) since we have a random sampling process, the

actual values ofi satisfy Poisson statistics, i.e., the distri-
: . bution function ofr depends ow, u, andU, asP(v) =

can be collapsed onto a single functi@y(x), where DA ’ 7

x = n/n.(p), just like ind = 2. As shown in [15], the 2 eXP=A)/L(r + A+ 1), where A =opu|U).

consequence of this fact is that near the critical density th&NUS we have? = 7. _
order parameter vanishes as Taking the Taylor expansion af(u, x — vour,t) up to
the second order in and integrating Eq. (6) according to
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Figure 2a also shows that the variog$n, p) curves

p=pc(n.L)\p! du,inthevyr < 1,02 = [P(u)u*du > 1,0 > 1, and

(i) forp > pe(n, L), ' 0T L 0" = e >

¢(n.p) ~ 0 pelm:L) forz < Z.(z L) ( vora? < 1 limit we obtain

with 8/ = B. These results can be summarized inghg 9,0 = —vod.(eU) + Do, (7

ph_qse c_zllagram shown in Fig. 2c. We also find that th§ here p = vira2/2. Note that the appearance of the

critical line, n.(p), follows diffusion term is a consequence of the nonvanishing corre-
ne(p) ~ p~, (5) lation timer. Since [ p(u|U)udu = G(U)), integrat-

ing Eq. (6) according taidu, expanding(U) as(U) =

with « = 0.25 £ 0.05. U + [02U + 2(0,U) (0,0)/0]/6 [23], using (7), we ar-

While the above numerical results demonstrate the eXiSﬁve at
tence of the phase transition in one dimension and provide (9,U) (9,0)
numerical values for the scaling expone®sg’, and «, U =fU) + p*U + a e +{, (8)

the origin of these values is unclear at this point. Ordering

at finite noise level in our 1D model qualitatively can bewhere f(U) = [G(U) — U]/7, wu® = (dG/dU)/(67),
interpreted by considering that due to thiased motion a = 2u?, and¢ = frudu/or. Note thatf(U) is an
of the domains (groups of coherently moving particles), arantisymmetric function withf(U) > 0 for 0 < U < 1
effective long-range interaction is being built up during theand f(U) < 0for U > 1,/ = 0, and{? = o2%/o 7>
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FIG. 2. (a) The order parametér vs the noise amplitude normalized by the critical amplitug€p), for L = 1000 and various
values ofp. For n < n.(p) the system is in a symmetry broken state indicatedpby 0. (b) ¢ vanishes as a power law in
the vicinity of .(p). Note the increasing scaling regime with increasing The solid line is a power-law fit with an exponent
B = 0.6, while the dotted line shows the mean-field slofe= 1/2 as a comparison. (c) Phase diagram in ghe; plane.
The critical line followsn.(p) ~ p*. The solid curve represents a fit with= 1/4. (d) The order parameter vs the standard
deviation of the noise normalized ly* = o.(D = 0), obtained by direct numerical integration of the continuum modebfcr 2,
pn=1,v9=0.1,p =1, L = 1000, and various values d@. ForD <« 1 ¢ (o) follows a power law with an exponeit = 0.6
(solid line).

At this point we consider Egs. (7) and (8) with the these solutions, we assurié(0) = 0. Performing linear
coefficientsu, a, o, vy, andD as the continuum theory stability analysis we next show that for certain finite values
describing a large class of SPP models. These equation$ « the above stationary solutions are unstable.
differ from both the equilibrium field theories and the Linear stability analysis—We make use of the fact
nonequilibrium system investigated by TT [3]. The mainthat the dynamics 0P is very slow compared to that of
differences are due to (i) the nonlinear coupling termU, i.e.,vy, D < 1. We writeU in the form ofU(x, 1) =
(0,U)(9,0)/0, and (ii) the statistical properties of the Uy(x,) + u(x,t), where Uy(x,7) = U*(x — £(¢r)) and
noise/. Fora = 0 the dynamics of the velocity field#  the position of the domain wall¢(z), is defined by
is independent 0p, and Eq. (8) is equivalent to the time U(£(¢),t) = 0. Now in theu < Uy, d,u < 9,Uy, and
dependent Ginsburg-Landa®* model describing spin ¢ < 1 limit in the moving framex’ = x — £(1), Eq. (8)
chains, where domains of opposite magnetization develogeads as
at finite temperatures [21]. _ _ gl = Ea + (g — gou' + p2o%u + alh, (9)

To study the effect of the nonlinear term in (8), we " 5 . .
now investigate the development of the ordered phase iWhere «'(x') = ”(x)*’ h =ad;Ineg*, a=0,U", and
the deterministic caser = 0). Fora = 0 Egs. (7) and &&) = (df/dU) (U*(x")) + g= with g. = (df/dU)(1).
(8) have a set of (meta)stable stationary solutighsand ~ FromU(£(1). 1) = Uo(£(1),1) = Owe getu'(x" = 0,1) =
U* describing a “domain wall” separating two regions 0, Which yields
with opposite velocities. Since we can freely translate —£a(0) = u?o%u'(0,1) + ath. (10)
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