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Global versus Local Billiard Level Dynamics: The Limits of Universality
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Level dynamics measurements have been performed in a Sinai microwave billiard as a functi
a single length, as well as in rectangular billiards with randomly distributed disks as a function o
position of one disk. In the first case the field distribution is changedglobally, and velocity distributions
and autocorrelation functions are well described by universal functions derived by Simons and Alts
In the second case the field distribution is changedlocally. Here another type of universal correlation
is observed. It can be derived under the assumption that chaotic wave functions may be describe
random superposition of plane waves. [S0031-9007(99)08639-1]
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In 1972 Edwards and Thouless noticed that the co
ductivity of a disordered system is closely related to th
sensitivity of its eigenvalues on an external perturbatio
[1,2]. For a ring with a perpendicularly applied mag
netic field they conjectured that the conductivityC is pro-
portional to the averaged curvature of the eigenvalu
C , kj≠2En

≠w2 jw0l, wherew is the magnetic flux through the
ring. In 1992 Akkermans and Montambaux showed th
the conductivity may alternatively be expressed in terms
the eigenvalue velocities,C , kj≠En

≠w j2l [3]. This suggests
to rescale the parameter and the eigenvalues by
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whereD is the mean level spacing. Szafer, Simons, a
Altshuler studied a number of parametric correlations
the rescaled eigenenergies [4,5], in particular the veloc
autocorrelation function
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originally introduced by Yang and Burgdörfer [6], and
conjectured a universal behavior as long as the so-cal
zero-mode approximation holds, i.e., in the range whe
the energy fluctuations show random matrix behavio
For the velocity distribution Simons and Altshuler foun
a Gaussian behavior [5]. The same behavior has be
obtained by a completely different approach starting fro
the analogy between the level dynamics of a chaotic syst
and the dynamics of a one-dimensional gas with repuls
interaction [7,8]. In the region of onset of localization
deviations from the Gaussian behavior are found [9].

Since in the zero-mode approximation the energ
correlations of a disordered system are identical to tho
of random matrices, it came as no surprise that t
universal behavior of parametric correlations was foun
in billiard systems as well [5]. Universal behavior wa
observed also for the hydrogen atom in a strong magne
0031-9007y99y82(10)y2026(4)$15.00
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field [10], conformally deformed [11] and ray-splitting
billiards [12], and in the acoustic spectra of vibrating
quartz blocks [13]. In all cases the general features
the conjectured universal behavior had been reproduc
reasonably well, but a number of significant discrepanci
remained unexplained.

This was our motivation to study different types o
billiard level dynamics in a bit more detail. All results
to be presented below have been obtained in microwa
billiards [14]. Here it is sufficient to note that for flat
resonators the electromagnetic spectrum is complete
equivalent to the quantum mechanical spectrum of th
corresponding billiard, as long as one does not surpa
the frequencynmax  cy2h, where h is the resonator
height. In the experiments we chooseh  8 mm yielding
a maximum frequency of 18.74 GHz.

One of the systems studied was a quarter Sinai billia
with a width b  200 mm, a radius r  70 mm of
the quarter circle, and a lengtha which was varied
between 480 and 500 mm in steps of 0.2 mm. Abo
120 eigenvalues entered into the data analysis in t
frequency range 14.5 to 15.5 GHz. The second syste
was a rectangular billiard with side lengthsa  340 mm,
b  240 mm, containing 20 randomly distributed circular
disks with a diameter of 5 mm (see Fig. 1). By a

FIG. 1. Sketch of the billiard used for the local level dynam
ics (to scale).
© 1999 The American Physical Society
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spatially resolved measurement [15] we found that
eigenfunctionsc in the studied frequency range wer
delocalized andjcj2 was Porter-Thomas distributed. Th
position of one of the disks was varied in one direction
steps of 1 mm. Whereas the first type of level dynam
may be considered as global, since a shift of the billia
length of the order of 1 wavelength will change the wav
function pattern everywhere in the billiard, the shift of th
disk gives rise to a local modification only.

We start with a discussion of the global level dynamic
Figure 2 shows the velocity distribution for the quart
Sinai billiard with lengtha as the level dynamics parame
ter. The distribution is well described by a Gaussian
accordance with the expected universal behavior (this
sult has been presented already in [8]). Figure 3 sho
the corresponding velocity correlator. To obtain the
sult, each eigenvalue was studied over a range of f
to five avoided crossings, and the scaling was perform
by calculating the mean squared velocity for each eig
value independently. Subsequently, the results of ab
120 eigenvalues were superimposed. The solid line co
sponds to Simons’ and Altshuler’s universal function [16
The overall agreement between experiment and the
is good, but forx . 2.5 (not shown) the correlation func
tion does not approach zero but stays at negative val
This is an artifact resulting from an insufficient num
ber of data points making the calculation of the avera
k ≠ensX1xd

≠X
≠ensXd

≠X l unreliable for largex values. Most cor-
relation functions found in the literature end atx values
of at most 1.5, probably just for this reason.

Let us now turn to the discussion of the local lev
dynamics, where the position of one disk was varie
Whether a level dynamics must be considered as glo
or local, depends on the parameterd  kD, whereD is
the diameter of the disk, andk the wave number. It is
well known that in the limit of smalld values the spec-
tral properties of billiards containing hard spheres de

FIG. 2. Velocity distribution in a quarter Sinai billiard with
one length as the level dynamics parameter. The solid li
correspond to a Gaussian distribution and a distribution
scribed by a modified Bessel function [see Eq. (5)], resp
tively. The inset shows the distribution in a logarithmic scal
all
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ate significantly from random matrix behavior [17]. Fig
ure 4 shows the velocity distributions for three differen
d ranges. In Fig. 4(a) a disk withD  5 mm was used,
and the eigenvalues were taken in the frequency ran
3.4 to 6 GHz. In Figs. 4(b) and 4(c) the diameter of th
movable disk wasD  20 mm with eigenvalues in the
frequency ranges 3.4 to 6 GHz and 12.5 to 14.5 GH
respectively. None of the found velocity distributions i
Gaussian. One observes instead a distribution with a p
nounced peak aty  0, decreasing only exponentially for
large values ofjyj. With increasingd values the distri-
butions turn gradually into a Gaussian. We completed t
series by a level dynamics measurement for a half Sin
billiard, where the position of the half circle was varied
Here the obtained velocity distribution (not shown), co
responding tod values between 30 and 37, was alread
close to a Gaussian distribution.

Figure 5 shows the corresponding velocity autocorr
lation functions. The scaling technique applied was t
same as above. There is no longer any similarity betwe
the experimental curves and the universal function. On
for the largestd value displayed, the experimental curv
seems to approach the Simons-Altshuler correlation fun
tion again.

The results can be understood, if the movable disk
interpreted as a perturber probing the field in the resona
(the perturbing bead method has been used many ye
ago to map the field distributions in microwave cavitie
[18], and has recently been applied to the study of wa
functions in chaotic billiards as well [19–21]). In two-
dimensional billiards the insertion of a metallic perturbe
leads to a negative frequency shift proportional toE2,
where E is the electric field strength in the resonato
in the absence of the perturber. This holds as long
the dimensions of the perturber are small compared
the wavelength, i.e., in the limitd ! 0. Applied to the
present problem this means that the eigenvalue veloc

FIG. 3. Velocity autocorrelation function in a quarter Sina
billiard, where the level dynamics parameter was scal
according to Eq. (1). No less than 2000 velocity pairs enter
every bin of the histogram. The solid line corresponds to t
universal autocorrelation function of Simons and Altshuler.
2027
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FIG. 4. Velocity distributions in a rectangular billiard with
randomly distributed disks with the position of one disk wit
diameterD as the level dynamics parameter. The ranges
d  kD are 0.35 , d , 0.65 (a), 1.4 , d , 2.6 (b), and
5.1 , d , 5.9 (c).

is given by ≠Eny≠r  a=jcj2 where = is the gradient
in the direction of the displacement, anda is a constant
depending on the geometry of the perturber. It follow
for the velocity distribution function

Psyd  kdsy 2 2ac=cdl . (3)

Under the assumption that the wave functions can
described by a random superposition of plane waves [2
c and=c are uncorrelated, and Gaussian distributed [23

P1scd 

s
A

2p
e2sAc2y2d,

P2s=cd 

s
A

2pk2 e2sAs=cd2y2k2d. (4)

The influence of the boundary is negligible here, sin
the linear dimensions of the billiard exceed the typic
2028
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FIG. 5. Velocity autocorrelation functions in a rectangula
billiard with randomly distributed disks, where the leve
dynamics parameter was scaled according to Eq. (1). T
ranges ofd are the same as in Fig. 4.

wavelength by factors of 5 to 10. Using Eq. (4) th
average (3) is easily calculated and yields

Psyd 
b

p
K0sbjyjd , (5)

where K0sxd is a modified Bessel function, andb 
Ay2ak. The solid lines plotted in addition to the Gauss
ian curves in Figs. 2 and 4 have been calculated fro
Eq. (5). In the limit of smalld values distribution (5)
describes the experimental distributions perfectly.

The influence of local perturbations on the energ
levels has been studied by Aleiner and Matveev [24], w
derived an explicit expression for the joint distributio
function of initial and final energy levels. In their mode
the velocities are Porter-Thomas distributed [25], if th
coupling strength is taken as the level dynamics param
ter. The same distribution would have been expected
our case, if the coupling strengtha would have been
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FIG. 6. Same as Fig. 5(a), but with the level dynamic
parameter scaled according to Eq. (8).

varied instead of the position (which, however, would b
technically difficult to realize).

For the quadratical average of the eigenvalue velociti
we obtain using Eq. (5)*√

≠En

≠r

!2+


1
b2 . (6)

Entering with this expression into Eq. (1), we get fo
the rescaled parameter

x 
1

Db
r 

a

2p
kr , (7)

where we have used that in billiards the mean lev
spacing is given byD  4pyA. Equation (7) shows
that for the local level dynamicsx is not an universal
parameter, since it depends viaa on the geometry of
the movable disk. We shall therefore use the rescal
parameter

x̄  kr (8)

instead in the following. From the approach of random
superposition of plane waves [22] the velocity autocorre
lation function can be easily calculated, too. Using sta
dard techniques as they are described, e.g., in Ref. [2
we get

csx̄d  2fJ2
0 sx̄dg00  J2

0 sx̄d 2 2J2
1 sx̄d 2 J0sx̄dJ2sx̄d .

(9)

Figure 6 shows again the velocity autocorrelation o
Fig. 5(a) for the local level dynamics, but now as a func
tion of x̄. The solid line corresponds to the theoretica
expectation (9). The experimental curve follows closel
the predicted oscillations. With increasingd the oscilla-
tions are more and more damped, but the wavelength
still in accordance with the theory (not shown).
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This paper has shown that two different regimes
level dynamics have to be discriminated. In the loc
regime velocity distributions and autocorrelation functio
are quantitatively described by the approach of rand
superposition of plane wave, if the scaling (8) is applie
In the global regime, on the other hand, Simons’ a
Altshuler’s universal functions describe the experimen
results well, and the scaling (1) is the appropriate one. T
parameterd  kD governs the transition between the tw
regimes.
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