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Global versus Local Billiard Level Dynamics: The Limits of Universality
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Level dynamics measurements have been performed in a Sinai microwave billiard as a function of
a single length, as well as in rectangular billiards with randomly distributed disks as a function of the
position of one disk. In the first case the field distribution is chargjebally, and velocity distributions
and autocorrelation functions are well described by universal functions derived by Simons and Altshuler.
In the second case the field distribution is chanlgedlly. Here another type of universal correlation
is observed. It can be derived under the assumption that chaotic wave functions may be described by a
random superposition of plane waves. [S0031-9007(99)08639-1]

PACS numbers: 05.45.-a, 73.23.-b

In 1972 Edwards and Thouless noticed that the confield [10], conformally deformed [11] and ray-splitting
ductivity of a disordered system is closely related to thebilliards [12], and in the acoustic spectra of vibrating
sensitivity of its eigenvalues on an external perturbatiorquartz blocks [13]. In all cases the general features of
[1,2]. For a ring with a perpendicularly applied mag- the conjectured universal behavior had been reproduced
netic field they conjectured that the conductiviyis pro-  reasonably well, but a number of significant discrepancies
portiona}I to the averaged curvature of the eigenvaluesemained unexplained.

C ~ <I%I¢:o>,where¢ is the magnetic flux throughthe ~ This was our motivation to study different types of
ring. In 1992 Akkermans and Montambaux showed thabilliard level dynamics in a bit more detail. All results

the conductivity may alternatively be expressed in terms of0 be presented below have been obtained in microwave

the eigenvalue velocitieg] ~ <|%%|2> [3]. This suggests DPilliards [14]. Here it is sufficient to note that for flat

to rescale the parameter and the eigenvalues by resonators the electromagnetic spectrum is completely
2\ 12 equivalent to th_e ‘quantum mechanical spectrum of the
1 oE, E,.(¢) corresponding billiard, as long as one does not surpass

X = Z< PP > ®s n(x) = A D the frequencyvmax = c/2h, where h is the resonator

height. In the experiments we chodse= 8 mm yielding
whereA is the mean level spacing. Szafer, Simons, and maximum frequency of 18.74 GHz.
Altshuler studied a number of parametric correlations of One of the systems studied was a quarter Sinai billiard
the rescaled eigenenergies [4,5], in particular the velocityvith a width 5 = 200 mm, a radiusr = 70 mm of
autocorrelation function the quarter circle, and a length which was varied
) between 480 and 500 mm in steps of 0.2 mm. About
() = <96n(X + x) aGn(X)> _ <36n(X)> @ 120 eigenvalues entered into the data analysis in the

0X 0X )¢ frequency range 14.5 to 15.5 GHz. The second system
was a rectangular billiard with side lengths= 340 mm,

originally introduced by Yang and Burgdorfer [6], and » = 240 mm, containing 20 randomly distributed circular
conjectured a universal behavior as long as the so-callegisks with a diameter of 5 mm (see Fig.1). By a
zero-mode approximation holds, i.e., in the range where
the energy fluctuations show random matrix behavior.
For the velocity distribution Simons and Altshuler found
a Gaussian behavior [5]. The same behavior has been
obtained by a completely different approach starting from
the analogy between the level dynamics of a chaotic system . ..
and the dynamics of a one-dimensional gas with repulsive
interaction [7,8]. In the region of onset of localization
deviations from the Gaussian behavior are found [9]. O

Since in the zero-mode approximation the energy
correlations of a disordered system are identical to those
of random matrices, it came as no surprise that the . °* .
universal behavior of parametric correlations was found =

in billiard systems as well [5]. Universal behavior was FiG. 1. Sketch of the billiard used for the local level dynam-
observed also for the hydrogen atom in a strong magnetics (to scale).
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spatially resolved measurement [15] we found that allate significantly from random matrix behavior [17]. Fig-
eigenfunctionsy in the studied frequency range were ure 4 shows the velocity distributions for three different
delocalized andi|> was Porter-Thomas distributed. The & ranges. In Fig. 4(a) a disk with = 5 mm was used,
position of one of the disks was varied in one direction inand the eigenvalues were taken in the frequency range
steps of 1 mm. Whereas the first type of level dynamics3.4 to 6 GHz. In Figs. 4(b) and 4(c) the diameter of the
may be considered as global, since a shift of the billiardnovable disk wash = 20 mm with eigenvalues in the
length of the order of 1 wavelength will change the wave-frequency ranges 3.4 to 6 GHz and 12.5 to 14.5 GHz,
function pattern everywhere in the billiard, the shift of therespectively. None of the found velocity distributions is
disk gives rise to a local modification only. Gaussian. One observes instead a distribution with a pro-
We start with a discussion of the global level dynamics.nounced peak at = 0, decreasing only exponentially for
Figure 2 shows the velocity distribution for the quarterlarge values ofv|. With increasingé values the distri-
Sinai billiard with lengtha as the level dynamics parame- butions turn gradually into a Gaussian. We completed the
ter. The distribution is well described by a Gaussian inseries by a level dynamics measurement for a half Sinai
accordance with the expected universal behavior (this rebilliard, where the position of the half circle was varied.
sult has been presented already in [8]). Figure 3 showslere the obtained velocity distribution (not shown), cor-
the corresponding velocity correlator. To obtain the reresponding toé values between 30 and 37, was already
sult, each eigenvalue was studied over a range of fourlose to a Gaussian distribution.
to five avoided crossings, and the scaling was performed Figure 5 shows the corresponding velocity autocorre-
by calculating the mean squared velocity for each eigentation functions. The scaling technique applied was the
value independently. Subsequently, the results of abowtame as above. There is no longer any similarity between
120 eigenvalues were superimposed. The solid line corrghe experimental curves and the universal function. Only
sponds to Simons’ and Altshuler’s universal function [16].for the largests value displayed, the experimental curve
The overall agreement between experiment and theorgeems to approach the Simons-Altshuler correlation func-
is good, but forx > 2.5 (not shown) the correlation func- tion again.
tion does not approach zero but stays at negative values. The results can be understood, if the movable disk is
This is an artifact resulting from an insufficient num- interpreted as a perturber probing the field in the resonator
ber of data points making the calculation of the averagdthe perturbing bead method has been used many years
(2elX0) 96Xy nreliable for larger values. Most cor- @go to map the field distributions in microwave cavities
relation functions found in the literature end.avalues [18], and has recently been applied to the study of wave
of at most 15, probab|y just for this reason. functions in chaotic billiards as well [19—21]) In two-
Let us now turn to the discussion of the local leveldimensional billiards the insertion of a metallic perturber
dynamics, where the position of one disk was varied!eads to a negative frequency shift proportional A9,
Whether a level dynamics must be considered as g|obthereE is the electric field Strength in the resonator
or local, depends on the parameter= kD, whereD is N the absence of the perturber. This holds as long as
the diameter of the disk, ankl the wave number. It is the dimensions of the perturber are small compared to
well known that in the limit of smalls values the spec- the wavelength, i.e., in the limié — 0. Applied to the
tral properties of billiards containing hard spheres deviPresent problem this means that the eigenvalue velocity
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FIG. 2. Velocity distribution in a quarter Sinai billiard with FIG. 3. Velocity autocorrelation function in a quarter Sinai
one length as the level dynamics parameter. The solid linebilliard, where the level dynamics parameter was scaled
correspond to a Gaussian distribution and a distribution deaccording to Eq. (1). No less than 2000 velocity pairs entered
scribed by a modified Bessel function [see Egq. (5)], respecevery bin of the histogram. The solid line corresponds to the
tively. The inset shows the distribution in a logarithmic scale. universal autocorrelation function of Simons and Altshuler.
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FIG. 4. Velocity distributions in a rectangular billiard with FIG. 5. Velocity autocorrelation functions in a rectangular
randomly distributed disks with the position of one disk with Pilliard with randomly distributed disks, where the level
diameterD as the level dynamics parameter. The ranges offynamics parameter was scaled according to Eg. (1). The
8 =kD are 035 < 86 < 0.65 (a), 1.4< 8 <26 (b), and ranges of6 are the same as in Fig. 4.

51 <8 <59(c).

wavelength by factors of 5 to 10. Using Eq. (4) the

. . — 2 . .
is given by 9E,/or = aVI|" whereV is the gradient average (3) is easily calculated and yields

in the direction of the displacement, andis a constant

depending on the geometry of the perturber. It follows B
for the velocity distribution function P(v) = . Ko(Blvl). (5)
P(v) =(6(v — 2ay/Vy)). (3)  where Ko(x) is a modified Bessel function, ang =

é/zak. The solid lines plotted in addition to the Gauss-
an curves in Figs. 2 and 4 have been calculated from
g. (5). In the limit of smallé values distribution (5)
escribes the experimental distributions perfectly.

The influence of local perturbations on the energy
Pi) = 5”7
2 9

Under the assumption that the wave functions can b
described by a random superposition of plane waves [22
¢ andVy are uncorrelated, and Gaussian distributed [23]d

levels has been studied by Aleiner and Matveev [24], who
derived an explicit expression for the joint distribution
A - function of initial and final energy levels. In their model
—— TV, (4) the velocities are Porter-Thomas distributed [25], if the
2mk coupling strength is taken as the level dynamics parame-
The influence of the boundary is negligible here, sinceer. The same distribution would have been expected in
the linear dimensions of the billiard exceed the typicalour case, if the coupling strength would have been

Py (Vi) =
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L L AL This paper has shown that two different regimes of
level dynamics have to be discriminated. In the local
regime velocity distributions and autocorrelation functions
are quantitatively described by the approach of random
superposition of plane wave, if the scaling (8) is applied.
In the global regime, on the other hand, Simons’ and
Altshuler’s universal functions describe the experimental
results well, and the scaling (1) is the appropriate one. The
parameteb = kD governs the transition between the two

0.5

c(kr)

0.0

regimes.
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For the quadratical average of the eigenvalue velocities
we obtain using Eqg. (5)

FIG. 6. Same as Fig. 5(a), but with the level dynamics
parameter scaled according to Eq. (8).
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