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Chaos and Synchronized Chaos in an Earthquake Model
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We show that chaos is present in the symmetric two-block Burridge-Knopoff model for earthquakes.
This is in contrast with previous numerical studies, but in agreement with experimental results. In this
system, we have found a rich dynamical behavior with an unusual route to chaos. In the three-block
system, we see the appearance of synchronized chaos, showing that this concept can have potential
applications in the field of seismology. [S0031-9007(98)08083-1]

PACS numbers: 05.45.—a, 91.45.Dh, 91.60.Ba

In recent years, the phenomenon of chaotic synchroniz&?aladin found chaotic behavior in the two-block BK model
tion has been a subject of intensive studies. By definitiongnly with the presence of an asymmetry in the system, even
chaotic systems present strong sensitivity to the initial coneonsidering a velocity weakening friction force [11,14]. In
ditions, and in principle it seems impossible to synchronizeparticular, they considered the friction force in one block
them. However, Fujisakat al.[1] and Pecoreet al. [2] being different from the friction force in the other block.
showed that systems with chaotic behavior can be synchr@n the other hand, by modeling the two-block BK model
nized, if appropriate connections among them are madéday electronic circuits, Field, Venturi, and Nori [15] showed
This phenomenon has been called “chaotic synchronizaexperimentally that a completelgymmetricsystem does
tion,” and has been investigated mainly in applications fompresent chaotic behavior in a wide range of the parameter
secure communications [3]. space. Therefore, their results are in contradiction to what

Another area of active research nowadays is related twas reported in [11,14]. One of the purposes of this Let-
systems that present avalanchelike dynamics. This waser is to resolve this contradiction. We show that the two-
triggered by a paper by Bak, Tang, and Wiesenfeld [4]block BK system in a symmetric configuration is chaotic.
They showed that certain dissipative systems, with manys in the experimental study, chaos is seen in a wide range
degrees of freedom, naturally evolve to a critical stateof parameter values. We stress that a one-block system in
characterized by power-law distributions in space and timehe BK model cannot present chaos, since its dimensional-
They denoted this phenomenon self-organized criticalityity is smaller than the minimum dimension necessary for
(SOC). a system to present chaotic behavior, which is three. (It

One of the systems that has been studied in connectias obvious that here we are considering the absence of ele-
with SOC is the Burridge-Knopoff (BK) model for earth- ments with delay in the system, since in this way one could
guakes [5]. This model consists of blocks connected byncrease its dimensionality up to infinity.)
springs. The whole system is pulled with constant veloc- In this Letter we also show that the phenomenon of syn-
ity on a surface with friction. It has been shown experi-chronized chaos appears in the three-block system of the
mentally [5] and numerically [6] that this model presentsBurridge-Knopoff model for earthquakes. Most impor-
a region of power-law distribution similar to what is ob- tantly, it comes naturally from the geometry of the system,
served in real earthquakes, namely, the Gutenberg-Richterithout any need for special connections, as is generally
law [7]. Since the power law does not span the entire systhe case in the studies of synchronized chaos. From our
tem, one could say that this system does not present whegsults, we speculate that synchronized chaos may have ap-
has been defined as SOC. However, a variation of it, calledlications in the field of seismology. That is, earthquakes
the “train model,” does present SOC [8,9]. faults, which are generally coupled through the elastic me-

After the work by Carlson and Langer [6], several stud-dia in the Earth crust could in principle synchronize, even
ies on the BK model were performed. With respect towhen they have an irregular (chaotic) dynamics. As a
the chaotic properties of the model, we are aware of theonsequence of synchronization, the dimensionality of the
numerical studies by Nussbaum and Ruina [10], Huangttractor of the system decreases what simplifies the analy-
and Turcotte [11], Nakanishi [12], Crisanét al.[13] sis of the system, as discussed below. We quantify the
and Lacoratat al. [14]. In [12] and [13] the systems con- degree of synchronization by studying the Liapunov expo-
sidered had more than two blocks and they were evolvedent associated with the synchronization manifold, that is,
by cellular automaton rules. Nussbawgh al. studied a the transverse (or conditional) Liapunov exponent [1,16],
symmetric two-block BK model, and verified that, with a and compare it with the Liapunov exponents of the three-
friction force of the Coulomb type (that is the dynamic fric- block system.
tion coefficient being constant), the system presents only We start by reviewing the BK model. It consists of a
period behavior. Huang and Turcotte, and Lacorata andhain of blocks of mass: connected by coil springs of
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strengthk. to its nearest neighbors. They are situated 0.45
on a rough surface. Between the blocks and the surface 0.4

there is a frictional forceF. Here we consider thakt 0.35
is a function of the block velocity. Each block is also 03
attached by a leaf spring of strength to a surface that 025
moves with constant velocity. A figure of the system =S

can be found in [6]. Following Carlson and Langer [6], 0.2
we denote byX; the position of block; with respect 0.15
to its equilibrium position, write the friction force as 0.1

F(Xj/v.) = Fo®(X;/v.), where®(0) = 1 and v, is a 0.05
characteristic velocity, and introduce the variabtes
wpt, w3 = k,/m, U; = k,X;/Fo. Then the equation of
motion for the two-block system can be written in the
following dimensionless form:

Ul =k(Uy—U) — U +vr — q)(Ul/Vi),

.. . 1

Uy = k(U — Uy) — Uy + vt — ®(U/v5), @)
with v = v /Vy, v¢ = v./Vy, Vo = Fo/\Jkp,m, andk =
ke/k,. Dots denote differentiation with respect ta
Equation (1) is valid only when blockis moving. Ifitis

not, its equation is simply/; = v. We use the velocity < 0.00 |l M PAIVRAYE
weakening friction force introduced in [6], given by 005 [} " L -
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which is a simple nonlinear function. In the simulations e

displayed here, we did not allow backward motion, that is,
the static friction force can take any value to prevent it.FIG. 1. (a) Orbit in phase space for block 1 whefwi =
However, several tests showed that if backward motion id/»2 = 1. (b) Bifurcation diagram ofU, in the Poincaré
allowed, the results remain essentially the same. section in whichU; — Uy = 0. (c) The largest Liapunov

In contradiction with the reports in [11,14], but in a ree_exponent/\, (solid line) and the second-largest Liapunov

con . p [11,14], Qre€€-exponent A, (dashed line) of the system. Here we have

ment with experimental results [15], we find that a ve-, = 0.1 and k = 1 in a two-block system. The Liapunov
locity weakening friction force leads to a rich dynamical exponents were calculated with perturbationd @f*, time step
behavior in the two-block BK system, even when it is iden-of 0.05, and400 000 iterations.
tical for the two blocks. We find the presence of peri-
odic, quasiperiodic, and chaotic behavior. In Fig. 1(a) we
show an example of chaotic motion, by plottitig versus The bifurcation diagram for the two-block system is
Uy — Ui, with 1/v¢ = 1/v{ = 1/v; = 1. We denote shown in Fig. 1(b). There we display; versus1/v°,
Uj = vt — v°/(v* + v) the unstable equilibrium point in the Poincaré section satisfyirig — U = 0. In order
around which the orbits of block circle in phase space, to quantitatively characterize the dynamics, we have cal-
which is found by taking’; = 0 andU; = » in Eq. (1)  culated the two largest Liapunov exponents of the system.
(the stability of such a solution for any number of blocksIf the largest Liapunov exponent (LLE) of the system is
was analyzed in [6]). Unless explicitly stated otherwise,greater than zero, then, by definition, the system is chaotic.
we take in the numerical studies shown heré¢ as 1 and  Quasiperiodic motion occurs in this system when the LLE
v = 0.1. However, similar behavior was found for other and the second-largest Liapunov exponent (SLLE) are
parameter values as well. We do not displdy versus  zero, and the motion is periodic when the LLE is zero and
U, — U3, since we have found that for this system the atthe SLLE is negative. We used the method introduced in
tractors of the two blocks are the same. In other words[17] to calculate the LLE and SLLE, and our results are
the plot of U, versusU, — Uj; is identical to the one of displayed in Fig. 1(c). The solid line refers to the LLE
U, versusU; — Uf, showing that the two blocks will visit and the dashed line is the SLLE. We investigated in detail
the same region of the phase space, but not necessarilytae first entrance into chaos, which occur$/at® =~ 0.112
the same time. The initial conditions for the simulationsfor these parameter values and noticed that it is unusual.
shown here are the blocks initially at rest and with smallWe found that the route to chaos is from period one to pe-
random displacements from their equilibrium position. Inriod two and then directly into chaos. This unusual route
all the simulations, a transient time was discarded. is probably due to the fact that here we have a system
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governed by nondifferentiable flows. Most of what is than the subsystem to which they are connected [2]. Also,
known in dynamical system theory deals with systems thait is a property of chaotic synchronization that blocks 1 and
are infinitely differentiable, which is not the case here.3 need to have the same parameter values, if perfect syn-
More details about return maps and other quantities fochronization in the absence of control is the goal.
this system will be published elsewhere [18]. However, we find that when there is an asymmetry
One may ask why Huang and Turcotte [11] did not findin the system, chaotic synchronization occurs in a large
chaotic behavior in the symmetric BK model? The reasonrange of the parameter space. We can either introduce
is that they made an inconsistent assumption, that is, thaisymmetries in the springs, masses, or friction forces. We
the driving block does not move during the slipping eventschoose the latter to demonstrate our results, but similar
This assumption is equivalent to taking the pulling velocityresults were found in the other two cases. Therefore, we
going to zero, since they drop out the term in Eq. (1). make the friction force in block 2 smaller than the friction
However, from the equations of motion of the system, itforce in blocks 1 and 3 (which means that they are more
turns out that the blocks will not move, if they are ini- rough than block 2).
tially at rest, if one considers this, since the displacement In Fig. 2(a) we show an example of a chaotic orbit
of the blocks is proportional to the pulling velocity. This for block 1, with the parameter valudgv‘ = 1/v] =
is shown in detail in [6]. One way to avoid this is to take 1/v5 = 4/v5; = 0.165. We will see that this attractor is
a discontinuous friction force as in [19], and this was notfrom a regime in which blocks 1 and 3 are synchronized.
considered in the study of the symmetric system by Huandn Fig. 2(b) the LLE (solid line) and the SLLE (dashed
and Turcotte. The system equation in [14] is, in our view-line) of the three-block system are shown. In Fig. 2(c)
point, technically correct. The reason why they did notwe show the Liapunov exponent of the synchronization
see chaos in the symmetric system is probably because theyanifold (solid line), that is, what is called the transverse
did not study a large enough region of the parameter spacr conditional) Liapunov exponent [1,16]. We have cal-
Now we concentrate on the phenomenon of chaotic syneulated the transverse Liapunov exponent by adapting the
chronization in the BK model. We have not found this method introduced by Benettin [17]. Thatis, after the tran-
phenomenon in the two-block system with the friction sient dies out, we evolve the orbit of block 3 by making it
force we consider here. If the two blocks were syn-slightly different from the orbit of block 1. Then we ver-
chronized, they would behave as a single block, and thigy how the difference between the orbits of the two blocks
would be equivalent to having a single block system withevolves after a short time step. The perturbation is renor-
chaotic behavior, which we know is impossible, as dis-malized in the direction of the maximum growth, and the
cussed above. We see, however, that a three-block systgwnocess is repeated many times. The transverse Liapunov

does present chaotic synchronization. exponent is given by the average logarithm (in this paper

The equation of motion for the three-block system inwe use base 2) of the growth (or shrinkage) of the perturba-
dimensionless form is tion along the orbit. Figure 2(c) also shows (dashed line)
U, = kU, — Uy) — Uy + vr — q’(Ul/Vf), the Euclidean distancB in phase space between blocks

1 and 3, that isD = \/(Ul — U3)? + (Ul - Us)z, as a

function of 1/v¢. This distance is an average over a time
.. . A7 = 2000. We see that the transverse Liapunov expo-
Uy = k(Uy = Us) = Us + vr — ®(U3/v5). nent correctly determines the region in which blocks 1 and
We see the equations that govern the motion of block8 are synchronized. In this situation, the transverse Lia-
1 and 3 have the same functional form. They are alspunov exponent is negative and the distance between the
linked to a common subsystem, that is, block 2. Thistwo blocks is zero. Comparing Figs. 2(b) and 2(c) we can
configuration is not of the “master-slave” type, since thereadentify the regions of chaotic synchronization, where we
is feedback between blocks 1 and 2 and between blocksave one or more Liapunov exponents of the three-block
2 and 3. However, the equations have the necessagystem greaterthan zero and the transverse Liapunov expo-
ingredients for chaotic synchronization between blocks Tent is less than zero. This is, for example, the case of the
and 3 to occur, which is the same functional form. attractor shown in Fig. 2(a). There only one Liapunov ex-
We have found chaotic synchronization when the paponent of the system is larger than zero. The comparison
rameters for all the blocks are the same only in a venbetween Figs. 2(b) and 2(c) also shows that the transition
small region of the parameter space. It is not difficult tofrom chaos to hyperchaos [20] does not determine here
understand why. With the leaf springs having the saméhe transition from chaotic synchronization to nonsynchro-
value, blocks 1 and 3 are more loose than block 2 (sinceization, as was the case of the system studied in [21] (the
the latter is attached to two coil springs instead of one)hyperchaos regime is defined as the one in which there is
Therefore, in general, blocks 1 and 3 attain larger velocimore than one positive Liapunov exponent). For example,
ties than block 2, and with the friction force that we use,at1/v° = 0.38 there is only one positive Liapunov expo-
they are more unstable. Chaotic synchronization happengent, and no synchronization is seen between blocks 1 and
when the subsystems to be synchronized are more stale There is also the case in which the LLE and the SLLE
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0.30 . , T . T T [22]. Such systems are treated basically as stochastic
systems. However, if synchronization happens among
0.25 elements of a large system, then the dimensionality of
the attractor decreases. For example, in the three-block
_ 020 system studied here, the dimension of the attractor can
= decrease by up to 2. If the dimension of the attractor
0.15 decreases, the analysis of the system becomes easier. This
fact emphasizes the need for a deeper analysis of the
0.10 . . . -
relationship between synchronized chaos and prediction.
0.05 We hope that this work will motivate more studies on
chaotic synchronization for applications to seismology.
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