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Chaos and Synchronized Chaos in an Earthquake Model
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We show that chaos is present in the symmetric two-block Burridge-Knopoff model for earthquake
This is in contrast with previous numerical studies, but in agreement with experimental results. In th
system, we have found a rich dynamical behavior with an unusual route to chaos. In the three-blo
system, we see the appearance of synchronized chaos, showing that this concept can have pote
applications in the field of seismology. [S0031-9007(98)08083-1]

PACS numbers: 05.45.–a, 91.45.Dh, 91.60.Ba
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In recent years, the phenomenon of chaotic synchroni
tion has been a subject of intensive studies. By definitio
chaotic systems present strong sensitivity to the initial co
ditions, and in principle it seems impossible to synchroni
them. However, Fujisakaet al. [1] and Pecoraet al. [2]
showed that systems with chaotic behavior can be synch
nized, if appropriate connections among them are ma
This phenomenon has been called “chaotic synchroni
tion,” and has been investigated mainly in applications f
secure communications [3].

Another area of active research nowadays is related
systems that present avalanchelike dynamics. This w
triggered by a paper by Bak, Tang, and Wiesenfeld [4
They showed that certain dissipative systems, with ma
degrees of freedom, naturally evolve to a critical sta
characterized by power-law distributions in space and tim
They denoted this phenomenon self-organized critical
(SOC).

One of the systems that has been studied in connect
with SOC is the Burridge-Knopoff (BK) model for earth-
quakes [5]. This model consists of blocks connected
springs. The whole system is pulled with constant velo
ity on a surface with friction. It has been shown exper
mentally [5] and numerically [6] that this model presen
a region of power-law distribution similar to what is ob
served in real earthquakes, namely, the Gutenberg-Rich
law [7]. Since the power law does not span the entire sy
tem, one could say that this system does not present w
has been defined as SOC. However, a variation of it, cal
the “train model,” does present SOC [8,9].

After the work by Carlson and Langer [6], several stud
ies on the BK model were performed. With respect
the chaotic properties of the model, we are aware of t
numerical studies by Nussbaum and Ruina [10], Hua
and Turcotte [11], Nakanishi [12], Crisantiet al. [13]
and Lacorataet al. [14]. In [12] and [13] the systems con-
sidered had more than two blocks and they were evolv
by cellular automaton rules. Nussbaumet al. studied a
symmetric two-block BK model, and verified that, with a
friction force of the Coulomb type (that is the dynamic fric
tion coefficient being constant), the system presents o
period behavior. Huang and Turcotte, and Lacorata a
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Paladin found chaotic behavior in the two-block BK mode
only with the presence of an asymmetry in the system, ev
considering a velocity weakening friction force [11,14]. I
particular, they considered the friction force in one bloc
being different from the friction force in the other block
On the other hand, by modeling the two-block BK mod
by electronic circuits, Field, Venturi, and Nori [15] showe
experimentally that a completelysymmetricsystem does
present chaotic behavior in a wide range of the parame
space. Therefore, their results are in contradiction to wh
was reported in [11,14]. One of the purposes of this Le
ter is to resolve this contradiction. We show that the tw
block BK system in a symmetric configuration is chaoti
As in the experimental study, chaos is seen in a wide ran
of parameter values. We stress that a one-block system
the BK model cannot present chaos, since its dimension
ity is smaller than the minimum dimension necessary f
a system to present chaotic behavior, which is three.
is obvious that here we are considering the absence of e
ments with delay in the system, since in this way one cou
increase its dimensionality up to infinity.)

In this Letter we also show that the phenomenon of sy
chronized chaos appears in the three-block system of
Burridge-Knopoff model for earthquakes. Most impor
tantly, it comes naturally from the geometry of the system
without any need for special connections, as is genera
the case in the studies of synchronized chaos. From
results, we speculate that synchronized chaos may have
plications in the field of seismology. That is, earthquak
faults, which are generally coupled through the elastic m
dia in the Earth crust could in principle synchronize, eve
when they have an irregular (chaotic) dynamics. As
consequence of synchronization, the dimensionality of t
attractor of the system decreases what simplifies the ana
sis of the system, as discussed below. We quantify t
degree of synchronization by studying the Liapunov exp
nent associated with the synchronization manifold, that
the transverse (or conditional) Liapunov exponent [1,16
and compare it with the Liapunov exponents of the thre
block system.

We start by reviewing the BK model. It consists of
chain of blocks of massm connected by coil springs of
© 1998 The American Physical Society 201
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strengthkc to its nearest neighbors. They are situate
on a rough surface. Between the blocks and the surfa
there is a frictional forceF. Here we consider thatF
is a function of the block velocity. Each block is also
attached by a leaf spring of strengthkp to a surface that
moves with constant velocityy. A figure of the system
can be found in [6]. Following Carlson and Langer [6]
we denote byXj the position of blockj with respect
to its equilibrium position, write the friction force as
Fs ÙXjyycd ­ F0Fs ÙXjyycd, whereFs0d ­ 1 and yc is a
characteristic velocity, and introduce the variablest ;
vpt, v2

p ; kpym, Uj ; kpXjyF0. Then the equation of
motion for the two-block system can be written in th
following dimensionless form:

Ü1 ­ ksU2 2 U1d 2 U1 1 nt 2 Fs ÙU1ync
1 d ,

Ü2 ­ ksU1 2 U2d 2 U2 1 nt 2 Fs ÙU2ync
2 d ,

(1)

with n ; yyV0, nc ; ycyV0, V0 ; F0y
p

kpm, andk ;
kcykp . Dots denote differentiation with respect tot.
Equation (1) is valid only when blockj is moving. If it is
not, its equation is simplyÙUj ­ n. We use the velocity
weakening friction force introduced in [6], given by

Fs ÙUyncd ­
1

1 1 ÙUync
, (2)

which is a simple nonlinear function. In the simulation
displayed here, we did not allow backward motion, that i
the static friction force can take any value to prevent
However, several tests showed that if backward motion
allowed, the results remain essentially the same.

In contradiction with the reports in [11,14], but in agree
ment with experimental results [15], we find that a ve
locity weakening friction force leads to a rich dynamica
behavior in the two-block BK system, even when it is iden
tical for the two blocks. We find the presence of per
odic, quasiperiodic, and chaotic behavior. In Fig. 1(a) w
show an example of chaotic motion, by plottingÙU1 versus
U1 2 Ue

1 , with 1ync ; 1yn
c
1 ­ 1yn

c
2 ­ 1. We denote

Ue
j ; nt 2 ncysnc 1 nd the unstable equilibrium point

around which the orbits of blockj circle in phase space,
which is found by takingÜj ­ 0 and ÙUj ­ n in Eq. (1)
(the stability of such a solution for any number of block
was analyzed in [6]). Unless explicitly stated otherwise
we take in the numerical studies shown here ask ­ 1 and
n ­ 0.1. However, similar behavior was found for othe
parameter values as well. We do not displayÙU2 versus
U2 2 Ue

2 , since we have found that for this system the a
tractors of the two blocks are the same. In other word
the plot of ÙU2 versusU2 2 Ue

2 is identical to the one of
ÙU1 versusU1 2 Ue

1 , showing that the two blocks will visit
the same region of the phase space, but not necessaril
the same time. The initial conditions for the simulation
shown here are the blocks initially at rest and with sma
random displacements from their equilibrium position. I
all the simulations, a transient time was discarded.
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FIG. 1. (a) Orbit in phase space for block 1 when1yn
c
1 ­

1yn
c
2 ­ 1. (b) Bifurcation diagram of ÙU1 in the Poincaré

section in which U1 2 Ue
1 ­ 0. (c) The largest Liapunov

exponent l1 (solid line) and the second-largest Liapuno
exponent l2 (dashed line) of the system. Here we hav
n ­ 0.1 and k ­ 1 in a two-block system. The Liapunov
exponents were calculated with perturbations of1024, time step
of 0.05, and400 000 iterations.

The bifurcation diagram for the two-block system
shown in Fig. 1(b). There we displayÙU1 versus1ync,
in the Poincaré section satisfyingU1 2 Ue

1 ­ 0. In order
to quantitatively characterize the dynamics, we have c
culated the two largest Liapunov exponents of the syste
If the largest Liapunov exponent (LLE) of the system
greater than zero, then, by definition, the system is chao
Quasiperiodic motion occurs in this system when the LL
and the second-largest Liapunov exponent (SLLE) a
zero, and the motion is periodic when the LLE is zero a
the SLLE is negative. We used the method introduced
[17] to calculate the LLE and SLLE, and our results a
displayed in Fig. 1(c). The solid line refers to the LLE
and the dashed line is the SLLE. We investigated in det
the first entrance into chaos, which occurs at1ync ø 0.112
for these parameter values and noticed that it is unusu
We found that the route to chaos is from period one to p
riod two and then directly into chaos. This unusual rou
is probably due to the fact that here we have a syst
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governed by nondifferentiable flows. Most of what i
known in dynamical system theory deals with systems th
are infinitely differentiable, which is not the case here
More details about return maps and other quantities f
this system will be published elsewhere [18].

One may ask why Huang and Turcotte [11] did not fin
chaotic behavior in the symmetric BK model? The reaso
is that they made an inconsistent assumption, that is, t
the driving block does not move during the slipping event
This assumption is equivalent to taking the pulling velocit
going to zero, since they drop out the termnt in Eq. (1).
However, from the equations of motion of the system,
turns out that the blocks will not move, if they are ini
tially at rest, if one considers this, since the displaceme
of the blocks is proportional to the pulling velocity. This
is shown in detail in [6]. One way to avoid this is to take
a discontinuous friction force as in [19], and this was no
considered in the study of the symmetric system by Hua
and Turcotte. The system equation in [14] is, in our view
point, technically correct. The reason why they did no
see chaos in the symmetric system is probably because t
did not study a large enough region of the parameter spa

Now we concentrate on the phenomenon of chaotic sy
chronization in the BK model. We have not found thi
phenomenon in the two-block system with the frictio
force we consider here. If the two blocks were syn
chronized, they would behave as a single block, and th
would be equivalent to having a single block system wit
chaotic behavior, which we know is impossible, as dis
cussed above. We see, however, that a three-block sys
does present chaotic synchronization.

The equation of motion for the three-block system i
dimensionless form is

Ü1 ­ ksU2 2 U1d 2 U1 1 nt 2 Fs ÙU1ync
1 d ,

Ü2 ­ ksU1 2 2U2 1 U3d
2 U2 1 nt 2 Fs ÙU2ync

2 d ,
(3)

Ü3 ­ ksU2 2 U3d 2 U3 1 nt 2 Fs ÙU3ync
3 d .

We see the equations that govern the motion of bloc
1 and 3 have the same functional form. They are al
linked to a common subsystem, that is, block 2. Th
configuration is not of the “master-slave” type, since the
is feedback between blocks 1 and 2 and between bloc
2 and 3. However, the equations have the necess
ingredients for chaotic synchronization between blocks
and 3 to occur, which is the same functional form.

We have found chaotic synchronization when the p
rameters for all the blocks are the same only in a ve
small region of the parameter space. It is not difficult t
understand why. With the leaf springs having the sam
value, blocks 1 and 3 are more loose than block 2 (sin
the latter is attached to two coil springs instead of one
Therefore, in general, blocks 1 and 3 attain larger veloc
ties than block 2, and with the friction force that we use
they are more unstable. Chaotic synchronization happe
when the subsystems to be synchronized are more sta
s
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than the subsystem to which they are connected [2]. Al
it is a property of chaotic synchronization that blocks 1 a
3 need to have the same parameter values, if perfect s
chronization in the absence of control is the goal.

However, we find that when there is an asymme
in the system, chaotic synchronization occurs in a lar
range of the parameter space. We can either introd
asymmetries in the springs, masses, or friction forces.
choose the latter to demonstrate our results, but sim
results were found in the other two cases. Therefore,
make the friction force in block 2 smaller than the frictio
force in blocks 1 and 3 (which means that they are mo
rough than block 2).

In Fig. 2(a) we show an example of a chaotic orb
for block 1, with the parameter values1ync ; 1yn

c
1 ­

1yn
c
3 ­ 4yn

c
2 ­ 0.165. We will see that this attractor is

from a regime in which blocks 1 and 3 are synchronize
In Fig. 2(b) the LLE (solid line) and the SLLE (dashe
line) of the three-block system are shown. In Fig. 2(
we show the Liapunov exponent of the synchronizati
manifold (solid line), that is, what is called the transver
(or conditional) Liapunov exponent [1,16]. We have ca
culated the transverse Liapunov exponent by adapting
method introduced by Benettin [17]. That is, after the tra
sient dies out, we evolve the orbit of block 3 by making
slightly different from the orbit of block 1. Then we ver
ify how the difference between the orbits of the two bloc
evolves after a short time step. The perturbation is ren
malized in the direction of the maximum growth, and th
process is repeated many times. The transverse Liapu
exponent is given by the average logarithm (in this pap
we use base 2) of the growth (or shrinkage) of the pertur
tion along the orbit. Figure 2(c) also shows (dashed lin
the Euclidean distanceD in phase space between block

1 and 3, that is,D ;
q

sU1 2 U3d2 1 s ÙU1 2 ÙU3d2, as a

function of1ync. This distance is an average over a tim
Dt ­ 2000. We see that the transverse Liapunov exp
nent correctly determines the region in which blocks 1 a
3 are synchronized. In this situation, the transverse L
punov exponent is negative and the distance between
two blocks is zero. Comparing Figs. 2(b) and 2(c) we c
identify the regions of chaotic synchronization, where w
have one or more Liapunov exponents of the three-blo
system greater than zero and the transverse Liapunov e
nent is less than zero. This is, for example, the case of
attractor shown in Fig. 2(a). There only one Liapunov e
ponent of the system is larger than zero. The compari
between Figs. 2(b) and 2(c) also shows that the transit
from chaos to hyperchaos [20] does not determine h
the transition from chaotic synchronization to nonsynch
nization, as was the case of the system studied in [21] (
hyperchaos regime is defined as the one in which ther
more than one positive Liapunov exponent). For examp
at 1ync ­ 0.38 there is only one positive Liapunov expo
nent, and no synchronization is seen between blocks 1
3. There is also the case in which the LLE and the SLL
203
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FIG. 2. (a) Orbits in phase space forÙU1 versus U1 2 nt
when1ync ; 1yn

c
1 ­ 1yn

c
3 ­ 4yn

c
2 ­ 0.165. (b) The largest

Liapunov exponentl1 (solid line) and the second-largest
Liapunov exponentl2 (dashed line) as a function of1ync.
(c) The transverse Liapunov exponentlt (solid line) and the
Euclidean distanceD in phase space between blocks 1 and
(dashed line) as functions of1ync. Here we haven ­ 0.1,
k ­ 1 in a three-block system. The Liapunov exponents we
calculated with perturbations of1024, time step of0.05, and
400 000 iterations. The dotted line atD ­ 0 is a guide to
the eye.

are nonpositive, and blocks 1 and 3 do not synchronize,
in 1ync ­ 0.4.

Now we discuss what is the possible relevance of o
finds to the analysis of real earthquakes. It is known th
earthquakes are not strictly periodic phenomena. If the
irregular behavior is caused by a chaotic, determinist
process, as this simple spring-block model suggests, th
in principle, prediction about them could be made in
short time scale. In this way, the damage they cau
could be minimized. The problem with modeling chaoti
systems is that, if the dimension of their attractor is ver
large, very little can be done with respect to predictio
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[22]. Such systems are treated basically as stochas
systems. However, if synchronization happens amo
elements of a large system, then the dimensionality
the attractor decreases. For example, in the three-blo
system studied here, the dimension of the attractor c
decrease by up to 2. If the dimension of the attracto
decreases, the analysis of the system becomes easier.
fact emphasizes the need for a deeper analysis of
relationship between synchronized chaos and predictio
We hope that this work will motivate more studies on
chaotic synchronization for applications to seismology.

*Electronic address: mariav@msg.ucsf.edu
URL: http://www.msg.ucsf.edu/,mariav.
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