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Instability and “Sausage-String” Appearance in Blood Vessels during High Blood Pressure
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A new Rayleigh-type instability is proposed to explain the “sausage-string” pattern of alternating
constrictions and dilatations formed in blood vessels under influence of a vasoconstricting agent.
Our theory involves the nonlinear elasticity characteristics of the vessel wall, and provides
predictions for the conditions under which the cylindrical form of a blood vessel becomes unstable.
[S0031-9007(99)08585-3]
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High blood pressure can experimentally be induced by To be specific, a cylindrical shaped blood vessel is
intravenous infusion of a vasoconstricting agent such as anunstable if a small axial symmetric perturbation of the
giotensin Il (which regulates the contraction of the smoothnner radiusy — r + u(z), grows (Fig. 2). To determine
muscle cells surrounding the blood vessel) [1-3]. Asthe stability, we must therefore know the dynamic equation
the infusion is continued, a substantial narrowing of thefor the perturbationu(z,¢). To this end, we invoke the
smaller blood vessels is observed, and suddenly the nacentinuity equationg,(7r2) = —a.J, associating a local
rowed vessels develop a peculiar pattern consisting aofhange of the cross-sectional area at a downstream site
alternating regions of constrictions and dilatations, giv-with a fluid fluxJ(z). The flux is related to the transmural
ing the vessels the appearance of sausages on a stripgessureP, by J = —c(r)d, P, wherec(r) is the vascular
(Fig. 1). The “sausage-string” pattern may cause severeonductance [6]. From the continuity equation and the
damage to the blood vessels because plasma and macflux-pressure relation, the dynamic equation to lowest
molecules are transported into the vessel wall in the dilatedrder in the perturbation follows:
regions. The sausage-string pattern has been observed in
small vessels from many organs, including the brain, the du = c(r) 9
gut, and the kidney [4]. 27r

Despite several decades of research, the mechanismag g simple illustration, consider first a very thin vessel
causing the sausage-string pattern has remained unknowg,| for which the pressure is given by the Laplace form
[4]. It has been suggested that it represents a “blowout”
of the vessel wall due to the high blood pressure [5], but
this seems unlikely for several reasons. The sausage-string
pattern occurs in the smaller vessels (small arteries and
large arterioles), and here the pressure elevation is rela-
tively small compared to that in the larger arteries. Second,
the phenomenon is highly reproducible [2]. If the infusion
of the vasoconstricting agent is stopped, the normal, uni-
form “cylindrical” structure is restored. Restoring the in-
fusion causes again an extreme, uniform vasoconstriction
followed by the reappearance of the sausage-string pattern.
A third spectacular feature of the phenomenon is its pe-
riodicity with constrictions and dilatations occurring in a
regular and repetitive pattern.

In this Letter, we present a simple anisotropic, elastic
model of the vessel wall. We show that under certain hy-
pertensive conditions an instability occurs which leads td™!G. 1. In vivo micrograph of rat intestinal arterioles show-

a periodic pattern of constrictions and dilatations along thd'd @ typical “sausage-string® pattern following an acute in-
crease in blood pressure induced by intravenous infusion of

vessel. Qur theory_ prqvides predictions for the Condiﬁons@.mgiotensin Il. The neighboring vessels not showing constric-
under which the cylindrical form of a blood vessel becomesjons and dilatations are the corresponding venules. From [4]
unstable. with permission.
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W for the pressure is replaced by an integral [14,15],

u(z) B r+w 1
————— BN - A4 - r- Fmtaﬁﬁ

a2F
[] + (a r)2]3/2i|d}7’ (4)

whereS and S, are the stresses in the angular and vessel
directions. The stresses, defined as the forces per actual
cross-sectional area, are related to the experimentally mea-
sured idealized stressesando,, defined as the forces per
relaxed cross-sectional aréa= yy,o andS, = yy, o,
[15]. Here,y andvy, are the normalized lengths [16] in
the angular and vessel direction. The length of a vessel
remains almost constant during a contraction, ands
therefore assumed to be constayt,= vyy. Correspond-
FIG. 2. A schematic picture of a blood vessel of inner radius;
r undergoing a perturgatlom(z) The wall thicknesswv(z) is ingly, the stressr, is also replaced by a constan. We
larger at smaller radii since the circumference is smaller. note that the widthy of the vessel wall changes when the
inner radiusr changes (Fig. 2). Assuming that the cross-
sectional area of the vessel wall is constant, the (inner)
radius dependence of is given, when the inner radius
and wall thicknessy are known for the relaxed vessel
= 1) [15,17].
For small perturbations, the relevant expression for the
essure reduces to

[7,8] P =(T/R) + (T,/R,), whereT and T, are the
tensions in the principal angular and vessel directionsp
and1/R and1/R, are the corresponding curvatures [9]
Assume furthermore that the tensions are constant a
identical, T, = T. Inserting the above expression for the

ressure into Eq. (1) and retaining only first order terms in pro . _ .
Sweget g. (1) g only P:')’O[ [a'—ooragr][pz—pz-i-rz] 1245
’ P
T (5)
b — —Ler) S[02u + r2otu]. ) o
23 For the angular direction, the stress depends on the

normalized lengthy = [p2 — p2 + r2]'/2/p. To first

For a given periodic perturbatiom, = u,(r) codkz), we order in the perturbation(z. 1), we find

haveu, (1) ~ u;(0)e™, where
Te(r)
273

P = Po(r) + I(r)u — Ip(r)d’u, (6)

A = K1 — r?k?]. (3)

where
Thus, the vessel wall is unstable to modes with<< 1.
. . . . ptw

Th_e dominant mode, where\; is maximal, is at Po(r) = 70[ 0[;32 _ p2 n ’,2]71/2 dp, @)
k=1/V2r. o

The above instability is the well-known Rayleigh insta- ptw
bility [10,11]. The theory explains why a cylindrical col-  Io(r) = yooorf [p% — p2 + r* 1 2dp
umn of water with surface tensidhis unstable at all radii. P
However, cylindrical structures may be stable due to a re- = yooorlog[l + (o + w)/(p + r)], (8)
luctance against bending [12]. Still an instability may oc-
cur if the tensionT can be brought to exceed a critical & and
value of orderx/r?, k being the bending modulus [12]. pro. g dy
This is demonstrated by the so-called “pearling” instabil- I(r) = — Po(r) = 3’0[ p v [—} oy 4P ap .
ity, recently observed by Bar-Ziv and Moses [13] in tubular p Y 9
lipid membranes. ©)

For blood vessels the width of the vessel wall cannot The partial derivatives of with respect tor and p are
be neglected. Here, the vessel wall is viewed as a layera@lated,p ~'(ay/dr) = r(p*> — r?)"(9y/dp), and I(r)
structure, where the only stresses are in the principatan be expressed in terms of the normalized length

angular and vessel directions [8]. There are no shear
stresses, and the stress in the direction normal to the layers I(r) = — 20 [ alyw) _ olyr) } (10)
is zero. With these assumptions, the Laplacian form [7,8] p(L =¥ 7w Yr
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where y, = r/p is the normalized inner radius, and tially with the normalized length [8,18] (Fig. 3), and the
vw = (r + w)/(p + ) is the normalized outer radius. value ofI(r) is therefore positive (Fig. 4). This ensures
We note that/(r) is not singular aty, = 1, where also that the blood vessel keeps its cylindrical shape—no
vw» = 1. Inserting Eq. (6) into Eq. (1) we get for a given bending arguments are needed to explain the stability of

periodic perturbation,u = u;(t) cogkz), that ui(z) ~  the cylindrical shape of a blood vessel. However, when
u(0)e*!, where acute hypertension is induced by infusion of a strong
") vasoconstricting agent like angiotensin Il, there will be

o(r . . . LT )

M = K[—1(r) — Io(r)k]. (11) @ substantial reduc_tlon of the inner radl_us in small arter

27r ies and large arterioles due to contraction of the smooth

, » o muscle cells. The operating point for the vessel will now

The value of/y(r) is always positive. Thus, it is the pe on a less steep part of they curve (Fig. 3), and,
sign of /(r) that determines the stability of the vessel\yhen the inner radius is reduced below a certain vajue
wall. If I(r) is positive, the cylindrical shape is stable 5t which o(y,,)/y,, = o(y,)/y,, the value ofI(r) be-
for all modes. 1fl(r) is negative, the cylindrical shape is comes negative (Fig. 4). This will result in an instability
unstable to modes with™ < |/1/1o. , of the cylindrical form, giving rise to the sausage-string

As seen from the expression forEq. (10), the impor- pattern.” The dominant (fastest growing) mode is given by
tant quantity isr/y. The point of instability iswhere /y 1 — [}7]/27,]/2, which will correspond to “sausages” of
calculated at_the inner radius (_equals the valuergéfy at length ¢ = 27 /—210/|I|. Insertion of typical values [19]
the outer radius. This can be illustrated geometrically byq, the various parameters of the model yields: 27 p;
drawing a line in the plot oé versusy (Fig. 3) from(0,0)  hence, the length of the sausages will be 5—10 times the
through(y,, o(y,)). If the point(y,, o (y,)) lies above  (aqiys of the relaxed vessel. The theory therefore pre-
this line,I(r) is pos_mve and the c_ylmdrlcal fo_rm_ls stable. jicts that the sausages will have an elongated shape with
If, however, the poin€y,,, o(y.,)) lies below thisline/(r) 5 length that decreases as the vessel radius gets smaller.
is negative, leading to an instability of the cylindrical form. This is in good agreement with experimental observations

Under normal physiological conditions, the angular[z] (Fig. 1).
stresso in blood vessels increases linearly to exponen- A way to view the basic phenomenon underlying the in-
stability is to note that, wheii(r) becomes negative, the
pressure at slightly larger radii is smaller than at slightly
smaller radii. Accordingly, the resulting flowwwill be di-
rected from small-radii regions to large-radii regions, caus-
ing the small radii to become even smaller, and the large
radii to become larger. This continues until the pressure
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FIG. 3. A schematic plot of typical stress-strain relations for 0 0.1
arterioles (adapted from [18]). The three heavy solid curves
correspond to a vessel where the smooth muscle cells are
not activated (0%), where the smooth muscle cells are half 25—
maximally activated (50%), and where the smooth muscle
cells are maximally activated (100%). The thin solid lines 50 | | | | | |
show how the points(y,,o(y,)) and (y,.,o(y,)) [marked 00 02 04 06 08 10 12 14
0.1] move with muscle cell activation for an arteriole with 1)

wall-to-lumen ratio w/p = 0.1. The point of instability

(r = r.) for the cylindrical form of the blood vessel is FIG. 4. A plot of the stability measurg(r) at large muscle
illustrated geometrically by thin dashed lines frofn,0) cell activation for two different wall-to-lumen ratiogy/p =
through(y,, o(y,)). The instability point is wherer(y,,)/v. 0.1 and w/p = 0.2. The cylindrical form of a blood vessel
equalso(y,)/y-. The thick dashed line [marked 0.2] shows becomes unstable whednbecomes negative. An almost linear
how the point(y,, o(y,)) moves with muscle cell activation stress-strain relation in a region aboxegives rise to a decay
for an arteriole withw/p = 0.2, keeping the same curve for of I. Above y = 1, where the stress increases exponentially,
(v, o(v,)). also/(r) increases exponentially.

1997



VOLUME 82, NUMBER 9 PHYSICAL REVIEW LETTERS 1 MRcH 1999

radiusry.x and the small radius,;,. The stabilization is Medical Research Council, the Novo-Nordisk Foundation,
only possible because the pressure for radii above the instand the Danish Heart Association.

bility, » > r., again increases with. The theory allows
an estimate of the radius in the dilated regioRgx. As-
suming that,;, /p is small (close to zero), we can estimate

the final value ofrin.x by the conditionP (ryax) = P(0). [2] J. Giese, Acta Pathol. Microbiol. ScangR, 497 (1964).

Interestingl.y, the qlmost_ linear stress functi_on in the region [3] J. Giese, The Pathogenesis of Hypertensive Vascular
abover, (Fig. 3) gives rise to a decay dfr) in the same Disease(Munksgaard, Copenhagen, 1966).

region (Fig. 4). As a consequencg,x can become quite  [4] F. Gustafsson, Blood Pressuse71 (1997).

large. However, close t¢ = 1, the stress increases ex- [5] L.J. Beilin and F.S. Goldby, Clin. Sci. Mol. Me&2, 111
ponentially due to the elastic properties of the vessel wall ~ (1977).
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Cardiovasc. Disl, 31 (1974).

[8], and the value of (r) will increase rapidly. This will [6] In the _Hagen-PoiseuiIIe approximation, the flgid _conduc-
effectively preventr,,, from attaining a value substan- tance isc(r) = 7r*/8n, wheren is the dynamic viscos-
tially larger than the relaxed vessel radiys, However, ity of the fluid (blood), but the specific form af(r) is not

crucial for our purpose. Moreover, we neglect the pres-

rmax May be larger than the working radius of the vessel . L
mar y g 9 sure drop along the vessel, noting that this is much smaller

under normal physiological conditions, because the normal
working radius is smaller than the relaxed vessel radius [8] than the transmural pressure. , ,
. . . . ‘[7] A.E. Green and J. E. Adkind,arge Elastic Deformations
This may explain why previous articles have suggested tha (Clarendon Press, Oxford, 1960).
the dilated regions represented a blowout due to mechanitg) v c. Fung, Biomechanics. Mechanical Properties of
cal failure of the vessel wall [3]. Living Tissues(Springer-Verlag, New York, 1990), 2nd
The sausage-string pattern following infusion of an- ed.; Y. C. FungBiomechanics. Motion, Flow, Stress, and
giotensin Il have been found to occur predominantly in Growth (Springer-Verlag, New York, 1990).
small arteries and large arterioles [2]. The present analy-[9] The principal curvatured/R and 1/R, are given by the
sis predicts that large vessels will be stable. Their operat-  following two relations:
ing points are on the steep portion of ey curve due to 1 1 1 —0%r
their high pressure. As seen from Fig. 3, the contraction g = J[1 + (5.,)2]/2" and - = 0+ @.rep2
is here limited, thus preventing the larger vessels from re[-lo] 3 Plateaustatfque Experimentale et Theor{que des Lig-
ducing their (inner) radius below the critical value As ;

. . uides Soumis aux Seules Forces Moleculaif@swutier-
arterial vessels get smaller, the wall-to-lumen ratidp Villars, Paris, 1873).

increases [8]. From the expression ¢r), Eq. (10), We  [11] Lord Rayleigh, Philos. Mag4, 145 (1892).
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wall-to-lumen ratio. Hence, the sausage-string instability ~ (1995); R.E. Goldstein, P. Nelson, T. Powers, and
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crease in blood pressure. . . . .

In summary, we have demonstrated that, during severg®l The normalized lengtly at a given radius® (r < 7 <

S - ’ r + w) is equal to the ratio between the circumference

vasoconstriction, the normal cylindrical shape of a blood ;= ot the vessel strip situated at the radifisand the
vessel may become unstable, and as a result the vessel coresponding circumferencerp (p < p < p + w) of
exhibit a periodic pattern of constrictions and dilatations. the same vessel strip in the relaxed vessel, where the
The sausage-string pattern is not caused by a mechanical smooth muscle cells are not activated and the transmural
failure of the vessel wall due to the high blood pressure, pressure is zero. The corresponding strain is by definition
but is the expression of an instability. The instability is equal toy — 1.
related to the Rayleigh instability, and to the pearling in-[17] We have @ (r + w)’ — 71> = 7(p + )’ — 7p>.
stability seen in tubular lipid membranes. The mecha-  This equation suggests a useful change of variable, from
nism behind the instability, however, is novel, involving l’) tto P wI*;ere r J r+: p ;/;l (;Nhe” Z \éartl_es
the nonlinear elasticity characteristics of the vessel wall. ~ c\Ween values andr =+ w, Which under perturbations
The developed theory explains many of the key features changes along_ the axis, p varies between the fixed inner

b d . I h domi and outer radiip andp + o of the relaxed vessel. The
observed experimentally, e.g., the predominant occurrence o malized lengthy at a radiuss is y = 7/5.
in small arteries and large arterioles, and most likely in1g] R.w. Gore, Circ. Res34, 581 (1974); M.J. Davis and
those with small wall-to-lumen ratios. R.W. Gore, Am. J. Phy256, H630 (1989).
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