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Reentrant Melting in Polydispersed Hard Spheres
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The effect of polydispersity on the freezing transition of hard spheres is examined within a momen
description. At low polydispersities a single fluid-to-crystal transition is recovered. With increasing
polydispersity we find a density above which the crystal melts back into an amorphous phase. The ran
of densities over which the crystalline phase is stable shrinks with increasing polydispersity until, at a
certain level of polydispersity, the crystal disappears completely from the equilibrium phase diagram
The two transitions converge to a single point which we identify as the polydisperse analog of a poin
of equal concentration. At this point, the freezing transition is continuous in a thermodynamic sense
[S0031-9007(99)08638-X]
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Freezing and melting are probably the most comm
and striking physical changes observed in everyday li
All experiments, to date, demonstrate that the crystalliz
tion of a simple liquid is a first-order transition, in three
dimensions. So for instance, the sharp Bragg peaks
the crystal, which reflect the long-range spatial modul
tion of the densityrsrd and which distinguish a crystal
from a liquid, disappearabruptly as a crystal melts [1].
This sharp microstructural change is also mirrored by d
continuities in the first derivative of the free energy so th
experimentally, melting is accompanied by a finite dens
and entropy change.

Although the experimental situation is clear, in an ear
analysis Landau [2] argued that, under certain condition
a crystal can transformcontinuouslyinto a liquid. In a
simple Landau-Alexander-McTague theory [3] the exce
free energy of the crystal (relative to the isotropic liquid
has the following form:

fsl ­ rsT , Pd
X
G

jnGj2

2 u3sT , Pd
X

G1,G2,G3

nG1 nG2 nG3 dG11G21G3,0 1 . . .

(1)

where the order parametersnG are the Fourier components
of the crystal density,rssrd ­ rs 1 drsrd, at the recip-
rocal lattice vectorG (rs is the uniform crystal density)
and the coefficients of the expansion are analytic functio
of the temperatureT and pressureP. Equation (1) con-
tains cubic terms because the order parameter setshnGj
and h2nGj describe physically distinct crystals with dif-
ferent energies. As a consequence, the freezing transi
is generally first order. However, sincebothT andP can
be independently varied the possibility exists thatr andu3
can be made to vanish at a single point in theT -P plane.
At the resulting Landau point the liquid-solid transition i
continuous in a mean-field description [4]. Landau theo
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makes two further distinctive predictions. First, the La
dau point must lie at the intersection of, at least, three fir
order lines of transitions [2] which separate the liquid fro
two conjugate crystalline phases,C1 andC2, with identi-
cal symmetry but which differ in the sign ofdrsrd. Sec-
ond, in three dimensions, symmetry considerations sho
uniquely favor a bcc structure [3].

In spite of these interesting predictions it is not cle
if, in a liquid-solid system, the point at which the cub
coefficientu3 vanishes is experimentally accessible. O
the face of it, one of the most promising candidates is
system of polydisperse hard spheres where the constit
particles have different sizes. The freezing of polyd
perse hard spheres has been studied extensively in re
years [5–14] motivated, in part, because it is a rea
tic model of a colloidal suspension [15]. These studi
have focused mainly on the effect of size polydispers
s, defined as the ratio of the standard deviation to t
mean of the diameter distribution, upon the fluid-sol
transition. Calculations have been made using a vari
of theoretical and computational techniques, for vario
size distributions, and in both two and three dimensio
Yet the picture that has emerged is remarkably simil
On increasings, from zero the density discontinuity a
the transitionDr ­ rs 2 rl decreases, vanishing alto
gether at a “terminal” polydispersity [16],s ­ st , above
which no liquid-solid transition is found. A number o
key questions have, however, been left unanswered. F
why do the densities of the coexisting phases conve
as s ! st? If the liquid-solid transition is continuous
then the singularity atst must correspond to a Landa
point. The phase diagram should therefore containtwo
crystal phases, in contradiction with the theoretical wo
to date. Furthermore, while theC1 crystal has the normal
bcc structure with spheres at the cube corners and c
ter, theC2 crystal has particles at interstitial sites. Th
unfavorably low packing of theC2 crystal (fm , 0.20)
© 1999 The American Physical Society 1979
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makes it unlikely that this phase could be important in
dense system. If the vanishing density discontinuity atst

is not critical in origin, then what is its true nature? An
finally, why is the polydisperse phase behavior apparen
universal? In this Letter we reexamine the freezing
polydisperse hard spheres using simple mean-field m
els for the polydisperse crystal and liquid phases.Our
results suggest that the polydisperse solid-liquid tran
tion at st is not critical. We show that the vanishing of
the density discontinuity at the terminal polydispersity
a consequence of areentrantsolid-liquid transition in a
polydisperse system.

Our model consists ofN hard sphere particles in a
volume V , at an overall density ofr ­ NyV . Each
particle has a diameterR drawn from a distribution
rsRd so thatr ­

R
dRrsRd. The distributionrsRd is

conveniently characterized by the set of generalized m
mentsmi ­

R
dRrsRdwisRd where the weight function

wisRd ­ sRyR̄ 2 1di . The zeroth moment is simply the
total number densityr. The “shape” of the diameter distri-
bution,r̃sRd ­ rsRdyr, is taken here for simplicity, as the
Schultz distribution, r̃sRd ­ gaRa21 exps2gRdyGsad
with a ­ 1ys2 and g ­ ayR̄. The (excess) chemica
potentialmexsRd in a polydisperse system is in general
complex and unknown function of the particle size. B
with the assumption that there is no critical point atst the
excess chemical potential must, first of all, be an analy
function of R. Formally,mexsRd may be calculated from
the probability,WsRd, for insertion [17] of a test sphere o
diameterR. At largeR, the leading term inmexsRd is the
PV work required to generate a cavity sufficiently larg
to accommodate the test sphere. This contribution var
asR3. Motivated by this we assume that in a hard-sphe
crystal or fluidmexsRd has the simple analytic form

mexsRd ­ 2kBT ln WsRd

ø l0 1 l1R 1 l2R2 1 l3R3, (2)

where consistency demands that the coefficientsli depend
only on the four momentsm0, . . . , m3 of the polydisperse
distribution [12]. Two of the four unknown coefficients
may be determined from the known small and largeR
limits of WsRd. This fixesbl0 ­ 2 lns1 2 fd andl3 ­
p

6 P with f the volume fraction andb ­ 1ykBT .
Having specified the general form expected formexsRd,

we now outline the calculation of the size-depende
chemical potential in the crystal. From Eq. (2) the prob
bility to insert an arbitrary-sized test particle into any tw
hard-sphere systems will be equal if the two distributio
have the same first four moments [12]. In this sense
two systems may be termed “equivalent.” Since a bina
mixture can always be chosen so as to match any four m
ments we look at the “equivalent” binary substitutional
disordered crystal, for which simulation data is availab
[18]. By looking at test particles with sizes equal to th
1980
a

d
tly
of
od-

si-

is

o-

l
a
ut

tic

f

e
ies
re

nt
a-
o
ns
the
ry
o-

ly
le
e

two species in the binary mixture, for which the chemic
potentials are known, the remaining two unknown coe
ficients (l1 andl2) in the general expression formexsRd
are determined. The resulting predictions for the po
disperse crystal have been compared with simulation d
previously [12]. Agreement is good.

For the polydisperse fluid accurate expression
mexsRd is available. We use the approximate BMCS
[19] equation of state which for a Schultz distribution h
the closed form

p

6
bPfR̄3 ­

j

1 1 s2 1
3j2

1 1 s2 1 s3 2 fdj3, (3)

where j ­ s 1
11s2 d f

12f . The excess free energy pe
particle is found by integrating Eq. (3). Differentiatio
then yields an expression for the particle potentialmexsRd
which is of the form of Eq. (2).

The total polydisperse free energyf (with f ­ FyV )
consists of ideal and excess terms,f ­ fid 1 fex, which
depend in a very different manner on the distributio
rsRd. The excess free energy,fex ­

R
dRrsRdmexsRd,

is a function only of the four moments variable
m0, . . . , m3. The ideal termbfid ­

R
dRrsRd lnfrsRdg,

by contrast, depends upon the detailed shape of
functionrsRd so formally, at least, the total free energyf
resides in an infinite dimensional space. Sollich, Cat
and Warren [20] have shown that the full polydisper
phase diagram can be approximated by replacing the id

free energy by a projected termcfidshmijd which includes
only those contributions that depend on afinite set of mo-
ment variables. The remaining contributions to the ide
free energy, from those degrees of freedom ofrsRd which
can be varied without affecting the selected momen
are chosen to minimize the free energy. The power
this approach is that by including more moment variab
the calculated phase diagram approaches, with increa
precision, the actual phase diagram. The position of eq
librium is fixed by the equality of the “moment” chemica
potentials,mi ­ ≠bfy≠mi and the pressureP among all
phases withbf the projected free energy. For polydisper
hard spheres the excess moment chemical poten
are simply combinations of the (known) coefficien
hlij in mexsRd [Eq. (2)] since msRd ­ dbfydrsRd ­P

is≠bfy≠midwisRd ­
P

i miwisRd. The first two ideal
moment potentials are [20], ignoring unimportant facto
m

id
0 ­ ln r 2 a ln R̄ andm

id
1 ­ 2aR̄.

In order to understand the qualitative features of t
polydisperse transition, we consider first the simplest d
scription in which only the lowest moment (m0) is re-
tained in the projected free energy. In this limit, there
no size fractionation so the normalized diameter distrib
tion, r̃sRd, is fixed and equal in all phases. The locatio
of the fluid-solid transition is determined by equatingP
andm0, the chemical potential of the mean-sized partic
in each of the crystal and fluid phases. In this way w
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obtain the phase diagram of Fig. 1. At low densitie
we find, in qualitative agreement with previous wor
[5–10,12–14], that the density discontinuity at freezin
Dr reduces with increasing polydispersity and event
ally vanishes at the pointst ­ 0.0833 and rt ­ 1.111.
However, at high polydispersity, the calculated diagra
contains a novel feature. For0.07 # s # 0.083 we find
a further transition from the crystal back to a disordere
phase [21]. The location of this polydispersity-induced
melting transition varies sharply with polydispersity. Th
range of densities for which a crystal is found shrinks wi
increasing polydispersity until atst the crystal of den-
sity rt disappears completely from the phase diagram.
the pointsrt , std the line of fluid-to-crystal transitions in-
tersects an upper line of crystal-to-amorphous transitio
At all points in thesr, sd plane the freezing transition re-
mains first order so the singularity atsrt , std is equivalent
to thepoint of equal concentration[22] seen in molecular
mixtures and is not a critical point—so providing an an
swer to the second of our questions.

We now turn to the vanishing density discontinuity i
the vicinity of the point of equal concentration. The Gibb
free energy differenceDg ­ gs 2 gl (with g ­ GyN)
between the solid and liquid phases as a function of pr
sure for three fixed values ofs is shown in Fig. 2. The
reentrant nature of the freezing transition is very evide
with a stable crystal appearing only in an intermedia
range of pressures bounded by the two transitions wh
Dg ­ 0. The density changeDr at the liquid-solid tran-
sition is given by the slope of the free energy curve
the pointDg ­ 0 since≠Dgy≠r ­ s1yrsd 2 s1yrld. In-
creasing the polydispersity raises the free energy of t
solid relative to the fluid, displacing theDg curve ver-

FIG. 1. Phase diagram of a polydisperse system of ha
spheres showing the reentrant freezing transition. The den
discontinuity Dr ­ rs 2 rl vanishes at thepoint of equal
concentration, marked by the filled circle. The inset shows
the phase boundaries near this point in greater detail.
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tically and as is evident from Fig. 2 reduces the dens
jump at the transition. At the terminal polydispersity th
solid just touches the fluid curve so the tangent is horizo
tal andDr ­ 0. In a system of hard spheres (where th
internal energy is constant) the conditionDr ­ 0 neces-
sarily requires the entropy change at this point to also va
ish. Clearly while the underlying microscopic transitio
remains first order the first derivatives of the thermod
namic potential are continuous atst . A conventional clas-
sification of this transition, following the ideas of Ehrenfe
[23], is clearly inappropriate.

Retaining more moments in the projected free ener
allows the possibility of different-sized particles to b
partitioned between phases. To establish the effect
fractionation we have recalculated the phase equilib
with two moment variables. The phase diagram, no
given by equatingP and the moment potentialsm0 and
m1 in all phases, is unchanged in topology from Fig.
The point of equal concentration is retained althou
shifted slightly tosrt , std ­ s1.115, 0.0831d. Hence our
prediction of a reentrant freezing transition seems to
robust. The extent of fractionation is generally sma
although increasing ass ! st , with the larger particles
preferentially found in the crystal phase. Details of o
calculations are given elsewhere [24].

The appearance of an equilibrium amorphous pha
may be understood simply from maximum packing a
guments. For uniform-sized spheres the maximum de
sity of a randomly packed Bernal glass (rrcp . 1.22) is
significantly smaller than the geometric limit of a close
packed hexagonal of fcc crystal (rcp ­

p
2). The greater

packing efficiency of the crystal ensures that at hig
densities, particles have more freedom and so a hig

FIG. 2. The Gibbs free energy difference (per particle)Dg
between crystal and fluid phases as a function of the press
for different polydispersities. The circles are the first-ord
fluid/solid transitions. The filled circle marks the point of equ
concentration.
1981
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entropy than those in the fluid phase [25]. The stab
high density phase of uniform hard spheres is ther
fore crystalline. Polydispersity affects crystalline an
disordered phases in different ways. In an amorpho
phase, small particles pack in the cavities between lar
particles andrrcp increases withs while the constrained
environment of a fixed repeating unit cell causes the ma
mum density of a crystalrcp to decrease withs.
Computer simulations [11,26] indicate that the limiting
densities of amorphous and crystalline structures beco
equal at s ø 0.05. For higher polydispersities disor-
dered structures fill space more efficiently than ordere
ones. Consequently, the appearance of an equilibriu
amorphous phase and the ensuing reentrant freezing tr
sition should be a universal feature of all polydispers
systems—so answering the last of our questions.

In conclusion, we have presented a simple mean-fie
model of polydisperse hard spheres which suggests t
the equilibrium state at high polydispersities and densiti
is amorphous. An equilibrium crystal is found only a
intermediate densities. The growing stability of the flui
phase with polydispersity causes a singularity in th
density-polydispersity phase diagram which we identif
as a point of equal concentration. Finally, although w
use mean-field theory, our results should be robust w
respect to fluctuation effects since the transition we fin
is not critical and the thermodynamic functions are no
singular at this point.
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