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Entanglement of Atoms via Cold Controlled Collisions
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We show that by usingcold controlled collisionsbetween two atoms one can achieve conditiona
dynamics in moving trap potentials. We discuss implementing two qubit quantum gates and effic
creation of highly entangled states of many atoms in optical lattices. [S0031-9007(99)08537-3]
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The controlled manipulation of entangled states ofN-
particle systems is fundamental to the study of basic
pects of quantum theory [1,2] and provides the basis
applications such as quantum computing and quant
communications [3,4]. Engineering entanglement in re
physical systems requires precise control of the Hamilto
ian operations and a high degree of coherence. Achiev
these conditions is extremely demanding, and only a f
systems, including trapped ions, cavity QED, and NM
have been identified as possible candidates to implem
quantum logic in the laboratory [3]. On the other hand,
atomic physics withneutral atomsrecent advances in cool-
ing and trapping have led to an exciting new generation
experiments with Bose condensates [5], experiments w
optical lattices [6], and atom optics and interferometr
The question therefore arises as to what extent these
experimental possibilities and the underlying physics c
be adapted to provide a new perspective in the field of e
perimental quantum computing.

In this Letter we propose coherent cold collisions as t
basic mechanism to entangle neutral atoms. The pict
of atomic collisionsascoherent interactionshas emerged
during the last few years in the studies of Bose-Einste
condensation (BEC) of ultracold gases. In a field theore
language these interactions correspond to Hamiltonia
which are quartic in the atomic field operators, analogo
to Kerr nonlinearities between photons in quantum o
tics. By storing ultracold atoms in arrays of microscop
potentials provided, for example, by optical lattices the
collisional interactions can be controlled via laser param
ters. Furthermore, these nonlinear atom-atom interacti
can be large [7], even for interactions between individu
pairs of atoms, thus providing the necessary ingredients
implement quantum logic.

Let us consider a situation where two atoms 1 a
2 in internal statesjal1 and jbl2 (labeleda and b) are
trapped in the ground statesc

a,b
0 of two potential wells

V a,b . Initially, at time t ­ 2t, these wells are centered
at positions x̄a and x̄b , sufficiently far apart (distance
d ­ x̄b 2 x̄a) so that the particles do not interact. Th
positions of the potentials are moved along trajector
x̄astd and x̄bstd so that the wave packets of the atom
overlap for a certain time, until finally they are restored
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the initial position at the final timet ­ t. This situation
is described by the Hamiltonian

H ­
X

b­a,b

"
spbd2

2m
1 V bsssxb 2 x̄bstdddd

#
1 uabsxa 2 xbd . (1)

Here,xa,b andpa,b are position and momentum operator
respectively,V a,bsssxa,b 2 x̄a,bstdddd describe the displaced
trap potentials, anduab is the atom-atom interaction term

Ideally, we would like to implement the transformatio
from t ­ 2t to t ­ t:

ca
0 sxa 2 x̄adcb

0 sxb 2 x̄bd ! e2ifca
0 sxa 2 x̄ad

3 cb
0 sxb 2 x̄bd , (2)

where each atom remains in the ground state of its tr
ping potential and preserves its internal state. The ph
f will contain a contribution from the interaction (col
lision). Transformation (2) can be realized in theadia-
batic limit [8], whereby we move the potentials so that th
atoms remain in the ground state. In the absence of inter
tions (uab ­ 0) adiabaticity requiresj Ù̄x

a,bstdj ø yosc ; t,
where yosc ø a0v is the rms velocity of the atoms in
the vibrational ground state,a0 is the size of the ground
state of the trap potential, andv is the excitation fre-
quency. The phasef can be easily calculated in the limi
j ¨̄xa,bstdj ø yoscyt. In this case,f ­ fa 1 fb, where

fa,b ­
m
2h̄

Z t

2t

dt Ù̄x
a,bstd2 (3)

are thekinetic phases. In the presence of interactions
(uab fi 0), we define the time-dependent energy shift d
to the interaction as

DEstd ­
4pash̄2

m

Z
dx

Y
b­a,b

jc
b
0 sssx 2 x̄bstddddj2, (4)

whereas is thes-wave scattering length. We assume th
(i) jDEstdj ø h̄v so that no sloshing motion is excited
(ii) j Ù̄x

a,bstdj ø yosc (adiabatic condition), and (iii)yosc is
sufficiently small for the zero energys-wave scattering
© 1999 The American Physical Society 1975
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approximation to be valid [9]. In that case, (2) still hold
with f ­ fa 1 fb 1 fab with thecollisional phase

fab ­
1
h̄

Z t

2t

dt DEstd . (5)

In the case of quasiharmonic potentials (as is realiz
with optical potentials; see below) (2) still holds, eve
in the nonadiabatic regime, i.e., at higher velocities. F
harmonic traps one can solve exactly the evolution f
uab ­ 0 and identify the condition for adiabaticity:É Z t

2t

Ù̄x
a,bst0deivt0

dt0

É
ø a0, ; 2t $ t $ t .

(6)

This is consistent with condition (ii). Actually, for (2) to
hold the inequality (6) has to be fulfilled only fort ­
t (and not for all times). This means that the particl
need not be in the ground state of the moving potent
at all times but only at the final time. The phasef ­
fa 1 fb, as well as the wave functionsca,bsxa,b , td, can
be calculated exactly [8]. Foruab fi 0 if conditions (i)
and (iii) are satisfied, then (2) is still valid. There is
an additional phase shift (with respect touab ­ 0) fab

which is given by Eqs. (4) and (5) with the replacemen
c

a,b
0 sssxa,b 2 x̄a,bstdddd ! ca,bsxa,b , td. It is also straight-

forward to generalize these results to the case in whi
the trap frequency changes with time [10].

So far, we have shown that one can use cold collisions
a coherent mechanism to induce phase shifts in two-ato
interactions in a controlled way. Our goal is now to us
these interactions to implement conditional dynamics. W
consider two atoms1 and2, each of them with two internal
levels jal1,2 and jbl1,2. We will use the superscripts
b ­ a, b and the subscriptsj ­ 1, 2 to label the internal
levels and atoms, respectively. Atoms in the internal sta
jblj experience a potentialV

b
j which is initially (t ­ 2t)

centered at position̄xj . We assume that we can move th
centers of the potentials as follows (Fig. 1):x̄

b
j std ­ x̄j 1

dxbstd. The trajectoriesdxbstd are chosen in such a way
that dxbs2td ­ dxbstd ­ 0 and the first atom collides

FIG. 1. Configurations at times6t (a) and att (b). The
solid (dashed) curves show the potentials for particles in t
internal statejal (jbl), respectively. Center positionsx̄

b
j std and

displacementsdxbstd are as defined in the text.
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with the second one only if they are in statesjal and
jbl, respectivelyfjx̄b

1 std 2 x̄a
2 stdj ¿ a0 ; tg. This choice

is motivated by the physical implementation considere
below. The fact that̄xj does not depend on the interna
atomic state allows one to easily change this internal st
at timest ­ 6t by applying laser pulses. If the condition
stated above are fulfilled, depending on the initial intern
atomic states we have

jal1jal2 ! e2i2fa

jal1jal2 ,

jal1jbl2 ! e2isfa1fb1fabdjal1jbl2 ,

jbl1jal2 ! e2isfa1fbdjbl1jal2 ,
(7)

jbl1jbl2 ! e2i2fb

jbl1jbl2 ,

where the motional states remain unchanged. The kine
phasesfb and the collisional phasefab can be calculated
as stated above. We emphasize that thefb are (trivial)
one particle phases that, if known, can always be incorp
rated in the definition of the statesjal andjbl.

In the language of quantum information, transformatio
(7) corresponds to a fundamental two-qubit gate [4].
order to illustrate to what extent the mechanism presen
above is able to perform this ideal gate, we have carried
a numerical study in three dimensions. We have integra
the time-dependent Schrödinger equation with the Ham
tonian (1). We have taken harmonic potentials with va
ous time-dependent displacementsdxbstd and frequencies.
Their form as well as the parameter range is motivated
the specific implementations outlined below. The figure
merit that we have used is the minimum fidelity [11], whic
is defined asF ­ minckc̃jtrextsUjcl kcj ≠ rextU

yd jc̃l.
Here jcl is an arbitrary internal state of both atoms, an
jc̃l is the state resulting fromjcl using the mapping (7).
The trace is taken over motional states,U is the evolu-
tion operator for the internal states coupled to the extern
motion (including the collision), andrext is the density op-
erator corresponding to both atoms in the motional grou
state att ­ 2t. In the ideal case the fidelity will be one
We have taken the potentialuab as proportional to a delta
function and used a truncated moving harmonic oscillat
basis (ten states for each degree of freedom). The first
lustration corresponds to a fixed trap frequencyva ­ vb

and displacementsdxbstd ­ 0 anddxastd as specified in
Fig. 2a. In Fig. 2b we present a contour plot ofF as a
function of the parameters characterizing the displacem
dxastd. The fidelity is very close to one for a surprisingly
wide range of parameters, even well into the nonadiaba
regime. We have also studied numerically the effect
time-varying trap frequencies (see Fig. 3a) and finite te
peratures, so thatrext describes a thermal distribution o
temperatureT . For temperatureskT & 0.2h̄v (wherev

is the initial trap frequency) the fidelity remains very clos
to one (of the order of0.997), and this result is still robust
with respect to changes in the parameters. We have a
included loss due to collisions by adding an imaginary pa
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FIG. 2. (a) Displacement as a function of timevt, dxastdy
d ­ f1 1 expsss2stiytr d2dddgyh1 1 expfst2 2 t

2
i dyt2

r gj and
dxbstd ­ 0 (see text), withtr ­ 30yv and ti ­ 20yv. The
shaded region indicates where the particles interact. (b)
delity F against rise timetr and interaction timeti for 87Rb
with as ­ 5.1 nm, v ­ 2p 3 100 kHz, andd ­ 10 a0.

to the scattering length. In that case, the fidelity is reduc
(see Fig. 3b).

So far we have assumed that there is one atom p
potential well. In practice, the particle number might no
be controlled. Nevertheless, one can easily generalize
above results to this case by using a second quantiz
picture. For example, in the adiabatic regime we deno
by ai and bi the annihilation operators for a particle in
the ground state of the potential centered at the positi
i and corresponding to the internal levelsjal and jbl,
respectively. The effective Hamiltonian in this regime is

H ­
X

i

fvastday
i ai 1 vbstdby

i bi 1 uaastday
i a

y
i aiai

1 ubbstdby
i b

y
i bibig 1

X
i,j

uab
ij stday

i aib
y
j bj ,

(8)

where thev’s and u’s depend on the specific way the
potentials are moved. This Hamiltonian corresponds
a quantum-non-demolition situation [12], whereby th
particle number can be measured nondestructively.

A physical implementation of this scenario requires a
interaction that produces internal state dependent cons
vative trap potentials and the possibility of moving thes
potentials independently. Furthermore, the choice of t

FIG. 3. (a) Upper plot: Displacementsdxastdyd (solid line)
and1 1 dxbstdyd (dashed line). Lower plot: Trap frequencies
vastdyv (solid line) andvbstdyv (dashed line). (b) Fidelity
F against temperaturekTyh̄v for 87Rb with as ­ 5.1 nm
(solid line), as ­ s1 2 0.01id 3 5.1 nm (dashed line), and
as ­ s1 2 0.05id 3 5.1 nm (dash-dotted line). Herev ­
2p 3 100 kHz andd ­ 390 nm.
Fi-

ed

er
t
the
ed
te

on

to
e

n
er-
e

he

internal atomic statesjal and jbl has to be such that
they are collisionally stable (i.e., the internal states do n
change after the collision). These requirements can be
isfied in an optical lattice. We consider a specific but rel
vant example of alkali atoms with a nuclear spin equal
3y2 s87Rb, 23Nad trapped by standing waves in three d
mensions. The internal states of interest are hyperfine l
els corresponding to the ground stateS1y2. Along thez
axis, the standing waves are in the lin/lin configuration
(two linearly polarized counterpropagating traveling wav
with the electric fields forming an angle2u [13]). The
electric field is a superposition of right and left circula
polarized standing waves (s6) which can be shifted with
respect to each other by changingu,

$E1sz, td ­ E0e2intf $e1 sinskz 1 ud 1 $e2 sinskz 2 udg ,
(9)

where $e6 denote unit right and left circular polarization
vectors,k ­ nyc is the laser wave vector, andE0 is the
amplitude. The lasers are tuned between theP1y2 andP3y2
levels so that the dynamical polarizabilities of the two fin
structureS1y2 states corresponding toms ­ 61y2 due to
the laser polarizations7 vanish, whereas the ones due t
s6 are identical (; a). The optical potentials for these
two states areVms­61y2sz, ud ­ ajE0j

2 sin2skz 6 ud. We
choose for the statesjal and jbl the hyperfine structure
statesjal ; jF ­ 1, mf ­ 1l and jbl ; jF ­ 2, mf ­
2l. Because of angular momentum conservation, the
states are stable under collisions (for the dominant cen
electronic interaction [14]). The potentials “seen” by th
atoms in these internal states are

V asz, ud ­ fVms­1y2sz, ud 1 3Vms­21y2sz, udgy4 , (10a)

V bsz, ud ­ Vms­1y2sz, ud . (10b)

If one stores atoms in these potentials and they are d
enough, there is no tunneling to neighboring wells, and
can approximate them by harmonic potentials. By var
ing the angleu from py2 to 0, the potentialsV b andV a

move in opposite directions until they completely overla
Then, going back tou ­ py2 the potentials return to their
original positions. The shape of the potentialV a changes
as it moves. By choosingustd ­ psss1 2 h1 1 expf2stiy
trd2gjyh1 1 expfst2 2 t

2
i dyt2

r gjdddy2 with tr ­ 30yv and
ti ­ 20yv, the frequencies and displacements of the h
monic potentials approximating (10) are exactly tho
plotted in Fig. 3a. Therefore, that figure shows that und
this realistic situation one can obtain very high fidelities

The scheme presented here can be used in severa
teresting experiments: (a) One can use this method
measure the phase shiftfab and therefore determine the
scattering length corresponding toa-b collisions. For that,
one can use ideas borrowed from Ramsey spectrosco
namely: (i) Prepareall atoms in the superpositionsjal 1

jbldy
p

2 by applying apy2 laser pulse; (ii) shift their po-
tentials as described above; (iii) apply anotherpy2 laser
1977
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pulse; (iv) detect the population of the internal states
fluorescence. It can easily be shown that such populati
depend in a simple way on the phase shiftfab . One can
even determine the sign of the scattering length by a
plying laser pulses with a pulse area different frompy2
[15]. (b) In a similar way, one can also measure th
spatial correlation function by applying the second las
pulse (iii) and population detection (iv) without moving
the potential back to the origin. This would be a wa
of discriminating between Mott and superfluid phases f
particles in an optical lattice [7]. (c) Apart from that, i
one is able to address individual wells with a laser, o
can also perform certain experiments which are intere
ing both from the quantum information and fundament
point of view. For example, one could create an entang
EPR pair of two particlessjal1jbl2 2 jbl1jal2dy

p
2 [1].

This could be done by having two atoms in neighborin
wells and (i) preparing each of them in the superpositi
sjal 1 jbldy

p
2, (ii) shifting their potentials back and forth

so that the phase shiftfab ­ p, and (iii) applying apy2
laser pulse to the second atom. In this case, one could
Bell inequalities and perform other fundamental expe
ments. (d) With more than two particles one could cr
ate higher entangled states with simple lattice operatio
For example, if one hasN particles inN potential wells,
one could create Greenberger-Horne-Zeilinger states of
form sjal1jal2 · · · jalN 2 jbl1jbl2 · · · jblN dy

p
2 [2]. This

could be easily done, for example, if one could use a diffe
ent internal statejcl1 in the first atom instead ofjbl1 [16].
The procedure would be as follows: (i) Prepare the fi
atom in the statesjal1 1 jcl1dy

p
2 and the others in the

statesjal 1 jbldy
p

2; (ii) move the potential correspond
ing to the internal leveljcl back and forth so that if the first
atom is in that state it interacts with all the other atoms fo
time such that in each “collision” the phase shift differenc
between the collisiona-c andb-c is p; (iii) apply a py2
pulse (in transitiona-b) to all the atoms except the firs
one, which is transferred fromjcl to jbl. We emphasize
that the optical lattice configuration allows the preparati
of these states in asingle sweepof the lattice. (e) Finally,
it is clear that one could use optical lattices in the context
quantum information since the above procedure provide
fundamental two bit gate (7) which, combined with sing
particle rotations, allows one to perform any quantum co
putation between an arbitrary number of two-level sy
tems. In particular, the optical lattice setup would be ve
well suited to implement fault tolerant quantum comput
tions due to the possibility of doing gate operations [4]
parallel [15].

So far we have neglected some processes that may
to decoherence and therefore limit the performance of o
scheme. This includes spontaneous emission of ato
in the off-resonant optical lattice potentials and inelas
collisions to wrong final atomic states. The spontaneo
emission lifetime of a single atom in the lattice is from
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seconds to many minutes, depending on the laser detun
[6]. The problem of collisional loss is closely relate
to the loss mechanism in Bose condensates in magn
and optical traps, a problem studied extensively in rece
experiments. By choosing proper internal hyperfine sta
one can maximize the lifetime due to inelastic collision
to be of the order of at least several seconds [17].

Finally, by filling the lattice from a Bose condensate an
using the ideas related to Mott transitions in optical lattic
[7] it is possible to achieve uniform lattice occupatio
(“optical crystals”) or even specific atomic patterns, a
well as the low temperatures necessary for performing
experiments proposed in this Letter.
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Note added.—After this work was completed we
became aware of [18] where dipole-dipole interactio
controlled by optical lattices are proposed as a mechan
to implement a two bit quantum gate.
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