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Entanglement of Atoms via Cold Controlled Collisions
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We show that by usingold controlled collisionsbetween two atoms one can achieve conditional
dynamics in moving trap potentials. We discuss implementing two qubit quantum gates and efficient
creation of highly entangled states of many atoms in optical lattices. [S0031-9007(99)08537-3]
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The controlled manipulation of entangled statesVef  the initial position at the final time = 7. This situation
particle systems is fundamental to the study of basic ass described by the Hamiltonian
pects of quantum theory [1,2] and provides the basis of 5
applications such as quantum computing and quantum H = [(PB) + VBGA — )—C,B(t)):|
communications [3,4]. Engineering entanglement in real pgoapl 2m
physical systems requires precise control of the Hamilton-
ian operations and a high degree of coherence. Achieving
these conditions is extremely demanding, and only a fev, qa .
systems, including trapped ions, cavity QED, and NMR ’
have been identified as possible candidates to impleme
quantum logic in the laboratory [3]. On the other hand, in
atomic physics witmeutral atomgecent advances in cool-
ing and trapping have led to an exciting new generation o
experiments with Bose condensates [5], experiments with ¢ (x? — xS (x" — %) — e Pyd(x* — x9)
optical lattices [6], and atom optics and interferometry. b( b _ =b
h ; : X g(x” = x7),  (2)

e question therefore arises as to what extent these new
experimental possibilities and the underlying physics canmhere each atom remains in the ground state of its trap-
be adapted to provide a new perspective in the field of exping potential and preserves its internal state. The phase
perimental quantum computing. ¢ will contain a contribution from the interaction (col-

In this Letter we propose coherent cold collisions as theision). Transformation (2) can be realized in thdia-
basic mechanism to entangle neutral atoms. The pictureatic limit [8], whereby we move the potentials so that the
of atomic collisionsascoherent interactionfas emerged atoms remain in the ground state. In the absence of interac-
during the last few years in the studies of Bose-EinsteiRjons (> = 0) adiabaticity requireis»%“’b(t)l <K voe V 1,
condensation (BEC) of ultracold gases. In a field theoretigyhere v, ~ agw is the rms velocity of the atoms in

language these interactions correspond to Hamiltoniange vibrational ground statey is the size of the ground
which are quartic in the atomic field operators, analogoustate of the trap potential, and is the excitation fre-

to Kerr nonlinearities between photons in quantum opguency. The phas¢ can be easily calculated in the limit
tics. By storing ultracold atoms in arrays of MiCroscopiC|¥4 (s)| <« e /7. In this casep = ¢¢ + ¢, where

potentials provided, for example, by optical lattices these

collisional interactions can be controlled via laser parame- ab . m [T Jr 3% ()2 3

ters. Furthermore, these nonlinear atom-atom interactions ¢ = 20 ). 137 (0) (3)

can be large [7], even for interactions between individual

pairs of atoms, thus providing the necessary ingredients tare thekinetic phases In the presence of interactions

implement quantum logic. (u® # 0), we define the time-dependent energy shift due
Let us consider a situation where two atoms 1 ando the interaction as

2 in internal stateda); and |b), (labeleda and b) are 5

trapped in the ground states” of two potential wells AE(r) = dmash fdx I1 Wl = PO (4)

vl nitially, at time+ = —7, these wells are centered m B=a,b

at positionsx¢ and x°, sufficiently far apart (distance

d = % — x%) so that the particles do not interact. The Wherea, is thes-wave scattering length. We assume that

positions of the potentials are moved along trajectoriesi) |AE(#)] < /i so that no sloshing motion is excited,

%%(r) and x°(¢r) so that the wave packets of the atoms(ii) Ifc“’h(t)l < vy (adiabatic condition), and (jiiy s is

overlap for a certain time, until finally they are restored tosufficiently small for the zero energywave scattering

+ u?(x* — x). ()

@b andp*’ are position and momentum operators,
respectively,V*? (x¢? — x%(t)) describe the displaced
p potentials, and?® is the atom-atom interaction term.
Ideally, we would like to implement the transformation
;romz =—7tor =71
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approximation to be valid [9]. In that case, (2) still holds with the second one only if they are in statkg and

with ¢ = ¢ + ¢* + ¢»*® with the collisional phase |b), respectively|x} (1) — %5(t)] > ao ¥V ]. This choice
1 (7 is motivated by the physical implementation considered
P = N / dr AE(1). (5)  below. The fact thak; does not depend on the internal

atomic state allows one to easily change this internal state
In the case of quasiharmonic potentials (as is realizedttimess = *7 by applying laser pulses. If the conditions

with optical potentials; see below) (2) still holds, evenstated above are fulfilled, depending on the initial internal

in the nonadiabatic regime, i.e., at higher velocities. Foratomic states we have

harmonic traps one can solve exactly the evolution for

u® = 0 and identify the condition for adiabaticity: la)ilay, — e~ |a)la),,
t . la)i|b)y — ¢ TN gy b,
‘ [ X ’h(t')e“‘” dt' |< ay, V-7r=t=r. g+ %) @)
-7 |b)ila)y, — e [D)ila)a,
6 b
©) [B)ilbd2 — =" b b),.
This is consistent with condition (ii). Actually, for (2) to ) ) o
hold the inequality (6) has to be fulfilled only far=  Where the motional states remain unchanged. The kinetic

7 (and not for all times). This means that the particlePhasesp? and the collisional phas¢“” can be calculated
need not be in the ground state of the moving potentiafS Stated above. We emphasize thatdifeare (trivial)

at all times but only at the final time. The phage=  One particle phases that, if known, can always be incorpo-
b + ¢, as well as the wave functions™” (x*", 1), can  rated in the definition of the statés) and|b).
be calculated exactly [8]. Far # 0 if conditions (i) In the language of quantum information, transformation

and (i) are satisfied, then (2) is still valid. There is (7) corresponds to a fundamental two-qubit gate [4]. In
an additional phase shift (with respect#@® = 0) ¢<¢  order to illustrate to what extent the mechanism presented

which is given by Egs. (4) and (5) with the replacementabove is able to perform this ideal gate, we have carried out
Lﬂg’b(xa,b — 590(1)) — P (x@b 7). It is also straight- a numerical study in three dimensions. We have integrated

forward to generalize these results to the case in whicf'€ time-dependent Schrodinger equation with the Hamil-
the trap frequency changes with time [10]. tonian (1). We have 'gaken harmonic potentials Wlth vari-
So far, we have shown that one can use cold collisions aQUS time-dependent displacemedid(¢) and frequencies.
a coherent mechanism to induce phase shifts in two-atorh€ir form as well as the parameter range is motivated by
interactions in a controlled way. Our goal is now to useth€ Specificimplementations outlined below. The figure of
these interactions to implement conditional dynamics. Wéneritthatwe have used is the minimum fidelity [%rl]'Wh'Ch
consider two atoms and2, each of them with two internal S defined ag” = miny (i [trex (U¢) (| @ pex U [)).
levels |a);» and |b),. We will use the superscripts H~er§|¢p> Is an arbltra_ry internal state of both atoms, and
B = a,b and the subscripts = 1,2 to label the internal ¥ iS the state resulting frory) using the mapping (7).

levels and atoms, respectively. Atoms in the internal statd "€ trace is taken over motional statés, is the evolu-
|8); experience apotentimf which is initially (¢ = —7) tion operator for the internal states coupled to the external

centered at positioR;. We assume that we can move the mation (including t_he collision), anple)_(t s the dgnsﬂy op-
; . erator corresponding to both atoms in the motional ground
centers of the potentials as follows (Fig. 153:(t) =X +

- C : state at = —7. In the ideal case the fidelity will be one.
8xP(1). The trajectoriex”(r) are chosen in such away e have taken the potentiat® as proportional to a delta
that §x#(—7) = 8x#(7) = 0 and the first atom collides fynction and used a truncated moving harmonic oscillator
basis (ten states for each degree of freedom). The first il-
lustration corresponds to a fixed trap frequeacy= w”

and displacement§x”(r) = 0 and x“(¢) as specified in
Fig. 2a. In Fig. 2b we present a contour plot Bfas a
function of the parameters characterizing the displacement
ox%(t). The fidelity is very close to one for a surprisingly
wide range of parameters, even well into the nonadiabatic
regime. We have also studied numerically the effect of
time-varying trap frequencies (see Fig. 3a) and finite tem-
ze(t) peratures, so thai., describes a thermal distribution of
temperaturdl’. For temperatureg? < 0.2Zw (Wherew

FIG. 1. Configurations at times:r (a) and atr (b). The IS theinitial trap frequency) the fidelity remains very close
solid (dashed) curves show the potentials for particles in thdo one (of the order 09.997), and this result is still robust
internal statda) (|b)), respectively. Center positiorxﬁ(t) and  Wwith respect to changes in the parameters. We have also
displacement$x#(¢) are as defined in the text. included loss due to collisions by adding an imaginary part
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internal atomic state$a) and |») has to be such that
they are collisionally stable (i.e., the internal states do not
change after the collision). These requirements can be sat-
isfied in an optical lattice. We consider a specific but rele-
vant example of alkali atoms with a nuclear spin equal to
0 00 b 3/2 (3’Rb,*Na) trapped by standing waves in three di-
-100 0 100 10 15 20 mensions. The internal states of interest are hyperfine lev-
bw e els corresponding to the ground statg,. Along thez
FIG. 2. (a) Displacement as a function of tinaer, 5x%(r)/ axis, the standing waves are in theilin configuration
d =[1+ exp(—(r;/m)))/{1 + exd(:* — 77)/72]} and (two linearly polarized counterpropagating traveling waves
8x"(1) = 0 (see text), withr, = 30/w and 7, = 20/w. The  with the electric fields forming an ang®¥ [13]). The
th.‘ded region indicates where the particles inte;actéw (kk)’) Fizlectric field is a superposition of right and left circular
W?t;]tyaf :a%‘f’ll'nr?;{'ze:t'rgg’xaTgo”lltﬁ;?g'nodn dtin% a(?,r R polarized standing wavesr(*) which can be shifted with
respect to each other by changifig

to the scattering length. In that case, the fidelity is reducedt (z, 1) = Ege "’'[€4 sin(kz + 0) + €_sin(kz — 0)],
(see Fig. 3b). (9)

So far we have assumed that there is one atom per . o ) o
potential well. In practice, the particle number might notWhere €« denote_unlt right and left circular pole}rlzatlon
be controlled. Nevertheless, one can easily generalize tHCtors,k = v/c is the laser wave vector, anf, is the
above results to this case by using a second quantizéan“tUde- The lasers are tuned betweenitfye andPs > -
picture. For example, in the adiabatic regime we denotéeVvels so that the dynamical p0|_aI‘I2abI|ItIeS of the two fine
by a; and b; the annihilation operators for a particle in Structuresy; states corresponding o, = +1/2 due to
the ground state of the potential centered at the positioH“f laser polarizatiom* vanish, whereas the ones due to
i and corresponding to the internal levéls and |b), o~ are identical € «). The optlcag p_otentlals for these
respectively. The effective Hamiltonian in this regime is tWO States ar&,, —«1/>(z, 0) = a|Eo| si?(kz = ). We

choose for the statels:) and |b) the hyperfine structure

H = Z[wu(l‘)a?ai + wb(t)b,?rb,' + Maa(t)a;fa;faiai statesla} = |F = l,I’I’Zf = 1) and |b> = |F = Z,mf =

; 2). Because of angular momentum conservation, these
states are stable under collisions (for the dominant central
+ ubb(t)b;fb;rbib,-] + Z u?jb(t)a;ra,-b;rb,-, electronic interaction [14]). The potentials “seen” by the
i T atoms in these internal states are

(8) a
. Vi z,0) = [Vin,=1/2(2,0) + 3Vy,=—12(z,6)]/4, (10a)

where thew’s and u’s depend on the specific way the
potentials are moved. This Hamiltonian corresponds td’” (z:6) = Vin=1/2(2.6). (10b)

a quantum-non-demolition situation [12], whereby thet gne stores atoms in these potentials and they are deep

particle number can be measured nondestructively. enough, there is no tunneling to neighboring wells, and we
A physical implementation of this scenario requires an.5, approximate them by harmonic potentials. By vary-

interaction that produces internal state dependent CONSEHg the angled from /2 to 0, the potentials’? and V@

vative trap potentials and the possibility of moving thesengye in opposite directions until they completely overlap.
potentials independently. Furthermore, the choice of thel‘hen, going back té = /2 the potentials return to their

original positions. The shape of the potenti&l changes
) R b) 1 as it moves. By choosing(s) = 7 (1 — {1 + exd—(r;/

s 2B/ + exd (> — 7)/72]})/2 with 7, = 30/ and
¢ %5 f_\ 7; = 20/ w, the frequencies and displacements of the har-
1 F0.75 monic potentials approximating (10) are exactly those
@) o8 W plotted in Fig. 3a. Therefore, that figure shows that under
’ 06 1= - T this realistic situation one can obtain very high fidelities.

The scheme presented here can be used in several in-
teresting experiments: (a) One can use this method to
FIG. 3. (az Upper plot: Displacements“(r)/d (solid line)  measure the phase shift?’ and therefore determine the
andl + 8x°(r)/d (dashed line). Lower plot: Trap frequencies scattering length correspondingdeb collisions. For that,

w(t)/w (solid line) andw®(t)/w (dashed line). (b) Fidelity :
F against temperaturé/fiw for Rb with a, — 5.1 nm one can use ideas borrowed from Ramsey spectroscopy,

(solid line), a, = (1 — 0.017) X 5.1 nm (dashed line), and namely: (i) Preparall atoms in the superpositidita) +
a; = (1 —0.05{) X 5.1 nm (dash-dotted line). Herev = |b))//2 by applying as /2 laser pulse; (ii) shift their po-
27 X 100 kHz andd = 390 nm. tentials as described above; (iii) apply anothef2 laser

tw
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pulse; (iv) detect the population of the internal states byseconds to many minutes, depending on the laser detuning
fluorescence. It can easily be shown that such populatiori]. The problem of collisional loss is closely related
depend in a simple way on the phase siiff. One can to the loss mechanism in Bose condensates in magnetic
even determine the sign of the scattering length by apand optical traps, a problem studied extensively in recent
plying laser pulses with a pulse area different frati2  experiments. By choosing proper internal hyperfine states
[15]. (b) In a similar way, one can also measure theone can maximize the lifetime due to inelastic collisions
spatial correlation function by applying the second laseto be of the order of at least several seconds [17].

pulse (iii) and population detection (iv) without moving  Finally, by filling the lattice from a Bose condensate and
the potential back to the origin. This would be a wayusing the ideas related to Mott transitions in optical lattices
of discriminating between Mott and superfluid phases fof7] it is possible to achieve uniform lattice occupation
particles in an optical lattice [7]. (c) Apart from that, if (“optical crystals”) or even specific atomic patterns, as
one is able to address individual wells with a laser, onavell as the low temperatures necessary for performing the
can also perform certain experiments which are interestexperiments proposed in this Letter.

ing both from the quantum information and fundamental This research was supported by the Austrian Science
point of view. For example, one could create an entangleéoundation, by the TMR network ERB-FMRX-CT96-
EPR pair of two particles|a)|b), — |b)1]a).)/+/2 [1]. 0087, by the NSF under Grant No. PHY94-07194, and
This could be done by having two atoms in neighboringby the Marsden fund, Contract No. PVT-603.

wells and (i) preparing each of them in the superposition Note added—After this work was completed we
(la) + |b))/~/2, (ii) shifting their potentials back and forth became aware of [18] where dipole-dipole interactions
so that the phase shi“® = 7, and (iii) applying ar/2  controlled by optical lattices are proposed as a mechanism
laser pulse to the second atom. In this case, one could tetst implement a two bit quantum gate.

Bell inequalities and perform other fundamental experi-
ments. (d) With more than two particles one could cre-
ate higher entangled states with simple lattice operations.
For example, if one ha& particles inN potential wells,  [1] J.S. Bell, Physics (Long Island City, N.Y1) 195 (1964).
one could create Greenberger-Horne-Zeilinger states of thd2l D-M. Greenbergeet al., Am. J. Phys58, 1131 (1990).
form (Ja)ila)s--- lady — |bY11bYs---|bYy)/v2 [2]. This 81 C-P. Wiliams and S.H. ClearwaterExplorations in

: . e Quantum ComputingSpringer-Verlag, New York, 1997).
could be easily done, for example, if one could use a differ [4] D.P. DiVincenzo, Phys. Rev. /&1 1015 (1995): C.H.

ent internal statéc); in the first atom ins;ead ab), [16]. . Bennett, Phys. Todag8, No. 10, 24 (1995); A. Barenco

The procedure would be as follows: (i) Prepare the first ¢t 5 phys. Rev. A52, 3457 (1995).

atom in the staté|a); + |c);)/v/2 and the others in the [5] F. Dalfovo et al., cond-mat/9806038.

state(la) + |5))//2; (i) move the potential correspond- [6] S. Friebel et al., Phys. Rev. A57, R20 (1998); S.E.

ing to the internal levelc) back and forth so that if the first Hamannet al., Phys. Rev. Lett.80, 4149 (1998), and

atom is in that state it interacts with all the other atoms fora  references therein.

time such that in each “collision” the phase shift difference [7] D. Jakschet al., Phys. Rev. Lett81, 3108 (1998).

between the collisiom-c andb-c is ; (iii) apply a /2 [8] See, e.g., A. Gal[ndo and P. Pascu@uantum Mechanics

pulse (in transitioru-b) to all the atoms except the first Il (Springer, Berlin, 1991). .

one, which is transferred frofe) to |b). We emphasize [9] The justification parallels th_e argume_nts pres_ented |.n the

that the optical lattice configuration allows the preparation context of the pseudopotential approximation in BEC; see,
. . ; e.g., H. T.C. Stoof, M. Bijlsma, and M. Houbiers, J. Res.

pf_ these states insingle sweep)_f the Ia_ttlce._ (e) Finally, Natl. Inst. Stand. Technol0L 443 (1996).

itis clear that one could use optical lattices in the context of1g] yu, Kaganet al., Phys. Rev. A54, R1753 (1996).

quantum information since the above procedure provides@1] B. Schumacher, Phys. Rev. 34, 2614 (1996).

fundamental two bit gate (7) which, combined with single[12] V. B. Braginsky, Y.I. Vorontsov, and F.Y. Khalili, Sov.

particle rotations, allows one to perform any quantum com-  Phys. JETR46, 705 (1977).

putation between an arbitrary number of two-level sys{13] V. Finkelstein, P.R. Berman, and J. Guo, Phys. Rev. A

tems. In particular, the optical lattice setup would be very 45, 1829 (1992). _

well suited to implement fault tolerant quantum computa-{14] J. Weineret al., Rev. Mod. Phys. (to be published);

tions due to the possibility of doing gate operations [4] in  E- Tiesinga, B.J. Verhaar, and H.T.C. Stoof, Phys. Rev.

A 47, 4114 (1993).

parallel [15]. 15] For details, see H. Briegel and D. Jaksch (unpublished).
So far we have neglected some processes that may le ] In ¥Rb and 2Na one could usda) = |F = 1, my =
to decoherence and therefore limit the performance of o 1), Y= |F =2,mp =2), and |¢) = |F = 1’m£ =

scheme. This includes spontaneous emission of atoms 1y (see [15]).
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collisions to wrong final atomic states. The spontaneous  (1998).
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