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Absence of Two-Dimensional Bragg Glasses
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The stability to dislocations of the elastic phase, or “Bragg glass,” of a randomly pinned ela
medium in two dimensions is studied using the minimum-cost-flow algorithm for a disordered f
packed loop model. The elastic phase is found to be unstable to dislocations due to the que
disorder. The energetics of dislocations are discussed within the framework of renormalization g
predictions as well as in terms of a domain wall picture. [S0031-9007(99)08587-7]

PACS numbers: 74.60.Ge, 02.60.Pn, 64.70.Pf
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Randomly pinned elastic media are used to model va
ous condensed-matter systems with quenched disor
including flux-line arrays in dirty type-II superconductor
[1] and charge density waves (CDW) [2]. Although i
is known [3] that these systems cannot exhibit lon
range translational order in less than four dimension
the intriguing possibility of a “topologically ordered”
low-temperature phase remains an open question [1,4
It has been conjectured that such a phase, with
dislocation loops bound, exists in three dimensions. Su
a phase would be elastic and have power-law Bragg-li
singularities in its structure factor; it is often referred to a
a “Bragg” or “elastic” glass [4].

Whether or not unbound topological defects exist at lo
temperatures involves a subtle balance between elas
energy cost and disorder-energy gain [5]. We analy
this issue for two-dimensional randomly pinned elast
media at zero temperature by considering a2d-lattice
model, viz., a fully packed loop (FPL) model [6] with
quenched disorder. This FPL model is equivalent to
array of planar fluxlines [7], a prototypical model fo
elastic media. Exact ground states of the FPL mod
are computed with and without topological defects, whic
we refer to as dislocations. Thepolynomialoptimization
algorithm [8] that we use, minimum-cost-flow, enables u
to study large systems.

We focus on the energetics of a single dislocatio
pair in systems of sizeL 3 L. Our main conclusion
is that the disorder energy gain of the optimally place
pair dominates over the elastic energy cost with th
results being consistent with theoretical predictions
Osss2sln Ld3y2ddd and Os1 ln Ld, respectively, for the two
quantities. Dislocations therefore become unbound a
proliferate causing the destruction of the Bragg glass
the thermodynamic limit [9].

Model and algorithm.—The FPL model is defined
on a honeycomb lattice on which all configurations o
occupied bonds which form closed loops and cover eve
site exactly once are allowed, as shown in Fig. 1(a
This model can be mapped to a solid-on-solid surfa
model. Define integer heights at the centers of hexago
then orient all bonds of the resulting triangular lattic
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such that elementary triangles pointing upward are circle
clockwise; assign11 to the difference of neighboring
heights along the oriented bonds if a loop is crossed a
22 otherwise. This yields single-valued heights up to a
overall constant. It can be seen that the smallest “step”
the surface is three, so that the effective potential on th
surface is periodic in heights modulo 3.

Quenched disorder is introduced via random bon
weights on the honeycomb lattice, chosen independen
and uniformly from integers in the intervalf2500, 500g.
The energy is the sum of the bond weights along all loop
and strings. The system can be viewed as a surface in
3d random medium that is periodic in the height direction
Dislocations are added to the FPL model by “violating
the constraint. One dislocation pair is an open string i
an otherwise fully packed system as shown in Fig. 1(b
The height change along any path encircling one end
the string is the Burgers charge63 of a dislocation so
that the heights become multivalued.

Numerical results.—For each disorder realization, the
ground-state energies with and without a dislocation pa
and hence the defect energyEd and also the domain wall
[see Fig. 1(c)] were computed by an integer min-cost-flow
algorithm [8].

We first held the dislocationsfixed at two specific
sites separated byLy2 in L 3 L samples withL ­ 12,

(a) (b) (c)

FIG. 1. The FPL model with periodic boundary conditions
The ground states with and without a pair of dislocations fo
one realization of random bond weights are displayed in (b
and (a), respectively. The dislocations (solid dots) in (b) ar
connected by an open string (thick line) among the loops. Th
relevant physical object is, however, the dislocation-induce
domain wall, as shown in (c). This domain wall represent
the line of bonddifferencesbetween the ground states (a)
and (b).
© 1999 The American Physical Society 1935
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24, 48, 96, 192, and 384, with at least104 disorder re-
alizations for each size. The probability distribution
PsEdd of the defect energy are shown in Fig. 2(a); the
are well fit by Gaussians for all sizes. The mean pa
energy is plotted versus lnL with a linear fit Ed ­
180s2d ln L 2 20s6d. The root-mean-square (rms) width
ssEdd is also shown in Fig. 2(b), with a linear fit of
ssEdd ­ 250s3d 1 133s1d ln L. This implies a tail in
PsEdd for negativeEd and suggests an energygain from
dislocations that can be optimized to take advantage of
negative part of the distribution.

We also computed theoptimized(lowest energy) dislo-
cation pair energyEmin

d for L up to480 with 104 106 sam-
ples for each size. The defect energy distributionPsEmin

d d
is no longer Gaussian, indeed substantial asymmetry
PsEmin

d d is seen in Fig. 3(a). Moreover, in contrast to th
case of fixed dislocations,Emin

d is negativeanddecreases
more rapidly than lnL with increasing system size while
the rms widthssEmin

d d increases less rapidly than lnL.
The linear fits shown in Fig. 3(b) yieldf2Emin

d g2y3 ­
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FIG. 2. Energetics offixed defects: The probability distribu-
tions of the energy of afixed dislocation pair with separation
Ly2 for sample sizes fromL ­ 12 to L ­ 384 are shown in
(a). The solid lines are Gaussian fits. The corresponding a
erage defect energyEd (solid circle) and the rms widthssEdd
(solid square) are found to scale with system size as lnL, as
shown in (b). The solid lines are linear fits.
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s43.80 6 0.31d ln L 1 s24.03 6 0.14d and fssEmin
d dg2 ­

s21883 6 180d ln L 1 s9013 6 802d. This implies that
since almost all large systems have negative ene
dislocation pairs, as is evident in Fig. 3(a), the FP
model isunstableagainst the spontaneous appearance
dislocations.

Continuum models.—To understand analytically the
observed defect energetics, we consider coarse-grai
approximations to the random FPL model. In the absen
of dislocations, the surface has a stiffness caused by
inability of a tilted surface to take as much advantage
the low weight bonds as a flatter surface. The rando
bonds couple to both=h and h modulo b ­ 3. An
appropriate effective Hamiltonian is thus

H ­
Z

dr
∑

K
2

s=hd2 2 f ? =h 2 w cos

µ
2p

3
h 2 g

∂∏
,

(1)

with f ; fsrd locally random with varianceD, andg ;
gsrd ­ 0, 6

2p

3 with equal probability.
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FIG. 3. Energetics ofoptimizeddefects: The defect energy
probability distributions for sample sizes fromL ­ 12 to
L ­ 480 are shown in (a). The solid lines are guides to th
eyes. Both the average defect energy plotted asf2E

min
d g2y3 vs

ln L and the rms width plotted asfssEmin
d dg2 vs lnL are shown

in (b). Solid lines are linear fits.
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A related model (CDW) [10] has, instead, thehgsrdj
being uniformly distributed inf0, 2pg. A renormaliza-
tion group (RG) analysis [11] shows that these models a
in the same universality class: shiftinghsrd by 3

2p gsrd
makes the models similar but changes theh fsrdj intro-
ducing short-range correlations that are different in th
two models. However, these are irrelevant on large leng
scales since the variations ofh grow without bound.

The CDW model has an elastic glass phase forT , Tg

in which w is relevant and renormalizes to aT -dependent
fixed point while D grows as lnL yielding height vari-
ations kfhsrd 2 hs0dg2l ø b2

p Ysln rd2 [10]. An approxi-
mate functional RG analysis yields a similar structu
at all temperatures belowTg with a universal T ­
0 limit Y0 of the coefficient YsT d [12]. On large
scales, the behavior is dominated by the competition b
tween the random stressingfsrd, and the stiffnessK, with
the random force correlations effectivelyfisqdfjs2qd ­
2Cdij lnsq2d for small wave vectorsq. We can thus work
with the simple purely random-force limit of Eq. (1) with
w ­ 0. We then immediately conclude thatY0 ­ C

K2b2 .
In the presence of dislocationshsrd becomes multival-

ued. It can be decomposed into two partsh ­ he 1 hd ,
with he, the smooth elastic distortion while the singu
lar function hd, has a cut connecting the two dislo
cations atr1 and r2 with Burgers chargeb1 ­ b ­ 3
and b2 ­ 2b ­ 23 with = 3 =hd ­

P
i­1,2 bid

2sr 2

rid and=2hd ­ 0. The energy of a dislocation pair is

Ed ­
K
2

Z
d2rj=hdj2 2

Z
d2rsfT ? =hdd (2)

ø
Kb2

2p
lnjr1 2 r2j 2 bfgsr1d 2 gsr2dg , (3)

where the static random force field has been deco
posed into longitudinalfL ­ =usrd and transversefT ­
= 3 gsrd components. Sinceusrd, gsrd, and =hd are
continuous across the cut whilehd jumps byb, fL makes
no contribution toEd and Eq. (3) follows by integration
by parts. The first term is the standard elastic cost and
second the disorder gain so thatgsrd is thepotential felt
by the dislocations. Its variance isSg ; gsqdgs2qd ­
2Cq22 lnsq2d so that the elastic surface without disloca
tions and the dislocation potential have thesame statistics
after a rescaling:Sh ; hsqdhs2qd ø SgyK2.

In terms of the statistical properties of the dislocation p
tential, our numerical results can be understood. We fi
discuss fixed dislocation pairs. A statistical symmetry
the CDW model implies that on large scalesfsrd and hence
the potentialgsrd and Ed are Gaussian [12]. The shap
of our computed defect energy distribution, its mean, a
its variance all agree with predictions from Eq. (3),Ed ø
sKb2y2pd ln L—an exact result for the CDW model—
and ssEdd ø

p
b2Cyp ln L with K ­ 126s2d and C ­

6174s93d yieldingCyK2 ­ 0.389s11d. We also measured
the variance of the height of the surface without dislo
re
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cations, finding a good fit tos2shd ­ 0.061s2d sln Ld2 1

0.477s7d ln L 1 0.765s13d. The predicted coefficient of
the sln Ld2 is Cy2pK2 yielding CyK2 ­ 0.387s12d. The
agreement between the two estimates ofCyK2 further sup-
ports the validity of the random force model, including,
particular, the equality between the statistics of the lon
tudinal and transverse parts offsrd

We now turn to optimized dislocations. If the firs
term in Eq. (3) can be ignored, the optimal placeme
of dislocations coincides with the minimum (gmin) and
maximum (gmax) of the random potentialgsrd. The dis-
tribution of the extrema of potentials likegsrd, whose
variance grows as a power of lnL, can be semiquanti-
tatively understood by thinking of iteratively optimizing
over each factor of 2 in length scale with the compone
of the random potential on scalel being essentially the
contribution from Fourier components withs

p
2 pyld ,

jqxj, jqyj , s2
p

2 pyld. If scale l gives rise to a contri-
bution to the variance ofg of ordersln ld2a —with a ­ 1

2
in our case—then atypical gsrd is the incoherent loga-
rithmic sum over all scales, i.e.,,sln lda11y2. The maxi-
mum of g can be found, heuristically, by maximizing
over the four points at scalel ­ 1 in each square of
scale-2, then maximizing over the four scale-2 maxim
in each scale-4 square, etc. Since the scalel structure
of g is weakly correlated over scales much longer th
l, a crude approximation is to ignore these correlatio
whereby one stage of optimization adds of ordersln lda

to the local scalel maximum [13]. Thus scales shoul
be summed overcoherentlyyielding gmax , sln Lda11.
The variance ofgmax is dominated by the largest scale
so thatssgmaxd , sln Lda. In our case, we thus expec
gmax 2 gmin , sln Ld3y2 which indeed dominates ove
the lnL elastic energy term in Eq. (3). Hence we expe
E

min
d ø 2Ab

p
Csln Ld3y2 andssEmin

d d ø Bb
p

Csln Ld1y2

with some coefficientsA andB.
The linear fits in Fig. 3(b) giveA ø 1.23s1d and

B ø 0.56s1d using the C computed earlier. If
the elastic part Kb2

2p ln L is subtracted from E
min
d

by fitting the difference Emin
d sLd 2 Emin

d sLy2d to
2s3 ln 2y2dAb

p
Csln Ld1y2 1 const, this yields a

similar value of A ø 1.17s5d. Using the extremal
heights in the absence of dislocations, the stiffne
K can also be extracted fromEmin

d sLd via E
min
d 2

bKshmin 2 hmaxd ø Kb2

2p ln L 1 const. This yields
K ø 114s1d in not unreasonable agreement with th
K ø 126s2d from thefixeddislocation pairs.

An upper bound ongmax 2 gmin can be simply ob-
tained by noting that the probability Probfgmax . Mg #P

r Probfgsrd . Mg so that, with L2 points, the me-
dian gmax is less than theM for which the right-hand
side, L2 Probfgsrd . Mg for fixed r, equals 1

2 . If gsrd
is Gaussian sufficiently far into the tail of its distri
bution, this yieldsgmax 2 gmin #

p
C

p
8yp sln Ld3y2 so

thatA #
p

8yp. The hierarchical optimization describe
1937
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above suggests thatA might saturate this bound [14].
To test this and the universality ofA, we have mea-
sured the distributions of the extrema of the heights
the FPL surface without dislocations and several exac
Gaussian random surfaceshssrdj with variancefssrdg2 ­
C

2p sln Ld112a . Good fits are found toA
p

C ssslnsLyaadddd11a

with aa a cutoff, yielding AFPL-heights ø 1.45s3d, and
AGaussian ø 1.517s3d, 1.307s6d, 1.168s6d, and1.064s5d for
a ­ 0, 1y2, 1, and3y2, respectively, and from the vari-
ancesBFPL-heights ø 0.67s2d, and BGaussian ø 0.475s4d,
0.637s7d, 0.730s9d, and0.814s4d, respectively.

All the extractedA’s satisfy A #
p

8yp, and there
appears to be a systematic trend forAsad to decrease as
a increases; if so, it is likely thatA is strictly less thanp

8yp for all a . 2
1
2 [for a , 2

1
2 Gaussian surfaces

the variance saturates for largeL and the extrema grow as
sln Ld1y2]. The values ofA for the nominallya ­ 1

2 cases,
1.17–1.23,1.45, and 1.307 for the optimal dislocations,
extrema heights, and Gaussian surface, respectively, dif
by substantially more than the apparent statistical erro
as do theB’s, 0.56, 0.67, and 0.637, respectively. But
given the narrow range of lnL available, these results
are certainly consistent with universal values ofA andB
for a ­ 1

2 . The questions of universality and possiblea

dependence need further study.
Overall, we have found rather good agreement for a v

riety of large scale quantities with the RG prediction o
equivalence at long scales of the FPL model and a ra
dom force model. Although extracting reliable exponen
of ln L is not possible (especially with logarithmic cor-
rections to scaling) the fact that thecoefficientsand ratios
between these—extracted several ways—are in reas
able agreement is a more stringent test. But even if t
random force equivalence isnot valid, the data of Fig. 3
clearly indicate the instability of large systems to disloca
tion pairs. Note that this is true for arbitrarily weak ran
domness: as shown in [5] weak randomness is equivale
to large dislocation core energy, but this will be overcom
by the2sln Ld3y2 for largeL. Widely spaced dislocations
will thus proliferate driving the elastic constantK to zero
and destroying the order [8,15].

We conclude with an alternate picture of the elas
tic glass, developed for the three-dimensional ca
[5]. The basic excitations from a ground state ar
fractal domain walls surrounding regions in whichh
changes byb. Their fractal dimension,dw, will be
the same as that for the forced open wall that co
nects a pair of dislocations [Fig. 1(c)]:d

fixed-pairs
w ­

1.28s3d ø d
optimized-pairs
w ­ 1.30s3d. The energy of a

scale L wall constrained only on scaleL should vary
by Ossssln Ld1y2ddd but have mean independent ofL. The
incoherent logarithmic sum over scales yields for th
fixed-end open domain wall energy, both mean an
variations of order lnL—as we found. But if the end
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positions can adjust to lower the wall energy near th
dislocation at each scale, the energies add upcoherently
resulting in the2sln Ld3y2 mean optimal dislocation pair
energy with ordersln Ld1y2 variations dominated by the
largest scale, in an analogous way to the extrema of t
gsrd of the random force picture. Since the defect energ
is concentrated on the domain wall, while it is sprea
out over a region of areaOsL2d in the random force
approximation, it is surprising that these yield the sam
predictions. But the fact that our results agree well wit
the domain wall picture in 2D lends strong support to th
validity of the analogous picture in the 3D case for whic
it has been used to conclude that the 3D elastic gla
phase is stable to dislocation loops [5].
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