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Absence of Two-Dimensional Bragg Glasses
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The stability to dislocations of the elastic phase, or “Bragg glass,” of a randomly pinned elastic
medium in two dimensions is studied using the minimum-cost-flow algorithm for a disordered fully
packed loop model. The elastic phase is found to be unstable to dislocations due to the quenched
disorder. The energetics of dislocations are discussed within the framework of renormalization group
predictions as well as in terms of a domain wall picture. [S0031-9007(99)08587-7]

PACS numbers: 74.60.Ge, 02.60.Pn, 64.70.Pf

Randomly pinned elastic media are used to model varisuch that elementary triangles pointing upward are circled
ous condensed-matter systems with quenched disorderiockwise; assign+1 to the difference of neighboring
including flux-line arrays in dirty type-Il superconductors heights along the oriented bonds if a loop is crossed and
[1] and charge density waves (CDW) [2]. Although it —2 otherwise. This yields single-valued heights up to an
is known [3] that these systems cannot exhibit long-overall constant. It can be seen that the smallest “step” of
range translational order in less than four dimensionsthe surface is three, so that the effective potential on the
the intriguing possibility of a “topologically ordered” surface is periodic in heights modulo 3.
low-temperature phase remains an open question [1,4,5]. Quenched disorder is introduced via random bond
It has been conjectured that such a phase, with allveights on the honeycomb lattice, chosen independently
dislocation loops bound, exists in three dimensions. Suchnd uniformly from integers in the intervil-500, 500].

a phase would be elastic and have power-law Bragg-lik& he energy is the sum of the bond weights along all loops
singularities in its structure factor; it is often referred to asand strings. The system can be viewed as a surface in a
a “Bragg” or “elastic” glass [4]. 3d random medium that is periodic in the height direction.

Whether or not unbound topological defects exist at lowDislocations are added to the FPL model by “violating”
temperatures involves a subtle balance between elastithe constraint. One dislocation pair is an open string in
energy cost and disorder-energy gain [5]. We analyzan otherwise fully packed system as shown in Fig. 1(b).
this issue for two-dimensional randomly pinned elasticThe height change along any path encircling one end of
media at zero temperature by considerin@&lattice  the string is the Burgers charge3 of a dislocation so
model, viz., a fully packed loop (FPL) model [6] with that the heights become multivalued.
quenched disorder. This FPL model is equivalent to an Numerical results—For each disorder realization, the
array of planar fluxlines [7], a prototypical model for ground-state energies with and without a dislocation pair
elastic media. Exact ground states of the FPL modehnd hence the defect enery and also the domain wall
are computed with and without topological defects, which[see Fig. 1(c)] were computed by an integer min-cost-flow
we refer to as dislocations. Thmlynomialoptimization  algorithm [8].
algorithm [8] that we use, minimum-cost-flow, enables us We first held the dislocationgixed at two specific

to study large systems. sites separated b¥/2 in L X L samples withL = 12,
We focus on the energetics of a single dislocation
pair in systems of sizd. X L. Our main conclusion {g

results being consistent with theoretical predictions of X
O(—=(InL)*?) and O(+ InL), respectively, for the two  £,22302% %}éﬁm

. : ) P CH RN
quantities. Dislocations therefore become unbound and
proliferate causing the destruction of the Bragg glass in (@ (©)

the thermodynamic !imit [9]. . . FIG. 1. The FPL model with periodic boundary conditions.
Model and algorithm—The FPL model is defined The ground states with and without a pair of dislocations for
on a honeycomb lattice on which all configurations ofone realization of random bond weights are displayed in (b)

occupied bonds which form closed loops and cover evergnd (a), respectively. The dislocations (solid dots) in (b) are
site exactly once are allowed, as shown in Fig. 1(a)connected by an open string (thick line) among the loops. The
This model can be mapoed to a solid-on-solid surfac relevant physical object is, however, the dislocation-induced

o pp ©omain wall, as shown in (c). This domain wall represents
model. Define integer heights at the centers of hexagonge line of bonddifferencesbetween the ground states (a)
then orient all bonds of the resulting triangular latticeand (b).

COTQO VNS Jg
is that the disorder energy gain of the optimally placed J%Eilﬁ &ﬁi{o 2
pair dominates over the elastic energy cost with the }{3 qkbg}%% %(;{3 cs,;_\,—-
O
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24,48,96,192, and 384, with at least10* disorder re-
alizations for each size.

The probability distributions (21883 #+ 180)InL + (9013 * 802).

(43.80 + 0.31)InL + (24.03 * 0.14) and[o(ET"™]? =
This implies that

P(E;) of the defect energy are shown in Fig. 2(a); theysince almost all large systems have negative energy
are well fit by Gaussians for all sizes. The mean paidislocation pairs, as is evident in Fig. 3(a), the FPL

energy is plotted versus In with a linear fit E; =

model isunstableagainst the spontaneous appearance of

180(2)InL — 20(6). The root-mean-square (rms) width dislocations.

o(Ey) is also shown in Fig. 2(b), with a linear fit of

o(Eg) = 250(3) + 133(1)InL. This implies a tail in
P(E;) for negativeE,; and suggests an energgin from

Continuum models-To understand analytically the
observed defect energetics, we consider coarse-grained
approximations to the random FPL model. In the absence

dislocations that can be optimized to take advantage of thef dislocations, the surface has a stiffness caused by the

negative part of the distribution.
We also computed theptimized(lowest energy) dislo-
cation pair energg,"" for L up to480 with 10*-10° sam-

min

ples for each size. The defect energy distributigi;

is no longer Gaussian, indeed substantial asymmetry in
P(E7"™) is seen in Fig. 3(a). Moreover, in contrast to theH =

—=min

case of fixed dislocationg;,; " is negativeanddecreases

more rapidly than Ii. with increasing system size while

the rms widtho (E™") increases less rapidly than An
The linear fits shown in Fig. 3(b) yield—E}" 1?3 =
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FIG. 2. Energetics ofixed defects: The probability distribu-

tions of the energy of dixed dislocation pair with separation

L/2 for sample sizes fronl. = 12 to L = 384 are shown in
erage defect energl, (solid circle) and the rms widtlr (E,)

(solid square) are found to scale with system size ds las
shown in (b). The solid lines are linear fits.

1936

inability of a tilted surface to take as much advantage of
the low weight bonds as a flatter surface. The random
bonds couple to bottWz and 2 modulo » = 3. An
appropriate effective Hamiltonian is thus

K 2
dr[;(Vh)z —f-Vh— wco<§h - yﬂ

1)
with f = f(r) locally random with variancé\, andy =
y(r) =0, i%” with equal probability.
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FIG. 3. Energetics obptimizeddefects: The defect energy
probability distributions for sample sizes froh = 12 to

(a). The solid lines are Gaussian fits. The corresponding avl. = 480 are shown in (a). The solid lines are guides to the

eyes. Both the average defect energy plottefi-a&. " /3 vs
In L and the rms width plotted dsr(ES"™)]? vs InL are shown
in (b). Solid lines are linear fits.



VOLUME 82, NUMBER 9 PHYSICAL REVIEW LETTERS 1 MRcH 1999

A related model (CDW) [10] has, instead, the(r)}  cations, finding a good fit te-2(7) = 0.061(2) (InL)> +
being uniformly distributed id0,27]. A renormaliza- 0.477(7)InL + 0.765(13). The predicted coefficient of
tion group (RG) analysis [11] shows that these models arthe (In L)? is C/27K? yielding C/K? = 0.387(12). The
in the same universality class: shiftingr) by %'y(r) agreement between the two estimate€ ¢k further sup-
makes the models similar but changes {hf@r)} intro-  ports the validity of the random force model, including, in
ducing short-range correlations that are different in theparticular, the equality between the statistics of the longi-
two models. However, these are irrelevant on large lengtkudinal and transverse parts fif)
scales since the variations kfgrow without bound. We now turn to optimized dislocations. If the first

The CDW model has an elastic glass phaseffor T,  term in Eq. (3) can be ignored, the optimal placement
in which w is relevant and renormalizes tafadependent of dislocations coincides with the minimung.(,) and
fixed point while A grows as IrL yielding height vari- maximum gma,) of the random potentia¢(r). The dis-
ations ([i(r) — h(0)]2) = b;zy(m )2 [10]. An approxi- tribution of the extrema of potentials likg(r), whose
mate functional RG analysis yields a similar structureVariance grows as a power of An can be semiquanti-

at all temperatures below, with a universal T = tatively understood by thinking of iteratively optimizing
0 limit Y, of the coefficiegntY(T) [12]. On large ©Ver each factor of 2 in length scale with the component

scales, the behavior is dominated by the competition be2f the random potential on scalebeing essentially the

tween the random stressifigr), and the stiffnesk, with ~ contribution from Fourier components With/2 7 /1) <

the random force correlations effectivem = |9 l.’ lgy| < (2\/5_77/ ). If scale! givezarise t_o a CO”E”'
—(5;;In(¢?) for small wave vectorg. We can thus work bution to the variance of of order(In ))** —with & = 5

with the simple purely random-force limit of Eq. (1) with In our case—then #pical ¢(r) is the incoherent loga-
w = 0. We then immediately conclude thit = o rithmic sum over all scales, i.e=(In7)**/2, The maxi-
. K2b2 . . . . ..

In the presence of dislocationigr) becomes multival- Mum Of g can be found, heuristically, by maximizing

ued. It can be decomposed into two pdrts= s, + hy,  OVE' the four points at scale= 1 in each square of

with &, the smooth elastic distortion while the singu- Sc@le-2, then maximizing over the four scale-2 maxima

lar function h,, has a cut connecting the two dislo- in each scale-4 square, etc. Since the séadtructure

cations atr; and r, with Burgers chargeh, = b = 3 of g is weakly correlated over scales much longer than
and by = —b = =3 With V X Vig = S, b:82(r — I, a crude approximation is to ignore these correlations
1=1, 1

' 2 : : o whereby one stage of optimization adds of orderl)*
ri) andV=hq © 0. The energy of a dislocation pair is to the local scald maximum [13]. Thus scales should
_ i 2 2 _ 2.(¢T . be summed ovecoherentlyyielding gm.x ~ (InL)**!.
Eq 2 ] dr[Vhdl j At - Vha) - (2) The variance ofgm,x is dominated by the largest scales,
KD so thato (gmax) ~ (INL)?. !n our case, we jchus expect
~ 22 nley = 1ol — B[g(r)) — g(r)], () &max — &mm ~ (INL)*? which indeed dominates over
2m the InL elastic energy term in Eq. (3). Hence we expect
where the static random force field has been decomg;inlrl ~ —Ab~/C(INL)*? and o (ET™) = Bb~/C(InL)"/2
posed into longitudinaf’ = Vu(r) and transvers€’ =  \yith some coefficientd andB.
V X g(r) components. Since(r), g(r), and Vi, are The linear fits in Fig. 3(b) giveA =~ 1.23(1) and
continuous across the cut whitg jumps byb, f* makes g ~ 0.56(1) using the C computed earlier. If
no contnbunonltoEd anql Eq. (3) follows byllntegratlon the elastic part I;_b2 InL is subtracted fromE™"
by parts. The first term is the standard elastic cost and the = e min min
second the disorder gain so ther) is the potentialfelt ~ oY _ fitting the dlffelr/e2nce Eq"(L) = E/7(L/2) to
by the dislocations. Its variance & = g(q)g(—q) = —_(3_In2/2)Ab\/f(InL) + const, .th's yields  a
—Cq~?In(g?) so that the elastic surface without disloca- S'”?"af yalue of A ~ L17(5). . Usmg the extrer_nal
tions and the dislocation potential have #@ne statistics heights in the absence of d'SI?n?nat'ons’_ trﬁmmstlffness
after a rescalings), = h(q)h(—q) ~ S,/K>. K can also be e>1<(tbrzacted fronk,"" (L) via E; —

In terms of the statistical properties of the dislocation po-bK (imin — fmax) = 5, INL + const. ~ This  yields
tential, our numerical results can be understood. We firsK = 114(1) in not unreasonable agreement with the
discuss fixed dislocation pairs. A statistical symmetry ofK =~ 126(2) from thefixeddislocation pairs.
the CDW model implies that on large scafds) and hence ~ An upper bound Orgmax — gmin Can be simply ob-
the potentialg(r) and E; are Gaussian [12]. The shape tained by noting that the probability Prigh.x > M] =

of our computed defect energy distribution, its mean, an@. Prolig(r) > M] so that, with L? points, the me-

its variance all agree with predictions from Eq. (B ~  dian gmax is less than thel/ for which the right-hand
(Kb?/27)In L—an exact result for the CDW model— side, L?> Profg(r) > M] for fixed r, equals;. If g(r)
and o(E;) = \/b2C/mInL with K = 126(2) and C = is Gaussian sufficiently far into the tail of its distri-

6174(93) yielding C/K? = 0.389(11). We also measured bution, this yieldSgmax — gmmn = VC+/8/7 (InL)*? so
the variance of the height of the surface without dislo-thatA = /8/#. The hierarchical optimization described
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above suggests that might saturate this bound [14]. positions can adjust to lower the wall energy near the
To test this and the universality of, we have mea- dislocation at each scale, the energies addaiperently
sured the distributions of the extrema of the heights ofesulting in the—(In L)3/2 mean optimal dislocation pair
the FPL surface without dislocations and several exactlgnergy with order(in L)!/? variations dominated by the
Gaussian random surfacégr)} with variance[s(r)]? =  largest scale, in an analogous way to the extrema of the
%(In L)'*22 Good fits are found td+/C (In(L/a,))' @  g(r) of the random force picture. Since the defect energy
with a, a cutoff, yielding Appr neighis = 1.45(3), and is concentrated on the domain wall, while it is spread
AGaussian = 1.517(3), 1.307(6), 1.168(6), and1.064(5) for ~ out over a region of area@(L?) in the random force
a =0, 1/2, 1, and3/2, respectively, and from the vari- approximation, it is surprising that these yield the same
ances Bep -heights =~ 0.67(2), and Bgaussian = 0.475(4), predictions. But the fact that our results agree well with
0.637(7), 0.730(9), and0.814(4), respectively. the domain wall picture in 2D lends strong support to the
All the extractedA’s satisfy A < /8/7, and there Validity of the analogous picture in the 3D case for which
appears to be a systematic trend Aqwv) to decrease as it has been used to conclude that the 3D elastic glass
« increases; if so, it is likely that is strictly less than phase is stable to dislocation loops [5].
8/m for all o > —% [for @ < _% Gaussian surfaces We thank J. Kondev and C.L. Henley for useful
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(InL)!/2]. The values ofi for the nominallya = 1 cases the National Science Foundation via Grants No. DMR

1.17-1.23,1.45, and 1.307 for the optimal dislocations, 9630064, No. DMS 9304586, and Harvard University

extrema heights, and Gaussian surface, respectively, diffé¥o- MRSEC.

by substantially more than the apparent statistical errors

as do theB’s, 0.56, 0.67, and 0.637, respectively. But

given the narrow range of lh available, these results
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