VOLUME 82, NUMBER 9 PHYSICAL REVIEW LETTERS 1 MRcH 1999

Scaling in Charge-Density-Wave Relaxation: Time-Resolved X-Ray Scattering Measurements
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Using time-resolved, high-resolution x-ray scattering technigues, we have measured the evolution of
the transverse structure of the NRS®@, charge-density wave as it relaxes from the sliding state to the
pinned state. Measurements were made at temperatures between 70 and 120 K and at electric field
strengths betweefx and 10X the threshold for sliding. These time-dependent data are accurately
described by dynamic scaling theory. [S0031-9007(99)08578-6]

PACS numbers: 71.45.Lr, 05.20.Dd, 61.10.—i

In many highly anisotropic materials, the equilib- mean and is exact for a Gaussian probability distribution.
rium state at low temperatures is the charge-density-wavat low temperatures, the CDW amplitudg is assumed
(CDW) state. The CDW state consists of a periodic moduto be constant so that(q, ) is completely determined
lation of the conduction electron density and a concomiby g(r, 7).
tant lattice-distortion wave (LDW) [1]. A few of these  The anisotropic metal Nb%eexhibits two indepen-
materials also exhibit non-Ohmic conduction due to adent phase transitions to incommensurate CDW states at
collective motion or “sliding” of the CDW. Slidingisnot T, = 145 K and atT, = 59 K. The higher temperature
observed for electric fields below a threshold field due tdransition produces satellite peaks wih = (0 0.243 0).
pinning from impurities and other lattice defects [2—4]. (The crystal structure of Nb$és monoclinic. The real
A detailed understanding of the transition between thespace lattice constants arte= 10.009 A, b = 3.4805 A,
pinned and the sliding states requires new insight into the = 15.629 A, and3 = 109.47°[5].) We chose to study
competition between elastic interactions and quenchelbSe because it9Q; CDW exhibits sliding conduction
random pinning fields in nonequilibrium systems. Theand because it is available in nearly perfect, single-crystal
approaches used to model this transition can be placed intghiskers. For this study we chose whiskers with extremely
two general categories: (i) scaling solutions to statisticategular cross-sectional shapes, small bulk crystal mosaics,
models and (ii) solutions of the microscopic equationsand, in the case of the pure samples, excellent mode-
of motion. In this Letter, we report time-resolved x-ray locking characteristics (100% at the/Il step and clean
scattering measurements of the evolution of the transversaibharmonics) [6,7]. The macroscopic sample dimensions
structure of the CDW as it relaxes from the sliding towere approximatel2 um X 20 um X 5 mm. Residual
the pinned state and demonstrate that the relaxatioresistance ratios were approximately 300 for the pure
kinetics are consistent with the general predictions of botlsamples and 70 for the doped samples, the latter cor-
approaches. responding to a tantalum density ®fx 10'8 cm™3 [8].

X-ray scattering is a nearly ideal probe of the CDW Typical threshold field values wefe08 Vcm™! for pure
structure. In the simplest case, the LDW is assumed teamples an@.3 Vcm™! for doped samples at 120 K.
have the formu(r,r) = uysinQ - r + ¢(r,t)]. Here, The white x-ray beam generated by the National Syn-
Q = 2kpii is the CDW wave vectok is the Fermi wave chrotron Light Source (NSLS) storage ring was doubly
number, andp is the phase of the CDW. This periodic focused at the sample position by a toroidal mirror. A
distortion produces satellite peaks in the scattering neanonochromator consisting of two Ge(111) crystals se-
the Bragg peaks of the unperturbed crystal lattice. Nealected 8.25-keV x rays. A set of slits produced a 0.4-mm
these CDW satellites, the intensity of the scattered x rayhigh illuminated spot centered on the middle of the whisker
is given by (the width of the whisker sets the other dimension). The

bulk crystal mosaic (0.009WHM) dominated the trans-

I(q,1) ~ |Ji(q - uo)lzf d’r 476 Qr,~e(r) (1) yerse resolution. The longitudinal and out-of-plane reso-

lutions are determined by a final set of slits. The resulting
Here, g(r,1) = %([qﬁ(r,r) — ¢(0,1)]?) is the equal-time resolution function is highly asymmetric and effectively
phase-phase correlation functioh(x) is the Bessel func- integrates over the longitudinal and out-of-plane directions
tion of order 1q is the scattering vector, ai@ is a recip-  in Eq. (1), collapsing the three-dimensional integral to one
rocal lattice vector of the undistorted crystal. Equation (1)dimension [9]. Thus, we can measure the evolution of
holds when the phase fluctuations are small with zerahe transverse CDW line shape, while effects due to the

0031-900799/82(9)/1923(4)$15.00 © 1999 The American Physical Society 1923



VOLUME 82, NUMBER 9 PHYSICAL REVIEW LETTERS 1 MRcH 1999

longitudinal, position-dependent strain of the CDW in the Motivated by the striking similarity between the equa-
sliding state [10—14] are integrated out. tions describing CDW scattering and those describing sur-
To perform time-resolved measurements at hjgeso-  face/interface scattering [16], we begin our analysis of the
lution, we use a signal averaging technique. In this experikinetic data by considering scaling theories developed to
ment, the periodic wave form of the applied electric fielddescribe surface growth [17—-19]. Specifically, we assume
switches between on and off. Typical “on” fields rangethat g(r,¢) = r>* f(+z), where the scaling functiofi(y)
from 2X to 10X threshold. Using a multichannel scaler has the properties
and an averaging memory unit, we measure the time depen-
dence of the scattered intensity at each point in reciprocal . {const fory < 1, 5
space, integrating over enough cycles of the applied field f) = y2 fory>1. (2)
to obtain good counting statistics in each time bin [11].
A typical time-resolved scan is shown in Fig. 1a. At Using the above scaling form fgs(r, 7) and integrating
early times, the CDW is sliding, and the CDW satellite over the broad resolution directions, Eq. (1) reduces to
is relatively broad. When the applied field is turned a
off (at + = 0, as shown in Fig. 1b), the CDW satellite (g, ,f) ~ f cod(q. — G )x]le O dx
shifts its position slightly, sharpens, and increases its peak 0
intensity (Fig. 2). As shown in Fig. 1c, although the peak v [
intensity and width change, the integrated intensity remains + e /" Mf cod(qr — Gu)xldx. (3)
constant. This behavior supports the assumption that the “
CDW amplitudeu, is constant. In the doped samples, Here, a = £(5)*, where ¢ and = are the scaling con-
the pinned state correlation lengéy ~ 2100 A, which  stants forx and, respectively. Previous x-ray scatter-
is roughly two-thirds of that for the zero-field-cooled stateing studies [9,15,20] have confirmed predictions [21—-23]
[9,15]. In general, for applied fields up %X threshold  that the quenched random field destroys the long-range or-
and for temperatures between 120 and 70 K, the widtljer of the CDW in the zero-field cooled state, producing a
of the CDW satellite in the sliding state is broader than‘roughness” exponent = 3. Assuminga = 1, Eq. (3)
that in the pinned state. This behavior is contrary tobecomes
existing theoretical predictions and is the subject of a future

publication on the structure of the pinned and sliding states. (| s) ~ ¢ [1 — e /7]
The characteristic time scale of the structural response 1+ &2(q — GL)?
ranges from microseconds to seconds depending on the +8(qg. — G)e W, 4)

temperature and dopant density. The shift in peak position o o
varies from sample to sample but is insensitive to temperavhere the oscillations due to the approximation have

ture or position on the sample and corresponds to a smdieen removed. The functional form of the falling term
rotation (0.1°) of the CDW wave vector. arises from the implicit assumption that the initial state

is “flat.” In the growth models which inspire the above
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FIG. 2. (a) Contours of constant intensity: thin lines are

contours of the data and thick lines are contours of the fit to
FIG. 1. (a) Pure NbSesample af = 100 K. Forr < 0the Eq.(8). (b) Thick lines are slices of the two parameter fit

CDW is in the sliding state. Far = 0 the field is off and the shown in (a); circles are the data points. Early time slices are
CDW relaxes to the pinned state. (b) Applied field. (c) In- at the bottom. The arrows in (a) indicate where the cuts were
tegrated (divided by 5, squares) and peak intensity (circles). taken through the data and fit.
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treatment, this flatness corresponds to the initially flawherel;(q,0) is the initial state. Thus, the kinetics pre-

substrate on which the material is grown. In the CDWdicted by Eq. (5) have exactly the same stretched exponen-

system, the flatness corresponds to a perfectly ordereéhl form as Eq. (4).

initial state. Thus, scaling theory predicts “stretched Since the decay of the initial state is dominated by

exponential” kinetics for the scattered intensity. the stretched exponential, we assume that there is no
The assumption of a scaling form fgfr, r) may seem significant time dependence #e(g,,¢) and fix its form

surprising; however, the weak pinning limit of the phase-by fitting to the sliding state for < 0. We then fix

only Fukuyama-Lee-Rice (FLR) model [24] also predictsthe parameterg and G, by fitting to data at late times

it. To demonstrate this, consider the equation of motiorwhen the system has stabilized. The slight rotation of the

for the phase in the absence of an applied field peak position allows us to clearly distinguish contributions
5 from the initial and final states. All of the remaining data
d;p(r,t) = DV=¢ + {(r), (5)  must then be fit to only two parameterg: and 7. To

minimize the effects of our assumptions about the form of
ali(‘u’ t), we perform our final fits only to data collected
at r > 7. Figure 2 shows an example of a best two-
arameter fit. Figure 2b shows the data collected at the
me slices indicated by the arrows in Fig. 2a and the same
best fit. Clearly, Eq. (8) accurately describes the kinetics

where/(r) is the CDW-impurity interaction field and
is the phase diffusion constant. If the impurities have
random distribution and their interaction with the CDW is
weak, the interaction field has a Gaussian distribution witrfi
()¢ + 1)) = n;V3s(x'), wheren; is the impurity
density andvy is the impurity pinning strength. Although . o
: L : of the pinning transition.

Eg. (5) is only the lowest order approximation g, it We I[r)epea'?ed this experiment on pure samples at tem-
and the statistical properties of the random field correctly eratures between 70 and 120 K and at electric field
predict the equilibrium form of statistical quantities suchg,[rengths betweedx and 10 threshold. The best fit
aség’g [Si:\%/]én Z(r), Eq. (5) can be solved exactly by values of u _ar)d 7 are shown in Figs. 3a and 4a. The
Fourier transforming the spatial dimensions and integratin esults of similar measurements performed on tantalum

the resulting equation of motion. This particular solution oped samples are shown n Figs. 3b and 4b. As antici-
can then be averaged to calcula(té;q(t)lz) [25]. For pated from the raw data, varies by many decades, sug-

example, using the Balents-Fisher form for the initial (i_e_1gestlng an _actl_va_ted Process. Although _the temperature
sliding) state [26], we obtain range is quite limited, an Arrenhius plot yields an activa-
’ tion energyAE = 0.2 eV which is a few times the energy

< 14 D2 gap,E, =~ 0.06 eV [28]. This result suggests a model in
(Ipq(n)I7) = D24 (1 —e ) which the CDW relaxes by fluctuating a small volume into
= the normal phase. This intriguing hypothesis has signifi-
(Fgl* n-a- efqur)2] cant implications for the assumption thatis constant and
D2g* + viq? ’ is the subject of ongoing work. In contrasttpand con-

(6)  sistent with the scaling hypothesjs,is insensitive to tem-

. , i i perature. Thus, we identify the exponent in our stretched
whereF is the (renormalized) random field ang is the

drift velocity. g(x,t) may then be written in the form
glx,1) = gr(x,t) + gi(x,1), whereg,(x,t) and g;(x, )

are, respectively, the Fourier transforms of the first and 0.5r a. 11 b
second terms in Eq. (6). Using standard techniques [27], 0.4 |1
the transform can be done analytically in one dimension. 3 15
The resulting solution has the scaling forgm(x, 1) = 03t 1t “
x> f (), wheref(y) satisfies Eq. (2). A numerical im- = . LI P am
plementation of the three-dimensional transformation sug- 0.20 L -
gests that a reasonable approximationgor, ¢) is o " "
LY for x < £(3)!72,
gx 1) = gi(x) + const forx > £()2, (7) 0r

. - 80 90 100110 70 80 90 100 110
where the constant is chosen to preserve the continuity of
the function. As in the argument leading to Eq. (4), we Temperature (K)

break the integral in Eqg. (1) into two pieces, obtaining FIG.3. Best fit values ofu for (a) pure samples and

'3 (- _(I/T)I/Z] (b) tantalum doped samples. Filled and open symbols represent
1+ &2(q, — G,)? € different samples:O = 10x, 0 = 5X, <= 4X, > = 3X,

+ o & =2.5x%, and* = 2X the threshold field. Dotted lines are
+ Ii(g.,t)e” VO, (8)  the average values gf.

I(qy,1) =
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FIG. 4. Best fit values ofr for (a) pure samples and
(b) tantalum doped samples.

exponential kinetics with the dynamic scaling exponen
M, with a best fit value 0f0.21 = 0.04 for the pure
samples an@.24 = 0.06 for the doped samples (error bars
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