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Scaling in Charge-Density-Wave Relaxation: Time-Resolved X-Ray Scattering Measuremen
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Using time-resolved, high-resolution x-ray scattering techniques, we have measured the evolution of
the transverse structure of the NbSe3 Q1 charge-density wave as it relaxes from the sliding state to the
pinned state. Measurements were made at temperatures between 70 and 120 K and at electric field
strengths between23 and 103 the threshold for sliding. These time-dependent data are accurately
described by dynamic scaling theory. [S0031-9007(99)08578-6]
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In many highly anisotropic materials, the equilib
rium state at low temperatures is the charge-density-wa
(CDW) state. The CDW state consists of a periodic mod
lation of the conduction electron density and a concom
tant lattice-distortion wave (LDW) [1]. A few of these
materials also exhibit non-Ohmic conduction due to
collective motion or “sliding” of the CDW. Sliding is not
observed for electric fields below a threshold field due
pinning from impurities and other lattice defects [2–4
A detailed understanding of the transition between t
pinned and the sliding states requires new insight into
competition between elastic interactions and quench
random pinning fields in nonequilibrium systems. Th
approaches used to model this transition can be placed
two general categories: (i) scaling solutions to statistic
models and (ii) solutions of the microscopic equatio
of motion. In this Letter, we report time-resolved x-ra
scattering measurements of the evolution of the transve
structure of the CDW as it relaxes from the sliding t
the pinned state and demonstrate that the relaxat
kinetics are consistent with the general predictions of bo
approaches.

X-ray scattering is a nearly ideal probe of the CDW
structure. In the simplest case, the LDW is assumed
have the formusr, td ­ u0 sinfQ ? r 1 fsr, tdg. Here,
Q ­ 2kFn̂ is the CDW wave vector,kF is the Fermi wave
number, andf is the phase of the CDW. This periodic
distortion produces satellite peaks in the scattering n
the Bragg peaks of the unperturbed crystal lattice. Ne
these CDW satellites, the intensity of the scattered x ra
is given by

Isq, td , jJ1sq ? u0dj2
Z

d3r eisq2G6Qd?re2gsr,td. (1)

Here, gsr, td ­ 1
2 kffsr, td 2 fs0, tdg2l is the equal-time

phase-phase correlation function,J1sxd is the Bessel func-
tion of order 1,q is the scattering vector, andG is a recip-
rocal lattice vector of the undistorted crystal. Equation (
holds when the phase fluctuations are small with ze
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mean and is exact for a Gaussian probability distributio
At low temperatures, the CDW amplitudeu0 is assumed
to be constant so thatIsq, td is completely determined
by gsr, td.

The anisotropic metal NbSe3 exhibits two indepen-
dent phase transitions to incommensurate CDW states
T1 ø 145 K and atT2 ø 59 K. The higher temperature
transition produces satellite peaks withQ1 ø s0 0.243 0d.
(The crystal structure of NbSe3 is monoclinic. The real
space lattice constants area ­ 10.009 Å, b ­ 3.4805 Å,
c ­ 15.629 Å, andb ­ 109.47± [5].) We chose to study
NbSe3 because itsQ1 CDW exhibits sliding conduction
and because it is available in nearly perfect, single-crys
whiskers. For this study we chose whiskers with extreme
regular cross-sectional shapes, small bulk crystal mosa
and, in the case of the pure samples, excellent mo
locking characteristics (100% at the 1y1 step and clean
subharmonics) [6,7]. The macroscopic sample dimensio
were approximately2 mm 3 20 mm 3 5 mm. Residual
resistance ratios were approximately 300 for the pu
samples and 70 for the doped samples, the latter c
responding to a tantalum density of3 3 1018 cm23 [8].
Typical threshold field values were0.08 V cm21 for pure
samples and0.3 V cm21 for doped samples at 120 K.

The white x-ray beam generated by the National Sy
chrotron Light Source (NSLS) storage ring was doub
focused at the sample position by a toroidal mirror.
monochromator consisting of two Ge(111) crystals s
lected 8.25-keV x rays. A set of slits produced a 0.4-m
high illuminated spot centered on the middle of the whisk
(the width of the whisker sets the other dimension). Th
bulk crystal mosaic (0.009± FWHM) dominated the trans-
verse resolution. The longitudinal and out-of-plane res
lutions are determined by a final set of slits. The resultin
resolution function is highly asymmetric and effectivel
integrates over the longitudinal and out-of-plane directio
in Eq. (1), collapsing the three-dimensional integral to on
dimension [9]. Thus, we can measure the evolution
the transverse CDW line shape, while effects due to t
© 1999 The American Physical Society 1923
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longitudinal, position-dependent strain of the CDW in th
sliding state [10–14] are integrated out.

To perform time-resolved measurements at highq reso-
lution, we use a signal averaging technique. In this expe
ment, the periodic wave form of the applied electric fiel
switches between on and off. Typical “on” fields rang
from 23 to 103 threshold. Using a multichannel scale
and an averaging memory unit, we measure the time dep
dence of the scattered intensity at each point in reciproc
space, integrating over enough cycles of the applied fie
to obtain good counting statistics in each time bin [11].

A typical time-resolved scan is shown in Fig. 1a. A
early times, the CDW is sliding, and the CDW satellit
is relatively broad. When the applied field is turne
off (at t ­ 0, as shown in Fig. 1b), the CDW satellite
shifts its position slightly, sharpens, and increases its pe
intensity (Fig. 2). As shown in Fig. 1c, although the pea
intensity and width change, the integrated intensity remai
constant. This behavior supports the assumption that
CDW amplitudeu0 is constant. In the doped samples
the pinned state correlation length,ap ø 2100 Å, which
is roughly two-thirds of that for the zero-field-cooled stat
[9,15]. In general, for applied fields up to403 threshold
and for temperatures between 120 and 70 K, the wid
of the CDW satellite in the sliding state is broader tha
that in the pinned state. This behavior is contrary
existing theoretical predictions and is the subject of a futu
publication on the structure of the pinned and sliding state
The characteristic time scale of the structural respon
ranges from microseconds to seconds depending on
temperature and dopant density. The shift in peak positi
varies from sample to sample but is insensitive to tempe
ture or position on the sample and corresponds to a sm
rotation (,0.1±) of the CDW wave vector.

FIG. 1. (a) Pure NbSe3 sample atT ­ 100 K. For t , 0 the
CDW is in the sliding state. Fort $ 0 the field is off and the
CDW relaxes to the pinned state. (b) Applied field. (c) In
tegrated (divided by 5, squares) and peak intensity (circles).
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Motivated by the striking similarity between the equa
tions describing CDW scattering and those describing su
face/interface scattering [16], we begin our analysis of th
kinetic data by considering scaling theories developed
describe surface growth [17–19]. Specifically, we assum
that gsr, td ­ r2afs r

tm d, where the scaling functionfs yd
has the properties

fs yd ­

Ω
const fory ø 1 ,
y22a for y ¿ 1 . (2)

Using the above scaling form forgsr, td and integrating
over the broad resolution directions, Eq. (1) reduces to

Isq', td ,
Z a

0
cosfsq' 2 G'dxge2sxyjd2a

dx

1 e2stytd2am
Z `

a
cosfsq' 2 G'dxg dx . (3)

Here, a ­ js t
t dm, where j and t are the scaling con-

stants forx and t, respectively. Previous x-ray scatter
ing studies [9,15,20] have confirmed predictions [21–23
that the quenched random field destroys the long-range
der of the CDW in the zero-field cooled state, producing
“roughness” exponenta ­ 1

2 . Assuminga ­ 1
2 , Eq. (3)

becomes

Isq', td ,
j

1 1 j2sq' 2 G'd2 f1 2 e2stytdm

g

1 dsq' 2 G'de2stytdm

, (4)

where the oscillations due to the approximation hav
been removed. The functional form of the falling term
arises from the implicit assumption that the initial stat
is “flat.” In the growth models which inspire the above

FIG. 2. (a) Contours of constant intensity: thin lines ar
contours of the data and thick lines are contours of the fit
Eq. (8). (b) Thick lines are slices of the two parameter fi
shown in (a); circles are the data points. Early time slices a
at the bottom. The arrows in (a) indicate where the cuts we
taken through the data and fit.
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treatment, this flatness corresponds to the initially fl
substrate on which the material is grown. In the CDW
system, the flatness corresponds to a perfectly orde
initial state. Thus, scaling theory predicts “stretche
exponential” kinetics for the scattered intensity.

The assumption of a scaling form forgsr, td may seem
surprising; however, the weak pinning limit of the phase
only Fukuyama-Lee-Rice (FLR) model [24] also predict
it. To demonstrate this, consider the equation of motio
for the phase in the absence of an applied field

≠tfsr, td ­ D===2f 1 z srd , (5)

wherez srd is the CDW-impurity interaction field andD
is the phase diffusion constant. If the impurities have
random distribution and their interaction with the CDW i
weak, the interaction field has a Gaussian distribution wi
kz srdz sr 1 r0dl ­ niV

2
0 dsr0d, where ni is the impurity

density andV0 is the impurity pinning strength. Although
Eq. (5) is only the lowest order approximation forf, it
and the statistical properties of the random field correct
predict the equilibrium form of statistical quantities suc
asgsr, td [23].

For a givenz srd, Eq. (5) can be solved exactly by
Fourier transforming the spatial dimensions and integrati
the resulting equation of motion. This particular solutio
can then be averaged to calculatekjf̃qstdj2l [25]. For
example, using the Balents-Fisher form for the initial (i.e
sliding) state [26], we obtain

kjf̃qstdj2l ­
kjz̃qj2l
D2q4 s1 2 e2q2Dtd2

1
kjF̃qj2l

D2q4 1 y
2
0q2

x

f1 2 s1 2 e2q2Dtd2g ,

(6)

whereF̃q is the (renormalized) random field andy0 is the
drift velocity. gsx, td may then be written in the form
gsx, td ­ gfsx, td 1 gisx, td, where gfsx, td and gisx, td
are, respectively, the Fourier transforms of the first an
second terms in Eq. (6). Using standard techniques [2
the transform can be done analytically in one dimensio
The resulting solution has the scaling formgfsx, td ­
x2afs x

tm d, wherefs yd satisfies Eq. (2). A numerical im-
plementation of the three-dimensional transformation su
gests that a reasonable approximation forgsx, td is

gsx, td .

(
xyj for x , js t

t d1y2,
gisxd 1 const forx . js t

t d1y2,
(7)

where the constant is chosen to preserve the continuity
the function. As in the argument leading to Eq. (4), w
break the integral in Eq. (1) into two pieces, obtaining

Isq', td .
j

1 1 j2sq' 2 G'd2 f1 2 e2stytd1y2

g

1 Iisq', tde2stytd1y2

, (8)
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whereIisq', 0d is the initial state. Thus, the kinetics pre
dicted by Eq. (5) have exactly the same stretched expon
tial form as Eq. (4).

Since the decay of the initial state is dominated b
the stretched exponential, we assume that there is
significant time dependence toIisq', td and fix its form
by fitting to the sliding state fort , 0. We then fix
the parametersj and G' by fitting to data at late times
when the system has stabilized. The slight rotation of t
peak position allows us to clearly distinguish contribution
from the initial and final states. All of the remaining dat
must then be fit to only two parameters:m and t. To
minimize the effects of our assumptions about the form
Iisq', td, we perform our final fits only to data collected
at t . t. Figure 2 shows an example of a best two
parameter fit. Figure 2b shows the data collected at
time slices indicated by the arrows in Fig. 2a and the sa
best fit. Clearly, Eq. (8) accurately describes the kinet
of the pinning transition.

We repeated this experiment on pure samples at te
peratures between 70 and 120 K and at electric fie
strengths between23 and 103 threshold. The best fit
values ofm and t are shown in Figs. 3a and 4a. Th
results of similar measurements performed on tantal
doped samples are shown in Figs. 3b and 4b. As ant
pated from the raw data,t varies by many decades, sug
gesting an activated process. Although the temperat
range is quite limited, an Arrenhius plot yields an activ
tion energyDE ø 0.2 eV which is a few times the energy
gap,Eg ø 0.06 eV [28]. This result suggests a model i
which the CDW relaxes by fluctuating a small volume in
the normal phase. This intriguing hypothesis has sign
cant implications for the assumption thatu0 is constant and
is the subject of ongoing work. In contrast tot, and con-
sistent with the scaling hypothesis,m is insensitive to tem-
perature. Thus, we identify the exponent in our stretch

FIG. 3. Best fit values ofm for (a) pure samples and
(b) tantalum doped samples. Filled and open symbols repres
different samples:s ­ 103, h ­ 53, / ­ 43, . ­ 33,
e ­ 2.53, and? ­ 23 the threshold field. Dotted lines are
the average values ofm.
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FIG. 4. Best fit values oft for (a) pure samples and
(b) tantalum doped samples.

exponential kinetics with the dynamic scaling expone
m, with a best fit value of0.21 6 0.04 for the pure
samples and0.24 6 0.06 for the doped samples (error bar
are dominated by the point scatter and represent one s
dard deviation). Relaxing the assumption thatIisq', td is
constant in time tends to depress the value ofm even fur-
ther. The validity of the scaling argument is unaffecte
sincem is shifted by a constant and the behavior oft is
unchanged. However, this behavior introduces addition
uncertainty into the determination ofm. With this in mind,
we estimate thatm ­ 0.2 6 0.1.

In summary, we have shown that dynamic scaling acc
rately describes the relaxation data. Although the value
m predicted by the weak pinning limit of the phase-onl
FLR model is inconsistent withm ø 0.2, we have shown
that dynamic scaling is a feature of a solution to a we
known microscopic model of CDW dynamics. Finally
the measured value ofm now provides a test for future mi-
croscopic theories.
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