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Ab Initio Excitation Spectra and Collective Electronic Response in Atoms and Clusters
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We implement the linear response theory within the time-dependent local density-functional
formalism (TDLDA) to calculate excitation energies and photoabsorption spectra of atoms and clusters.
The calculatedab initio spectra are in very good agreement with experiment. Along with the exact
TDLDA formalism, we consider several approximate expressions for the electronic transition energies.
The analysis of the spectra calculated with different levels of approximation indicates the important role
of the collective electronic excitations in atoms and clusters. [S0031-9007(99)08543-9]

PACS numbers: 71.15.Mb, 31.15.Ar, 31.50.+w, 71.24.+q
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The theoretical background for calculating ground sta
properties of many-electron systems is now well esta
lished. One of the most widely used techniques emplo
the first principles pseudopotential formalism [1] based
the density-functional theory (DFT) in the local densit
approximation (LDA) [2]. Excited state properties, how
ever, still present a challenge for computational metho
Accurate calculations for the excitation energies and a
sorption spectra require highly sophisticated techniqu
such as the configuration-interaction (CI) method [3],
Green’s function methods based on Hedin’s GW appro
mation [4]. While these methods provide good agreeme
with experiment [5–8], they are very computationall
demanding.

Recently developed linear response theory within t
time-dependent density-functional formalism provides
new tool for calculating excited state properties [9]. Th
method, known as the time-dependent LDA (TDLDA
allows one to compute the true excitation energies fro
the conventional, time-independent Kohn-Sham transiti
energies and wave functions. Presently, only a few
tempts of TDLDA calculations for a limited number o
systems are available, and the existing results are c
troversial. Rubioet al. [10] and Pacheco and Martins
[11] reported an excellent agreement with experime
for the TDLDA absorption spectra of several meta
lic clusters. On the other hand, Petersilkaet al. [12]
claimed that TDLDA fails to predict the correct excita
tion energies for alkaline-earth atoms due to the inacc
racy of the local density approximation for the excite
states.

In this paper, we address the existing controversy. O
calculations indicate that the reported disagreement
tween theoretical and experimental transition energies
consequence of using in Ref. [12] an inaccurate formula
compute electronic excitations. When the collective ele
tronic excitations are included into the calculations exact
we find the TDLDA excitation energies and absorptio
spectra to be in very good agreement with experiment.
fact, our exact TDLDA spectra stand well in compariso
with the other theoretical spectra obtained with more co
0031-9007y99y82(9)y1919(4)$15.00
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plicated CI and GW methods [5,7], requiring at the sam
time lower computational effort.

We implemented the TDLDA formalism entirely
in real space within the higher-order finite differenc
pseudopotential method [13]. The time-independe
exchange-correlation term was approximated with t
Perdew-Zunger parametrization of the Ceperley-Ald
functional, which was slightly adjusted to ensure tw
continuous derivatives for the correlation energy [14
The real-space pseudopotential code represents a na
choice for implementing TDLDA due to the real-spac
formulation of the general TDLDA theory. With other
methods, such as the plane-wave approach, TDLD
calculations typically require an intermediate real-spa
basis [15], which complicates calculations and ma
introduce an extra error. Our direct real-space approa
simplifies implementation and allows us to perform th
complete TDLDA response calculation in a single step.

A complete analysis of the general TDLDA formalism
can be found elsewhere [9,12]. The excited state prop
ties are derived within the time-dependent DFT as a line
response to an applied periodic perturbation. The syst
response is described by means of the coupling mat
which can be used to calculate the true electronic exci
tions. In the adiabatic approximation the coupling matr
Kijs,klt is given by

Kijs,klt ­
Z Z

fp
issrdfjssrd

√
1

jr 2 r0j
1

≠yxc
s srd

≠rtsr0d

!
3 fktsr0dfp

ltsr0d dr dr0. (1)

The matrix indicesi, j, s in the above expression corre
spond to the occupied states, unoccupied states, and
spin index, respectively;fsrd are the Kohn-Sham one-
electron wave functions, andyxcsrd is the LDA exchange-
correlation potential. The TDLDA electronic transition
energiesVn can be obtained from the solution of the
eigenvalue problem [9]:

fv2
ijsdikdjldst 1 2

p
fijsvijs Kijs,klt

p
fkltvkltgFn

­ V2
nFn , (2)
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where vijs ­ ejs 2 eis are the Kohn-Sham transition
energies, andfijs ­ nis 2 njs are the differences be-
tween the occupation of thei and j states. So far, no
approximation other than the adiabatic local density a
proximation has been made. The exact solution of t
matrix equation (2) fully incorporates the collective elec
tronic excitations.

Along with the exact TDLDA formalism, we consider
two approximate expressions for the excitation energi
For simplicity, we will assume a spin-unpolarized cas
i.e., fij" ­ fij# ­ fij , although all results can be easily
generalized for any spin configuration. Let us mak
the assumption that the coupling between different on
electron transitions is weak. Under this assumption w
can neglect all matrix elements withi fi k and j fi l.
The only remaining off-diagonal elements of the couplin
matrix Kijs,klt are now generated by the spin index, an
Eq. (2) reduces to a series of independent2 3 2 matrix
equations. Solving for the transition energies, we obtai

Vij ø
q

vijfvij 1 2fijsKij",ij" 6 Kij",ij#dg . (3)

Equation (3) gives two solutions for eachVij; one with
the plus sign describes transitions to the singlet excit
state, and the other with the minus corresponds to
triplet transitions. This approximation can be viewed a
an attempt to correct Kohn-Sham excitation energies
dividually without including collective electronic effects
Assuming that TDLDA corrections to the Kohn-Sham
transition energies are relatively small, we can furth
simplify Eq. (3) by taking a linear expansion aroundvij :

Vij ø vij 1 fijsKij",ij" 6 Kij",ij#d . (4)

Equation (4) is identical to the approximate TDLDA
formula derived in Ref. [12].

To assess the accuracy of the TDLDA formalism, w
first computed the excitation energies for several clos
shell atoms. In Table I we include the1S ! 1P sin-
glet transition energies calculated with different leve
of TDLDA approximation. The analysis of the data in
Table I leads us to the following conclusions: First, a
though all three TDLDA equations improve upon Kohn
Sham transition energies, the values obtained through
full matrix diagonalization [Eq. (2)] are clearly the bes
In the latter case, the experimental and theoretical valu
agree within 5%–10% for all atoms. Second, the di
crepancy between the exact [Eq. (2)] and the approxim
[Eq. (3)] TDLDA excitation energies shows the importan
role of the collective electronic effects. The electron
correlations are particularly large in the case of Zn an
Cd, where they are caused byd levels which are close
in energy. Third, the excitation energies calculated wi
the linear expansion formula [Eq. (4)] almost exactly re
produce the numbers reported for the TDLDA energi
in Ref. [12]. The poor agreement between these valu
and experiment has been explained in Ref. [12] by t
fact that LDA is not accurate for the unoccupied orbital
1920
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TABLE I. The singlet1S ! 1P excitation energies of close-
shell atoms (in eV). The energies calculated with differe
levels of TDLDA approximation [Eqs. (2)–(4)] are compare
to the experimental values [16] and the usual Kohn-Sh
transition energiesvKS. In case of Zn and Cd atoms th
d-shell electrons were explicitly included into pseudopotent
calculations.

Atom Experiment Eq. (2) Eq. (3) Eq. (4) vKS

Be 5.28 4.94 5.07 5.43 3.50
Mg 4.34 4.34 4.56 4.76 3.39
Ca 2.94 3.22 3.36 3.56 2.39
Sr 2.69 2.96 3.10 3.28 2.22
Zn 5.79 5.71 6.30 6.54 4.79
Cd 5.41 5.10 5.60 5.86 4.12

which affects the calculated transition matrix elemen
In particular, the authors of Ref. [12] have attributed th
discrepancy to the “wrong” asymptotic tail behavior o
the LDA potential (which decays exponentially, where
the exact potential should fall off as1yr). However, our
present calculations demonstrate that the observed
crepancy should be attributed to the inaccuracy of Eq.
itself. As such, we find that the asymptotic behavior
the potential is not as important for the excited state pro
erties, as it had been previously thought [12,17].

In Table II we compare the singlet1S ! 1P and triplet
1S ! 3P atomic transition energies, calculated with se
eral different techniques. The comparison indicates t
TDLDA transition energies are generally in better agre
ment with experiment than the values obtained with eith
the optimized effective potential (OEP) or the ordina
self-consistent field (SCF) method [12]. The singlet OE
excitation energies in Table II are almost as accurate
the energies calculated with TDLDA. However, TDLDA
values for the triplet transitions are much better than
OEP triplet energies due to the fact that the exchange-o
OEP method does not account for the correlation effec

TABLE II. The comparison between singlet and triplet exc
tation energies for atoms, calculated with TDLDA [Eq. (2)
optimized effective potential, and ordinary self-consistent fie
method [12]. The values for the experimental triplet transitio
represent the average over different spin-orbit components.
values are in eV.

Atom Transition Experiment TDLDA OEP SCF

Be 1S ! 1P 5.28 4.94 5.33 4.50
1S ! 3P 2.72 2.45 1.88 2.46

Mg 1S ! 1P 4.34 4.34 4.45 4.07
1S ! 3P 2.72 2.79 2.05 2.80

Ca 1S ! 1P 2.94 3.22 3.18 2.87
1S ! 3P 1.89 1.93 1.22 1.96

Sr 1S ! 1P 2.69 2.96 2.86 2.62
1S ! 3P 1.82 1.82 1.10 1.84

Zn 1S ! 1P 5.79 5.71 5.74 5.48
1S ! 3P 4.05 4.27 3.40 4.30

Cd 1S ! 1P 5.41 5.10 5.11 4.71
1S ! 3P 3.88 3.69 2.87 3.70
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which play a significant role for the triplets [18]. The
TDLDA values for both singlets and triplets are als
superior to the ordinary self-consistent excitation energie
At the same time the TDLDA method is more efficien
than the regular SCF approach, since TDLDA require
only one self-consistent calculation to obtain the comple
excitation spectrum.

Next, we applied the TDLDA technique to calculate
absorption spectra of atomic clusters. We chose sodiu
clusters as well-studied objects, for which accurate expe
mental measurements of the absorption spectra are av
able [19]. Since the wave functions for the unoccupie
electron states are very sensitive to the boundary con
tions, TDLDA calculations need to be performed within
a relatively large boundary domain. For sodium cluste
we used a spherical domain with a radius of 25 a.u. and
grid spacing of 0.9 a.u. We carefully tested convergen
of the calculated excitation energies with respect to the
parameters and the number of unoccupied states includ
in the calculations.

The calculated absorption spectra for the first thre
closed shell clusters Na2, Na4, and Na8 are shown
in Fig. 1. Of the three different TDLDA expressions
only the spectra calculated with the exact formula give
by Eq. (2) agree with experiment. The large discrep
ancy between the exact [Fig. 1(d)] and the approxima
[Fig. 1(c)] TDLDA spectra implies a substantial contri
bution to the absorption from the collective electroni
excitations. The role of the collective effects increase
spectra.
ra are
0 1 2 3 0 1 2 3 0 1 2 3 4

NaNa Na4 82

a)

d)

b)

c)

Energy (eV)

A
bs

or
pt

io
n 

cr
os

s 
se

ct
io

n 
(a

rb
itr

ar
y 

un
its

)

Experiment

FIG. 1. The calculated and experimental absorption spectra of sodium clusters. (a) The regular Kohn-Sham absorption
The other plots show the TDLDA spectra calculated with Eq. (4) (b), Eq. (3) (c), and Eq. (2) (d). The experimental spect
adapted from Ref. [19]. All calculated spectra have been broadened by 0.06 eV to simulate finite temperature.
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with increasing the cluster size. When all electronic co
relations are included, the agreement between TDLD
and experiment is remarkable. The exact TDLDA cor
rectly reproduces the experimental spectral shape, and
calculated peak positions agree with experiment withi
0.1–0.2 eV. The comparison with other theoretical wor
demonstrates that our TDLDA absorption spectra com
puted with the exact Eq. (2) are almost as accurate as
available CI spectra [5]. Furthermore, the TDLDA spec
trum for the Na4 cluster seems to be in better agreemen
with experiment than the GW absorption spectrum calcu
lated in Ref. [7].

Finally, we applied TDLDA to calculate the static po-
larizabilities of atomic clusters. The mean static polariz
ability a is related to the absorption properties throug
the perturbation theory expression:

a ­
X

n

Fn

V2
n

, (5)

where Fn is the oscillator strength andVn is the
transition energy. We used Eq. (5) and the TDLDA
values forFn and Vn to compute the polarizabilities of
sodium and silicon clusters (Table III). It is well known
that for the regular Kohn-Sham transition energies th
perturbation formula Eq. (5) substantially overesti
mates polarizabilities [20]. The data in Table III
indicate that polarizabilities calculated from approxi
mate TDLDA spectra [Eq. (3)] are also considerabl
1921
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TABLE III. Mean static polarizabilitiessÅ3yatomd of atomic
clusters. The first and second columns list polarizabilitie
calculated according to Eq. (5), with the transition energies a
oscillator strengths given by Eq. (3) and Eq. (2), respective
The last column shows polarizabilities calculated by the finit
field method [21].

Cluster Eq. (3) Eq. (2) Finite field

Na2 17.0 17.8 18.1
Na4 20.5 19.1 19.3
Na8 23.2 14.6 14.7
Si3 9.25 5.13 5.22
Si4 9.40 4.99 5.07
Si5 11.41 4.75 4.81
Si6 9.97 4.40 4.46
Si7 10.97 4.32 4.37

overestimated. On the other hand, polarizabilities com
puted with the transition energies and oscillator strengt
obtained from the exact solution of Eq. (2) are in exce
lent agreement with the polarizabilities calculated usin
the finite-field method [21]. These results present ad
tional evidence of a large contribution to the absorptio
spectra of clusters from the collective electronic effec
Only the exact TDLDA formula which accounts for al
electronic correlations provides accurate values for the p
larizability. As such, Eq. (5) represents a good test for t
calculated absorption spectra, which can be particula
important when the direct experimental measurements
the photoabsorption are not available.

In conclusion, we have implemented the linear respon
theory within the time-dependent density-functional fo
malism and the local density approximation to calcula
excitation energies and photoabsorption spectra of ato
and clusters. The calculatedab initio TDLDA spectra
were found to be in very good agreement with expe
ment. The comparison of the spectra calculated with t
exact and the approximate TDLDA expressions indicat
the important role of the collective electronic excitation
in atoms and clusters.
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