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Phase Mixing of Nonlinear Plasma Oscillations in an Arbitrary Mass Ratio Cold Plasma
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(Received 9 October 1998)

Nonlinear plasma oscillations in an arbitrary mass ratio cold plasma have been studied using 1D
particle-in-cell simulation. In contrast to earlier work for infinitely massive ion plasmas it has been
found that the oscillations phase mix away at any amplitude and that the rate at which phase mixing
occurs depends on the mass ratio (D ­ m2ym1) and the amplitude. A perturbation theoretic calcula-
tion carried up to third order predicts that the normalized phase mixing timevp2tmix depends on the
amplitudeA and the mass ratioD as,fsA2y24d sDy

p
1 1 D dg21y3. We have confirmed this scaling in

our simulations. These cold plasma results may have direct relevance to recent experiments on superin-
tense laser beam plasma interactions with applications to particle acceleration, fast ignitor concept, etc.
[S0031-9007(99)08544-0]

PACS numbers: 52.35.Mw, 52.65.Rr
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The physics of the damping of nonlinear cold plasm
oscillations is a topic of considerable fundamental in
terest since it is the simplest nonlinear collective irre
versible phenomenon characterizing the plasma state.
also has wide applications to a number of problems of cu
rent interest such as particle acceleration by wakefiel
beat waves created by intense lasers or particle bea
the fast ignitor concept in inertial fusion, where rela
tivistically intense coupled electromagnetic-plasma wa
modes propagate deep into overdense plasmas to cr
a “hot spark,” and a number of other astrophysical a
laboratory device-based plasma experiments, where
tense plasma oscillations are generated. The conventio
thinking about the physics of this interaction is well illus
trated by the exact solution for nonlinear one-dimension
cold plasma fluid equations with infinitely massive ion
These exact solutions may be obtained by transforming
Lagrangian coordinates as shown in [1–3] or using strea
functions [4]. The exact solution shows that coherent o
cillations at the plasma frequencyvp are maintained in-
definitely over the region of initial excitation, provided
the normalized amplitude of the initial density perturba
tion A s; dn

n d is kept below0.5. For A . 0.5, one ex-
pects and observes wave breaking and fine scale mix
of various parts of the oscillation [1]. Mathematically
the electron number density blows up atA ­ 0.5; this
is because the Jacobian of transformation from Euleri
to Lagrangian coordinates goes to zero asA ! 0.5 and
the transformation is no longer unique. Physically, th
is equivalent to the crossing of electron trajectories whi
leads to multistream motions and wave breaking as d
cussed in [1]. Studies of wave breaking and phase mixi
damping are based on numerical simulations.

The above description is adequate when the backgrou
positive species are infinitely massives m2

m1
; D ! 0d and

are uniformly distributed. If the background is inhomo
geneous, then as was shown by Dawson [1], cold plas
oscillations phase mix away in a time scalet , p

2sdvpydxdX ,
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at arbitrarily low amplitudes. For a sinusoidal distribution
of background species, such a phenomenon in the form
mode coupling of a long wavelength mode to short wav
length modes was observed by Kawet al. [5]. They found
that the time scale in which energy goes from long wav
length mode to short wavelength mode ist , 2

evp0
, where

“e” is the amplitude of the background inhomogeneity
The exact solution for the cold plasma oscillations in
fixed sinusoidal background was given by Infeldet al. [6]
who described phase mixing in terms of electron densi
burst.

In this paper we show that the phenomenon of pha
mixing will also occur in a homogeneous plasma at arb
trarily low amplitudes, provided the background positiv
species are allowed to movesD fi 0d. This is because
the background species respond to ponderomotive forc
either directly or through low frequency self-consisten
fields and thereby acquire inhomogeneities in space. Su
an effect has been observed in electron positron plasm
sD ­ 1d by Stewart [7]. In plasmas with finite tempera-
ture, it is well known that plasma waves dig cavities b
ponderomotive forces and get trapped in them; this is t
physics of strong turbulence of Langmuir waves as eluc
dated by Zakharov [8] and leads to envelope soliton form
tion in one dimension and collapse phenomenon in 2D a
3D. In a cold plasma, stationary states cannot form even
1D because there is no thermal pressure effect to count
balance the ponderomotive forces. The result is that t
density cavities being dug by plasma oscillations have
amplitude which increases secularly in time. Similarly, th
response of plasma oscillations to the presence of dens
cavities is also different from that of the Zakharov prob
lem. In the Zakharov problem, the thermally dispersiv
plasma waves get trapped in density cavities forming l
calized wave packets. Here, the inhomogeneity of the co
plasma (because of the self-consistently generated per
bation) causes different parts of the plasma oscillation
oscillate at different frequencies [1,5,6] resulting in intens
© 1999 The American Physical Society 1867



VOLUME 82, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 1 MARCH 1999

s

at

n.
phase mixing of plasma oscillations. Thus we physica
expect that if the background species are allowed to mo
and get redistributed into inhomogeneous clumps of de
sity, the phase mixing damping of cold plasma oscillatio
should come in at any amplitude and is not restricted
waves withA . 0.5. It may be emphasized here tha
for many applications involving the interaction of supe
intense laser beams with plasmas (such as particle ac
eration by wakefields, penetration into overdense plasm
etc.), the cold plasma limit considered by us is more re
vant than the Zakharov description, because typically t
plasma wave intensities are such thatjEj2y4pnT ¿ 1.

In this paper we carry out particle simulations fo
elucidating the physics of phase mixing damping o
nonlinear cold plasma oscillations in an arbitrary ma
ratio plasma (D arbitrary). We also present a perturbatio
theoretic analysis to give a quantitative estimate of t
phase mixing time for moderate amplitude oscillation
and compare it with simulation.

We start with the cold plasma equations, viz., the co
tinuity equations and the equations of motion for the tw
species and the Poisson equation. We introduce new v
ablesV , y, dnd, anddns defined asV ­ y1 1 y2, y ­
y1 2 y2, dnd ­ dn1 2 dn2 ­ n1 2 n2, anddns ­
dn1 1 dn2 ­ n1 1 n2 2 2 to write the cold plasma
equations in the form,

≠tdnd 1 ≠x

"
y 1

Vdnd 1 ydns

2

#
­ 0 , (1)

≠tdns 1 ≠x

"
V 1

Vdns 1 ydnd

2

#
­ 0 , (2)

≠tV 1 ≠x

√
V 2 1 y2

4

!
­ 2s1 2 DdE , (3)
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≠ty 1 ≠x

√
Vy

2

!
­ s1 1 DdE , (4)

≠xE ­ dnd . (5)

Note that we have used the normalization
n6 ! n6yn0, x ! kx, t ! vp2t, y6 ! y6yvp2k21,
E ! Eys4pn0ek21d, with v2

p2 ­ 4pn0e2ym2 and
D ­ m2ym1.

Using n2sx, 0d ­ 1 1 d coskx, n1sx, 0d ­ 1, and
y6sx, 0d ­ 0, as initial conditions, the solutions of the
linearized equations are

dn
s1d
d ­ A coskx cosvpt , (6)

Es1d ­
A
k

sinkx cosvpt , (7)

dns1d
s ­

1 2 D

1 1 D
A coskxs1 2 cosvptd 2 A coskx , (8)

V s1d ­ 2
1 2 D

kvp
A sinkx sinvpt , (9)

ys1d ­
1 1 D

kvp
A sinkx sinvpt , (10)

where A ­ 2d and v2
p ­ 1 1 D. At this level of

approximation, the solutions show coherent oscillations
the plasma frequencyvp. Both of the species oscillate
with the same frequency which is independent of positio

In the second order, the solutions are expressed as
dn
s2d
d ­ 2A2 cos2kx

"
1 2 D

1 1 D

√
1
2

1
1
4

vpt sinvpt 1
1
2

cos2vpt 2 cosvpt

!
2

1
4

vpt sinvpt

#
, (11)

dEs2d ­ 2
A2

2k
sin2kx

"
1 2 D

1 1 D

√
1
2

1
1
4

vpt sinvpt 1
1
2

cos2vpt 2 cosvpt

!
2

1
4

vpt sinvpt

#
, (12)

dns2d
s ­

A2

2
cos2kx

"
D

1 1 D
t2 2

Ds1 2 Dd
s1 1 Dd2 vpt sinvpt 2

3
8

s1 2 cos2vptd 2

√
1 2 D

1 1 D

!2

3

√
2 cosvpt 2

5
8

cos2vpt 2
11
8

!#
, (13)

V s2d ­ 2
A2

2k
sin2kx

"
D

1 1 D
t 1

vp

2

√
1 2 D

1 1 D

!2√
1 2 3D

2s1 2 Dd
vpt cosvpt 1

7 2 5D

2s1 2 Dd
sinvpt 2

5
4

sin2vpt

!

2
1
8

vp sin2vpt

#
, (14)

ys2d ­ 2
A2vp

8k
sin2kx

"
sinvpt 2 vpt cosvpt 2

1 2 D

1 1 D
s2 sin2vpt 2 3 sinvpt 2 vpt cosvptd

#
. (15)
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The second order solutions clearly exhibit the gener
tion of the second harmonic in space and time as well
the bunching of plasma particles in space. Both of the
features are also evident in the solution of Kawet al.
[5] and Infeld et al. [6], but in contrast to their work,
where the background ion density was kept fixed in tim
here the density of the plasma particles self-consisten
changes with time as,t2, as seen in the expression fo
dn

s2d
s . Because of the variation of plasma density wit

time, the phase mixing of an initial coherent oscillatio
happens much faster in this case. To make an estim
of the phase mixing time, consider the charge dens
equation (dnd in this case). The equation fordnd correct
up to third order stands as

≠ttdnd 1 v2
p

"
1 1

1
2

sdns1d
s 1 dns2d

s d

#
dnd ø 0 . (16)

In the above equation, if we neglect the second ord
term, then we essentially get the same phase mixing tim
as in Ref. [5] modified by a factor which depends onD.
Now taking only the leading order secular terms from th
expressions ofdn

s1d
s anddn

s2d
s (there are no secular terms

in dn
s1d
s ) we get

≠ttdnd 1 v2
p

"
1 1

A2t2D

4v2
p

cos2kx

#
dnd ø 0 . (17)

Using the initial conditions dnd ­ A coskx and
≠tdnd ­ 0 the WKB solution of the above equation is

dnd ø A coskx
n­X̀

n­2`

cos

√
vpt 1

np

2
2 2nkx

!

3 Jn

√
A2t3D

24
p

1 1 D

!
. (18)

The above expression clearly shows that the ener
which was initially in the primary wave at modek goes
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into higher and higher harmonics as time progress
This can be interpreted as damping of the primary wa
due to mode coupling to higher and higher mode
Microscopically, as the plasma particles oscillate at t
local plasma frequency, they gradually go out of pha
and eventually the initial coherence is lost. Because
the generation of higher and higher harmonics with tim
the charge density becomes more and more spiky
as a result the electric field gradients become more
more steep. This does not go on indefinitely. In reali
the density peaks get limited by thermal effects with t
Landau damping of highk modes by resonant particle
coming into the picture. This process takes energy fro
the high k modes and puts it on the particles, there
raising their temperature, which in turn limits the densi
peaks by exerting a pressure gradient. The time scal
which the initial coherence is lost (or the phase mixin
time) can be seen from Eq. (18) asvp2tmix scale as
,fA2Dys24

p
1 1 D dg21y3. It shows that, only for the

ideal caseD ­ 0.0 (infinitely massive ions), phase mixing
time is infinity, i.e., the initial coherence is maintaine
indefinitely [2,3]. For an actual electron-ion plasma,D,
although small, is finite and hence plasma oscillatio
in it phase mix away at arbitrarily small amplitudes an
in a time scale dictated by the amplitude of the initi
perturbation.

Now we present results from a 1D particle-in-ce
simulation which confirms our scaling of phase mixin
time. For numerical simulation, we have used a 1D mo
with periodic boundary conditions and have followe
5120 electrons and as many positively charged partic
(the plasma taken as a whole is neutral) in their own se
consistent fields. The particles are initially at rest and t
system is set into motion by giving a density perturbati
of the form n2 ­ 1 1 d coskx to the electrons. In the
simulation, we follow the time development of variou
modes of charge density (dnd). To compare with our
theoretical model, we rewrite Eq. (18) as
dnd ­
A
2

n­X̀
n­2`

Jnfastdg

(
cos

√
vpt 1

np

2

!
fcoss2n 1 1dkx 1 coss2n 2 1dkxg 1 sin

√
vpt 1

np

2

!

3 fsins2n 1 1dkx 1 sins2n 2 1dkxg

)
, (19)
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whereastd ­ sA2t3y24d sDy 1 1 Dd. The amplitude of
the first Fourier mode can be seen from the abo
equation as

jdndjn­1 ­
A
2

fJ2
0 sssastdddd 1 J2

1 sssastddddg1y2. (20)

It is clear from Eq. (19) that up to the order o
approximation considered, there are no even numb
modes in the system. Figure 1 shows temporal variati
of jdndjn­1 for D ­ 1.0 andA ­ 0.05. The dotted curve
is the simulation result and the solid line shows ou
expression (20) for the envelope of the oscillations.
is clear from the figure that our approximate expressio
(20) captures the early evolution of the plasma quite we
e
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n

r
It
n
ll.

Figure 2 shows the variation oftmix ­ vptmix with D

for a fixed A ­ 0.1 [curve (1)] and withA for a fixed
D ­ 0.01 [curve (2)]. These curves clearly confirm ou
formula for phase mixing time.

In conclusion, we have demonstrated that nonline
plasma oscillations in a cold homogeneous plasma ph
mix away at arbitrarily low amplitudes. This is be
cause during the course of motion the plasma partic
respond to ponderomotive forces, acquiring inhomoge
ity and thereby making the plasma frequency a functi
of space. As a result, electrons at different locatio
1869
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FIG. 1. jdnd jn­1 vs tyTP for D ­ 1.0 andA ­ 0.05.

oscillate with different (local) plasma frequencies and th
imposed plasma wave loses coherence. The format
of density clumps can also be seen from the Zakhar
equations [8] for a warm electron-ion plasma. Accord
ing to Zakharov, the slow variation (in the ion time scale
of the background density in the presence of a high fr
quency oscillation is governed by≠ttdns 2 T≠xxdns ­
≠xxjEj2. In the limit when the thermal term balance
the ponderomotive force term (i.e.,dns

n0
ø 2

jEj2

T ), we get
caviton solutions in 1D which are unstable to transver
perturbations. In the other limit, whenjEj2

T ¿ 1, it is the
≠ttdns term which dominates, and the Zakharov equatio
shows the density rising as,t2. This is the same scal-
ing as obtained by us using a perturbative approach. T
density inhomogeneities thus created lead to phase m
ing and the collapse of cavitons. From this we infer that
cold 1D plasma exhibits a “Langmuir collapse” phenom
enon similar to what is seen in a warm plasma in two
three dimensions. The time scale of collapse is of the ord
,fsA2y2d sDy

p
1 1 Ddg21y3 plasma periods. Recent ex

periments on plasma acceleration by laser wakefields h
shown [9] that wave breaking of excited plasma oscill
tions plays a major role in the final acceleration proces
similar physics is likely to be important in the fast ignito
1870
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FIG. 2. tmix vs D andA.

concept of laser fusion. We expect the processes discus
in the present paper to play some role in such experimen
It should be noted that the simulation results presented
this Letter are nonrelativistic. For many experimental situ
ations the jitter velocity of electrons is relativistic and we
expect the mass ratioD to be replaced byDeff ø meffymi,
wheremeffymi ¿ 1. Under these conditions, the phase
mixing effects considered by us should become more im
portant. Such investigations are in progress and will b
presented elsewhere.
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