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Phase Mixing of Nonlinear Plasma Oscillations in an Arbitrary Mass Ratio Cold Plasma
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Nonlinear plasma oscillations in an arbitrary mass ratio cold plasma have been studied using 1D
particle-in-cell simulation. In contrast to earlier work for infinitely massive ion plasmas it has been
found that the oscillations phase mix away at any amplitude and that the rate at which phase mixing
occurs depends on the mass ratlo€ m_/m.) and the amplitude. A perturbation theoretic calcula-
tion carried up to third order predicts that the normalized phase mixing dimne i, depends on the
amplitudeA and the mass ratid as~[(42/24) (A/+/1 + A)]"'/3. We have confirmed this scaling in
our simulations. These cold plasma results may have direct relevance to recent experiments on superin-
tense laser beam plasma interactions with applications to particle acceleration, fast ignitor concept, etc.
[S0031-9007(99)08544-0]
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The physics of the damping of nonlinear cold plasmaat arbitrarily low amplitudes. For a sinusoidal distribution
oscillations is a topic of considerable fundamental in-of background species, such a phenomenon in the form of
terest since it is the simplest nonlinear collective irre-mode coupling of a long wavelength mode to short wave-
versible phenomenon characterizing the plasma state. lkngth modes was observed by Kawal. [5]. They found
also has wide applications to a number of problems of curthat the time scale in which energy goes from long wave-
rent interest such as particle acceleration by wakefieldsength mode to short wavelength mode is —— —2_ where
beat waves created by intense lasers or particle beamss” is the amplitude of the background mhomogenelty
the fast ignitor concept in inertial fusion, where rela- The exact solution for the cold plasma oscillations in a
tivistically intense coupled electromagnetic-plasma waveixed sinusoidal background was given by Infeldal. [6]
modes propagate deep into overdense plasmas to creaio described phase mixing in terms of electron density
a “hot spark,” and a number of other astrophysical andurst.
laboratory device-based plasma experiments, where in- |n this paper we show that the phenomenon of phase
tense plasma oscillations are generated. The conventionglixing will also occur in a homogeneous plasma at arbi-
thinking about the physics of this interaction is well illus- trarily low amplitudes, provided the background positive
trated by the exact solution for nonlinear one-dimensionagpecies are allowed to mov& # 0). This is because
cold plasma fluid equations with infinitely massive ions.the background species respond to ponderomotive forces
These exact solutions may be obtained by transforming teither directly or through low frequency self-consistent
Lagrangian coordinates as shown in [1-3] or using strearfields and thereby acquire inhomogeneities in space. Such
functions [4]. The exact solution shows that coherent osan effect has been observed in electron positron plasmas
cillations at the plasma frequeney, are maintained in- (A = 1) by Stewart [7]. In plasmas with finite tempera-
definitely over the region of initial excitation, provided ture, it is well known that plasma waves dig cavities by
the normallzed amplitude of the initial density perturba- ponderomotive forces and get trapped in them; this is the
tion A (= —) is kept below0.5. For A > 0.5, one ex- physics of strong turbulence of Langmuir waves as eluci-
pects and observes wave breaking and fine scale mixingated by Zakharov [8] and leads to envelope soliton forma-
of various parts of the oscillation [1]. Mathematically, tion in one dimension and collapse phenomenon in 2D and
the electron number density blows up At= 0.5; this  3D. In a cold plasma, stationary states cannot form even in
is because the Jacobian of transformation from EuleriadD because there is no thermal pressure effect to counter-
to Lagrangian coordinates goes to zerodas» 0.5 and balance the ponderomotive forces. The result is that the
the transformation is no longer unique. Physically, thisdensity cavities being dug by plasma oscillations have an
is equivalent to the crossing of electron trajectories whictamplitude which increases secularly in time. Similarly, the
leads to multistream motions and wave breaking as disresponse of plasma oscillations to the presence of density
cussed in [1]. Studies of wave breaking and phase mixingavities is also different from that of the Zakharov prob-
damping are based on numerical simulations. lem. In the Zakharov problem, the thermally dispersive

The above description is adequate when the backgrourplasma waves get trapped in density cavities forming lo-
positive species are infinitely massi&/?;;;— = A — 0)and calized wave packets. Here, the inhomogeneity of the cold
are uniformly distributed. If the background is inhomo- plasma (because of the self-consistently generated pertur-
geneous, then as was shown by Dawson [1], cold plasmisation) causes different parts of the plasma oscillation to
oscillations phase mix away in a time scale- m, oscillate at different frequencies [1,5,6] resulting in intense
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phase mixing of plasma oscillations. Thus we physically Vv
expect that if the background species are allowed to move div + GX(7> =1+ AE, (4)
and get redistributed into inhomogeneous clumps of den-
sity, the phase mixing damping of cold plasma oscillations 9.E = 6ny. (5)
should come in at any amplitude and is not restricted to
waves withA > 0.5. It may be emphasized here that, Note that we have used the normalizations
for many applications involving the interaction of super-n+ — n=«/ng, x = kx, t = w,-t, v+ = v+/w,-k~ g
intense laser beams with plasmas (such as particle accdl-— E/(4mnoek™"), with w?_ = 47nge*/m- and
eration by wakefields, penetration into overdense plasmagy = m-/m-.
etc.), the cold plasma limit considered by us is more rele- Using n-(x,0) = 1 + §coskx, n+(x,0) =1, and
vant than the Zakharov description, because typically the’=(x,0) = 0, as initial conditions, the solutions of the
plasma wave intensities are such thal2/4mnT > 1. linearized equations are

In this paper we carry out particle simulations for
elucidating the physics of phase mixing damping of
nonlinear cold plasma oscillations in an arbitrary mass
ratio plasma 4 arbitrary). We also present a perturbation m )
theoretic analysis to give a quantitative estimate of the BV = ;smkx CoSwpt, (7)
phase mixing time for moderate amplitude oscillations
and compare it with simulation.

We start with the cold plasma equations, viz., the con- 5n<1) = ﬁACOS/{x(l — cosw,t) — Acoskx, (8)
tinuity equations and the equations of motion for the two 1+ A
species and the Poisson equation. We introduce new vari-
ablesV, v, 6ny, anddn, defined as/ = vy + v_, v = N A
vy —v_, 6ng = 06ny — 6n- =ny —n_, anddén, = Vivi= -
ény + 6n- = ny + n_ — 2 to write the cold plasma
equations in the form,

A .
Véng + vén, v = Asinkxsinw,t, 10
d,0ng + 8X|:v + 200 T YOls > von. :| =0, 1) kw, p (10)

Vén, + U5nd} . @ where A = -6 and w,zj =1+ A. At this level of

6n£,1) = A coskx COSw 1, (6)

ko, Asinkxsinw,t, (9)

5 approximation, the solutions show coherent oscillations at
5 5 the plasma frequency,. Both of the species oscillate
Vitoery with the same frequency which is independent of position.
VvV +9 = —(1 - AE, 3 ;
4 In the second order, the solutions are expressed as
|
1,
2

8,5}’13 + 8X|:V +

l>

. 1 1 ,
8n,(12) = —A? coszkx[ wptsSinw,t + Ecoszwpt - com,,t) - Zw,,tsmwpt] (11)

l>
4>|—~

A2 - Af1
@ — _2 & =
OF iy 5|n2kx[ >

1 1 1 .
Z ptSinw,t + — > COS2w,t — COSa)pt> - Zw,,zsmwpt}, (12)

A? . 3 1 —A
sn? = Tcoszkx{ wptsinwyt — = (1 = coS2w,1) — ( )

At (1+A)2 1+A

8

A ,_ A0-4)
1+

11
2cosw,t — coszwp - —)} (13)

V(2)=—A—zsin2kx A ¢+ 2r -4 1 - 34 w ,t COSw t+ﬂsinw t—isinZwt
2k 1+ A 2 \1+A 2(1—A)p P 2(1 — A) P 4 P
1 .
- gwpsm2wpt] (14)

2

(2) A a)p . . 1 - A . .
v = Sin2kx| siNnw,t — w,tCOSw,t — m(Zszth — 3sinw,t — w,tCosw,t) |.  (15)
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The second order solutions clearly exhibit the generainto higher and higher harmonics as time progresses.
tion of the second harmonic in space and time as well ashis can be interpreted as damping of the primary wave
the bunching of plasma particles in space. Both of thesdue to mode coupling to higher and higher modes.
features are also evident in the solution of Katval.  Microscopically, as the plasma patrticles oscillate at the
[5] and Infeld et al. [6], but in contrast to their work, local plasma frequency, they gradually go out of phase
where the background ion density was kept fixed in timeand eventually the initial coherence is lost. Because of
here the density of the plasma particles self-consistentlyhe generation of higher and higher harmonics with time,
changes with time as-+?, as seen in the expression for the charge density becomes more and more spiky and
sn?  Because of the variation of plasma density withas a result the electric field gradients become more and

time, the phase mixing of an initial coherent oscillationmore steep. This does not go on indefinitely. In reality,
happens much faster in this case. To make an estimatfe density peaks get limited by thermal effects with the
of the phase mixing time, consider the charge density-andau damping of higit modes by resonant particles
equation §n, in this case). The equation fém, correct ~coming into the picture. This process takes energy from
up to third order stands as the highk modes and puts it on the particles, thereby
raising their temperature, which in turn limits the density
2 1 ©) _ peaks by exerting a pressure gradient. The time scale in
dudna + w”[l - 2 (O™ + on )}5’” =0.(16) which the initial coherence is lost (or the phase mixing

In the above equation, if we neglect the second ordetrime) can be seen from Eq. (18) as,— i, scale as
) T ra2 T L AVI—1/3

term, then we essentially get the same phase mixing tim%gél ﬁég{ :1 (J)FOA(iL]finitéI Irtnzrs]gi\\llvs igrzast), Oﬁgsefor:“;?ﬁ

as in Ref. [5] modified by a factor which depends &n ’ y P 9

Now taking only the leading order secular terms from thetlme is infinity, i.e., the initial coherence is maintained

_ (1) ) indefinitely [2,3]. For an actual electron-ion plasni,
expressions obns * anddns™ (there are no secular terms gihough small, is finite and hence plasma oscillations

in 5'151)) we get in it phase mix away at arbitrarily small amplitudes and
A in a time scale dictated by the amplitude of the initial
9y Ong + w12,|:1 + 12 COSkai|6nd ~ (0. (17) perturbation. o
@p Now we present results from a 1D particle-in-cell
Using the initial conditions 8ny, = Acoskx and  Simulation which confirms our scaling of phase mixing
9,8n, = 0 the WKB solution of the above equation is  time. For numerical simulation, we have used a 1D model
with periodic boundary conditions and have followed

21‘2

~ nar 5120 electrons and as many positively charged particles
dng =~ ACOSkx n;x coq@pt + 5 — 2”kx> (the plasma taken as a whole is neutral) in their own self-
A2PA consistent fields. The particles are initially at rest and the
Jn<t) ) (18)  system is set into motion by giving a density perturbation
24V1 + A of the formn_ = 1 + & coskx to the electrons. In the

The above expression clearly shows that the energ§imulation, we follow the time development of various

which was initially in the primary wave at modegoes , medes of charge densityo4,). To compare with our
| theoretical model, we rewrite Eq. (18) as

n=o

5nd=% Z

J,,[a(t)][co<w,,t + %)[cos(zn + Dkx + co2n — 1)kx] + sin<w,,t + %)

X [sin2n + 1)kx + sin(2n — l)kx]], (29)

wherea(r) = (A%23/24) (A/V1 + A). The amplitude of
the first Fourier mode can be seen from the ab
equation as

V‘?:igure 2 shows the variation ofpnix = w,mix With A
for a fixed A = 0.1 [curve (1)] and withA for a fixed
ndln=1 = = [5(a(®) + JH(a@)]". (20) A = 0.01 [curve (2)]. These curves clearly confirm our
It is clear from Eq. (19) that up to the order of formula for phase mixing time.
approximation considered, there are no even number In conclusion, we have demonstrated that nonlinear
modes in the system. Figure 1 shows temporal variatioplasma oscillations in a cold homogeneous plasma phase
of [6ng4l,=1 for A = 1.0 andA = 0.05. The dotted curve mix away at arbitrarily low amplitudes. This is be-
is the simulation result and the solid line shows ourcause during the course of motion the plasma particles
expression (20) for the envelope of the oscillations. Itrespond to ponderomotive forces, acquiring inhomogene-
is clear from the figure that our approximate expressionty and thereby making the plasma frequency a function
(20) captures the early evolution of the plasma quite wellof space. As a result, electrons at different locations
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FIG. 1. |6n4l,=1 vst/Tp for A = 1.0 andA = 0.05. FIG. 2. 7nix VS A andA.

oscillate with different (local) plasma frequencies and the f fusi W h di d
imposed plasma wave loses coherence. The formatiopP"cepPt of laser fusion. We expect the processes discusse

of density clumps can also be seen from the Zakharo{l" the present paper to play some r_ole in such experimen@s.
equations [8] for a warm electron-ion plasma Accord-!t should be noted that the simulation results presented in

ing to Zakharov, the slow variation (in the ion time scale)tms Letter are nonrela_\tivistic. For many exp_er_imental Situ-

of the background density in the presence of a high fredtions the jitter velocity of electrons is relativistic and we

quency oscillation is governed by, 8n, — T9,,6n, — expect the mass ratiy to be replaced bx&e.ff ~ Mesr/m;,

9. |E?. In the limit when the thermal term balances wheremerr/m; > 1. Under these conditions, the phase
|E|? mixing effects considered by us should become more im-

. . ong __ _ |EI®
g;?/i?c?nnii:g:%?sv?nfigewtﬁircmh g.ree%n; ablg t)o \':\r/gn%(\a/ters ortant. Such investigations are in progress and will be
K %resented elsewhere.
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