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We present a series of numerical and analytical computations on heat conduction for a strongly
chaotic system—the Lorentz gas. Heat conduction is characterized by nontrivial features: While the
heat conductivity is well defined in the thermodynamic limit, a linear gradient appears only for quite
small temperature differences. The key dynamical feature inducing such a behavior is recognized
as deterministic diffusion (along transport direction) which is usually associated to full hyperbolicity.
[S0031-9007(99)08614-7]
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What are the dynamical properties needed to have not-orentz gas with a random configuration of scatterers,
mal transport in a given system? This is a nontrivialit has been shown that the heat transport is normal in
guestion and for many years has been addressed accottie Boltzmann-Grad limit [7], in which the Boltzmann
ing to different perspectives. It concerns, on one handequation is satisfied. Another group of studies (in which
the foundations of nonequilibrium statistical mechanicsno Markovian limit is involved) have been devoted to
and, on the other hand, the practical issue of constructingne dimensional chains of nonlinearly coupled oscillators.
microscopic models which agree with the macroscopicThere are strong numerical evidence [8] (see [9,10] for
equations which describe transport. The latter set of “hyrecent developments) for the validity of the Fourier heat
drodynamic” equations has a phenomenological charactecpnduction law in the so-called “ding-a-ling” (where os-
is based on conservation laws (either local or global), andillators exchange energy via intermediate hard spheres),
is derived without appealing to the microscopic structurevhile the situation is considerably more complicated in
of matter. This body of knowledge has been very succesghe Fermi-Pasta-Ulam chain (where oscillators are cou-
ful, and still today it represents a very important branchpled by third and fourth order nonlinear terms) where,
of science with applications in physics, engineering, bi-even above the chaoticity threshold, heat conductivity
ology, and other fields. The hydrodynamic descriptionseems abnormal [11]. Both systems exhibit exponential
emphasizes the role played by transport coefficients, sudhstability in numerical simulations, thus positivity of the
as diffusion constant, viscosity, and heat conductivity: estyapunov exponent cannot presumably be a sufficient
tablishing their existence starting at a mechanical level igondition to induce normal transport properties. While
quite a different task (see [1—4] as regards diffusion anastablishing a complete connection between ergodic prop-
[5] for viscosity). erties and macroscopic transport features is still beyond

Recently, a number of authors have proposed a novekach, our will is to point out how deterministic diffusion
approach to nonequilibrium statistical mechanics startmay play an important role. In the model we investigate,
ing from microscopic dynamics: For instance, a full mass and energy transport are directly related; however,
Liouvillian description for diffusion without appealing we believe that our considerations may be applied to more
to the Boltzmann equation [3] has been proposed fogeneral settings.
particular models. More generally, for a class of hy- The model we consider is a two dimensional billiard,
perbolic systems (transitive Anosov) a guiding principlea Lorentz channel (LC) (see Fig. 1). It consists of two
has been proposed (the so-calldthotic hypothesi§6]) parallel lines of lengtlL at distance:, that we take to be
as a prescription for extending equilibrium methods tounity, and a series of semicircles of radiRsplaced in a
nonequilibrium situations. We remark that in these worksriangular lattice along the channel. By construction no
the randomness needed to obtain a consistent descriparticle can move along the horizontal direction without
tion of the irreversible macroscopic phenomena comescolliding with the disks. The dynamics in the LC is
from the exponential instability of the microscopic chaoticmixing and all trajectories with nonzero projection on the
dynamics. x direction are of hyperbolic type; further it has positive

According to these observations, it seems natural to inkKolmogorov-Sinai entropy, and a well defined diffusion
vestigate the problem of heat conduction as related to dyconstant [2].
namical instability, and indeed a number of models have To induce transport of heat we place the LC between
been investigated along such lines: In the case of thewo heat reservoirs, which are modeled by stochastic
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FIG. 1. Geometry of the model. The fundamental domain
is indicated as well as the two heat reservoirs at different 1.040 -
temperatures. The coordinate goes along the channel and
the y coordinate is perpendicular to it. The transport of heat &
goes along the coordinate.

T(x)

kernels of Gaussian type,
P lv] —2 1.020 ]
=+ —expo. ., 1 3
(v) = =7 expy (1)
where v stands for the horizontal component of the PRPAL

velocity at the collision with the heat bath, and the signs s
are conveniently taken to eject back the particle to the
scatterer after a collision with the heat baths. We set
Boltzmann’s constant equal to one. Transport takes place
in the x direction, which is the transport coordinate. The
channel consists of replicas of a single fundamental cell FIG. 2. Horizontal temperature field foA7 = 0.05. Dia-

(of length , thus yielding a total lengti, = in), so the monds were obtained by numerical simulation and are com-

AR . . pared with Eq. (7), full line. The agreement is good. The
thermodynamic limit is obtained upon taking larger andy mper of fundamental celis in this simulation is= 5, a

larger values ofn and keeping the density (number of typical single particle simulation involves millions of collisions
particlegn) fixed. As particles do not interact, this is with the reservoirs.

equivalent to running long trajectories osmgle particle
and rescaling the flux of a facter (if we consider unit For small temperature differenceST the profile of
density). In our simulations we have takento be 1, local temperatures is linear, but when the temperatures of
5,9, 13, and 17. We fix the temperature of one of thdhe two heat reservoirs are appreciably different then the
reservoirsT, and the temperature of the other heat bath igrofile has a nontrivial shape (see Figs. 2 and 3). In fact,
taken asl, = T, + AT. to a high degree of accuracy, it is a nonlinear, rational
To compute the temperature field at the stationary statdunction of the positionx. We will give an analytical
we evaluate time averages as follows; we divide theargument for this in the final part of the paper: From a
configuration space in a set of boXgg}. The time spent numerical point of view this can be understood by noting
within a box in thejth visit is denoted by; and the total ~ that expression (2) is defined by a ratio. When separately
number of crossings of a bo&; during the simulation plotting the numerator and the denominator, we observe
is N. We compute the kinetic energy;(C;) at the jth that both are linear functions, with slopes of opposite sign
crossing of the box_; and define the temperature field as (see Fig. 4).

1.000 % : : :
0.00 5.00 10.00 15.00

X

l_v:] t,E(C)) In all cases, the temperature profile has a regular scaling
Te, = (E)e, = —L=i—"—. (2)  under variations of the length of the chain. 1&g )(x)
i=11j

This defines the temperature field as a two coordinate
(coarse grained) field'(x,y). As transport is along the
x coordinate, we will focus on the projection dfon the 200! q
x-T(x,y) plane. '

The other quantity of relevance is heat flux, especially p
in the stationary state. Within the channel energy is
conserved; it changes only at collisions with heat baths. _ &
Let (AE), denote the change of energy at #th collision X
with a reservoir, = 1.50 | .

(AE)k = Ejp — Eout - (3)

Summing overN such events taking place during a

time 7y, we have the following definition for heat flux:
1 N
v = D (AE);. (4) 1.00 ‘ ‘ ‘
N j=1 0.00 5.00 10.00 15.00

For large enoughv we expect that heat flux to reach X
a stationary value, and this is indeed verified in OUrF|G. 3. As in Fig. 3 for the case\T = 1.05; again the
simulations. agreement with Eq. (7) (full line) is excellent.

1860



VOLUME 82, NUMBER 9 PHYSICAL REVIEW LETTERS 1 MRcH 1999

40.00 -4.0 , ;
35.00 S

-6.0
30.00

g 80|

25.00 -
20.00 -10.0 |
15.00 ]

-12.0 : .

0.0 1.0 2.0 3.0
10.00 : : :
0.00 5.00 10.00 15.00 L
X FIG. 5. Typical scaling behavior of the stationary heat flux

Jjay(n) (for one particle) with the number of fundamental cells.
FIG. 4. Behavior of the numerator (diamonds) and denomi-The least-squares slope in the picture-i6.98, very close to 2
nator (squares) of Eq. (2). The temperature difference igsee text).
AT = 1.05. We can see that at the stationary state both fields
are linear in transport directioii. The predictions of Eq. (7)
are represented by full lines, the agreement is excellent. We
remark that in this case the temperature field is not linear (see

1
m(L. Es1) = iy — e B/,
Fig. 3).

1
where L is the length of the channel. When a particle
andTo(x) be the temperature fields of systems of sizeOf one type hits the othgr_reservo!r It is absorbe_d. Now
1 andL. respectively. then we have we suppose each satisfies a diffusion equation (in

»Tesp T ye ) = Trog1(x/L) (5) the x variable), with a diffusion constanD = D(E)
[0.1]1X [O.L]\X/ %) - . (independent of the position). The stationary solutions
. In_ the case of linear behavior the temperature gradie re linear functions of the position and have to satisfy
is given by T T T T the following boundary conditionsp(L,D) = 0 and

1 — 10 1 — 10

VT = = > (6) mn1(0,D) = 0. So the stationary solutions are
n

which means that it scales &gn.

To verify whether heat conductivity is normal, we have
then to look at the way heat flux scales with length: Forgnd
a single particle simulation we compute a flyx(n). A !
correct implementation of the thermodynamic limit then n(x,E) = iy — e E/Miyx |
consists in considering the flux corresponding to larger LT,
and larger systems with a constant density; that is, wéf we furthgr impose that the total mass flux is zero (as in
have to look at the scaling of(,)(n) = njq)(n) (for a  our numerical simulations), then
density of one particle per cell). We find thaf,(n) = . ] D(E) (@ E/To _ ity 7E/T1> .

1
E) = iig — e E/T(L, — x),
no(x, E) = fig In° (L - x)

an~#, where our numerical values fg8 =~ 0.98-0.99 dE e

L T T
are very close to one (Fig. 5): The heat conductivity= 0 1/ !
Jo(n) If we assume thab(E) ~ E!/ (to reproduce the correct

v7—) is thus normal and the Fourier law is satisfied, inscalin behavior of the Lorentz gas), we get
the regime of small temperature differences. 9 9as), 9

Finally, we give a simple argument, based on the use VToiio = JTi iy .

of macroscopic diffusion equations, that captures most ofye can now compute the temperature field, by writing
the details of our numerical findings. Let(x,E;t) be [ dE Elno(x. E) + my(x. E)]
nolx, ni(x,

the density of particles of energy whose last collision T(x) = ,

with a reservoir was with the left-hand one (&), and JdE[no(x, E) + ni(x,E)]

let ni(x, E; t) be the corresponding quantity for the right which yields

reservoir (at temperaturg;). The reservoirs’ properties Tll/zT()(L — X))+ Té/lex

are included by imposing T(x) = T @

1 T2To(L — x) + Ty *x
no(0, E; t) = itg — e E/To . )
015 & °To ’ In Figs. 2 and 3, we plot the temperature field along
and the x direction obtained from the numerical simulations
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together with the estimates from Eq. (7); the agreemengtructure of wave functions, may play in this respect an
is quite good. Further from Eq. (7), we can see thaimportant role.

for a fixed temperature gradient the temperature field We thank Prof. Pierre Gaspard for useful discussions.
is a rational function on the transport coordinate, and

when the gradient of temperature is smallx) is well

approximated by a straight line. It is also evident that  .g.4il address: dalonso@ull.es
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