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Period Doubling of a Torus near the Ferroelectric Phase Transition of aKH2PO4 Crystal
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We have studied the transition to chaos in the ferroelectric KH2PO4 crystal near the phase transition
temperature. An unusual scenario has been found: the transition from a fixed point to a quasiperiodic
motion on a torus (T) through Hopf bifurcation to a quasiperiodic motion on a two-torus (T2) through
a cascade of torus doublings, and then directly to chaos. These results point to the essential role of
the polarization fluctuations near the phase transition and the electromechanical couplings between the
soft-mode polarizationP and the elastic shear strainX of the crystal, whose dynamics are described by
a Duffing’s anharmonic oscillator coupled by a piezoelectric oscillator. [S0031-9007(99)08532-4]
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Recent studies on nonlinear dynamics and chaos ha
shown that many dissipative nonlinear dynamical system
though the governing equations of motion for the system
are very simple and deterministic, can produce an app
ently pseudorandom behavior, which is called chaos. O
of the most interesting results of nonlinear dynamical sy
tems theory is that these random or chaotic behaviors c
be reached by following one or another of the known sc
narios, regardless of the details of the dynamical syste
concerned, which leads to the concept of universality in d
namical systems theory [1]. Period doubling, quasiperio
icity, and intermittency are three representative example

Another interesting but less widely known scenario
the cascade of torus doublings. In this scenario the tor
represented by a circular ring in phase space, is separa
into two circular rings, followed by the emergence of
strange attractor. This scenario was first studied exte
sively in theory by Kaneko [2]. He combined two kinds
of maps belonging to the two different universality classe
viz., period doubling and quasiperiodicity, associated wi
the frequency locking, and found a new scenario, i.e., tor
doubling, as a result of the interaction between the two sc
narios. He also found that, unlike with the infinite numbe
of period doubling from a fixed point, the torus undergoe
a finite number of doublings.

The cascade of torus-doubling transition to chaos
similar to the period-doubling transition to chaos. Bu
it differs in the following two significant ways: (i) A
cascade of torus doublings occurs in high-dimension
dynamical systems. It requires at least four dimensions
a continuous flow or three dimensions in a discrete ma
Unlike the period-doubling transition to chaos, it doe
not occur in a low-dimensional map or continuous flow
(ii) Instead of an infinite number of period doublings
toward the accumulation point, only a finite number o
torus doublings have been observed before the on
of chaos. In fact, no more than two successive toru
doubling events have ever been observed in experimen
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Compared with the Ruelle and Takens conjecture [3] t
a torus in low-dimensional dynamical systems undergo
a transition into chaos through quasiperiodicity, a torus
high-dimensional flow loses its stability and develops in
chaos through period doubling.

The torus-doubling transition to chaos has been
ported in high-dimensional dynamical systems: in a n
merical study of seven-mode Navier-Stokes equations
in a three-dimensional map with dissipation by Arneo
et al. [5], and in a quintic complex Ginzburg-Landa
equation describing the dynamics of plane Poiseuille fl
[6]. This scenario has also been reported in recent exp
ments on fluid convection [7] and chemical reactions [8
all of which are infinite-dimensional dynamical system
But those few works reporting on the torus-doubling sc
nario in condensed matter physics are given in Ref. [9]

In this paper, we report on an experimental observat
of a torus-doubling transition to chaos, i.e., the transiti
from a fixed point to a quasiperiodic motion on a toru
(via Hopf bifurcation), to a motion on a two toru
(via torus doubling), and then to chaos, as sugges
by Kaneko [2], in a KH2PO4 (KDP) crystal near the
ferroelectric phase transition temperature. It should
stressed that this is the first experimental report on
torus-doubling transition to chaos occurring in condens
matter, and KDP is a good candidate to study th
scenario. The dynamical behavior of the KDP crys
near the phase transition is described by the coupled fi
dimensional dynamical systems; a Duffings’ anharmo
oscillator, driven by an external stimulus, is couple
to the elastic shear-mode oscillator by piezoelectrici
As a result, a KDP crystal near the phase transition
expected to give a large variety of nonlinear dynamic
behaviors including period doubling, quasiperiodicity, a
torus doubling as a result of the interaction between the

Until now, nonlinear dynamical behavior, especial
in the ferroelectric materials, has been reported in
following three important situations:
© 1999 The American Physical Society 1851
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(a) Near the transition temperatureTc.—Fluctuation in
the order parameter grows significantly as the temperat
approaches the phase transition and the instability as
ciated with the fluctuation is also greatly increased. A
a result, nonlinearity of the crystal can be induced.
Rochelle salt was reported to show a period doubling a
chaos when it was moderately biased nearTc [10], and
this was the first report on chaotic phenomena in ferr
electric materials.

(b) By mode couplings.—In the ferroelectric KH2PO4,
there exists an electromechanical coupling between a
larization mode along the ferroelectricc axis and an elas-
tic shear mode along the diagonal direction in theab
plane nearTc. Period doubling, frequency locking as
sociated with the quasiperiodicity, and intermittency ha
been reported [11]. Regarding the coupling between t
two nonlinear mode oscillators, torus-doubling transitio
to chaos, which will be the main concern of this paper,
naturally expected in the equation of motion but it has n
been experimentally reported so far.

(c) By instabilities in the crystal.—The mode-locking
structure of the oscillatory and chaotic states in th
electrical conduction has been reported for barium sodiu
niobate (BSN) crystal, which is in good agreement wi
the theoretical circle map [12]. These examples
ferroelectric materials show that the study of the nonline
dynamical behavior of condensed matter gives mu
information on the correlation between the generation
nonlinearity and the order-parameter dynamics near
phase transition temperature.

For our experiment, KDP samples were prepared
two stages. The KDP was cut along thec axis to get
a thin slab and then cut again along the45± diagonal in
the ab plane to couple the piezoelectric excitation to th
c-axis polarization. Typical dimensions of the sample
were 13 3 3 3 0.5 mm3. To make electrodes on the
sample, it was evaporated with gold and then painted w
silver paste. With the sample geometry prepared in th
way, shear strainX6 is coupled piezoelectrically to the
polarizationP along thec axis so it simply dilates along
the length. The KDP samples prepared were used a
nonlinear capacitor in the simpleRLC resonator (Fig. 1)
with L ­ 10 mH andR ­ 390 V.

We used cryogenic equipment (e.g., a closed cycle h
lium refrigerator and a cryostat), provided in a package
the JANIS Research Co., Inc. We also used the Lakesh
330 autotuning temperature controller whose control s
bility is given by 625 mK at 300 K with silicone diode
sensor. With the cryostat set at,3 5 mTorr, the tem-
perature of the KDP sample was controlled to withi
60.01 K aroundTc. As a signal generator, we used th
HP3325B function generator whose resolution is given
1 mHz at f # 100 kHz from 20 to 30 ±C. To character-
ize the sample, we performed the dielectric measureme
first. An HP4275 multifrequency spectrum analyzer wa
used atf ­ 10 kHz andT ­,150 50 K in steps of 1 K.
We then carried out the same experiments again in st
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FIG. 1. Schematic of the apparatus used in the experiment
generate the Poincaré section directly on the oscilloscope.

of 0.02 K nearTc to determine exactly the phase transi
tion temperature of the KDP crystal.Tc was found to be
120.98 K and the voltage signal across the resistor w
measured as a dynamical variable.

Now let us suppose that the KDP crystal is drive
by a sinusoidal voltageV std ­ V0 sins2pftd in a simple
RLC circuit. Then the equation of motion forP near the
phase transition temperature is described by a Duffing
nonlinear oscillator equation [11]. A lot of numerical
studies have been devoted to the equation and it
now one of the representative examples of a nonline
dynamical system showing a finite number of perio
doublings [13].

KDP crystal also has a piezoelectricity near the pha
transition temperature between the soft-mode polariz
tion P and the elastic shear deformationX. Regard-
ing bilinear couplinghPX with h the coupling strength
in the interaction potential, which is the simplest cou
pling form, the following equation of motion has been
suggested [11]:

P̈ 1 a ÙP 2 P 1 P3 1 hX ­ n sinsVtd ,

Ẍ 1 b ÙX 2 X 1 X3 1 hP ­ 0 ,
(1)

where t is the dimensionless time,a and b are the
damping constant related to the polarization fluctuatio
and shear strain,V is the dimensionless frequency,
and the differentiation is with respect tot. According
to Eq. (1), dynamical behavior of KDP crystal nea
the phase transition is described by two anharmon
oscillators coupled by an electromechanical couplin
each of which is a representative example of perio
doubling and quasiperiodicity. When it is written as a
set of first-order equations in the following form,

dP
dt

­ Q,
dQ
dt

­ 2aQ 1 P 2 P3 2 hX 1 n sinf ,

dX
dt

­ Y ,
dY
dt

­ bY 1 X 2 X3 2 hP , (2)

df

dt
­ V ,
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to analyze the dynamical behaviors, it becomes the fiv
dimensional dynamical system in continuous phase flo
and thus satisfies the necessary condition for the tor
doubling transition leading to chaos.

Four-dimensional Poincaré maps of the type,

Pn11 ­ f1sPn, Qn, Xn, Ynd ,

Qn11 ­ f2sPn, Qn, Xn, Ynd ,

Xn11 ­ f3sPn, Qn, Xn, Ynd ,
(3)

Yn11 ­ f4sPn, Qn, Xn, Ynd ,

which will be a combination of maps showing perio
doubling and quasiperiodicity, can be constructed by
Poincaré section technique. According to Eqs. (2) a
(3), the KDP crystal near the phase transition can
regarded as a coupled dynamical system which belon
to the two different universality classes: period doublin
and quasiperiodicity. Thus a KDP crystal is a goo
example of a nonlinear dynamical system in condens
matter to study the interaction between period doublin
and quasiperiodicity. The mappings given by Eq. (3
can sometimes be simplified into low-dimensional ma
showing period doubling or quasiperiodicity when on
of the variables can be written as a function of th
other three variables after the initial transients have di
away. It should also be pointed out that, even thou
an exact analytic form of the equation is not availabl
maps obtained in experiments can be useful in illustrati
the bifurcation nature of the dynamical system concerne
In the experiment, we have observed period doubling
a fixed point, quasiperiodicity, and period doubling of
torus, as will be discussed below.

To see the torus-doubling phenomena more clear
we set T ­ Tc 1 0.2 K and then variedT to see the
temperature dependence of the phenomena. Too inte
turbulent fluctuations of the order parameterP near Tc

may degrade the fine structure of the phenomena, i
the torus develops directly into chaos without perio
doubling. Stabilizing the temperature, we scanned t
frequency of the signal generator linearly from 10
to 30 kHz in automatic mode in 1000 sec. From th
frequency scan, we could find the frequency interv
displaying chaos. In that frequency region, we scann
the frequency again manually in steps of 1 Hz. At th
scan rate we assumed a quasistatic response of the cry

We observed that a fixed point evolves into a quasipe
odic motion on a torus (T ) through a Hopf bifurcation at
f ­ 62.534 kHz. The second self-oscillation in the crys
tal is generated by a piezoelectric oscillation provided b
an electromechanical coupling between the order param
ter P and the shear strainX as given by Eqs. (1) and (2).
A Poincaré map, a stroboscopic motion of the trajecto
on a section plane in the phase space, is a common w
of displaying the dynamics of quasiperiodic motion an
experimentally, this is generated by a series connection
a sample and hold circuit, which holds the maximum
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the signal with one period delayed in succession. Ad
tionally a pulse generator is also used to trigger the sig
at the peak position. It consists of a differentiator and
zero-crossing detector. These pulses are used to strob
Z axis of the oscilloscope to display the Poincaré sect
of the phase plots on the cathode ray tube clearly (Fig.
On the Poincaré section, a two-frequency quasiperio
motion in the continuous flow is represented by a circu
ring on the Poincaré section plane, and the result is sho
in Fig. 2(a).

The transition from a motion on a torus to a motion o
a two-torus occurs atf ­ 61.096 kHz through a period
doubling. Figure 2(b) shows the period-doubled toru
A smooth circular curve in Fig. 2(a), showing that th
motion is in a quasiperiodic state, is separated into t
smooth circles, each of which is visited alternately b

FIG. 2. Return map observed atT ­ 121.18 K and V0 ­
10 V. Scale of the horizontal and the vertical axis is th
same, 0.2 Vydiv, with the gain of 10 dB. (a) A quasiperiodic
motion on a toruss f ­ 62.092 kHzd; (b) a quasiperiodic
motion on a two-toruss f ­ 61.074 kHzd; (c) a chaotic motion
s f ­ 60.404 kHzd.
1853
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the trajectory. After a period doubling of the torus
chaos appears suddenly atf ­ 61.054 kHz. The two-
torus starts to merge to form a chaotic attractor and
result is shown in Fig. 2(c). The whole sequence in t
figure means that a fixed point undergoes a transition
a quasiperiodic motion on a torus (T ) through the Hopf
bifurcation, to a quasiperiodic motion on a two-torus (T2)
through the period-doubling bifurcation, and then to
chaos. This is in sharp contrast with the period doubli
of a fixed point in a low-dimensional dynamical system
which requires an infinite number of period-doublin
bifurcations toward the onset of chaos. It should al
be stressed that a torus in a high-dimensional dynam
system (d $ 3) can lose its stability and develop into
chaos by a finite number of period doublings, as predict
in theory by Kaneko [2]. On the other hand, a torus in
low-dimensional dynamical system (d , 3) develops into
chaos by the quasiperiodicity associated with frequen
locking as suggested by Ruelle and Takens [3].

In our investigation, torus-doubling phenomena ha
been observed within61 K around Tc while period-
doubling and intermittent routes to chaos are al
observed ubiquitously. In particular, much richer no
linear dynamical responses including quasiperiodici
frequency locking, and a cascade of torus-doubli
transition to chaos are found near the phase transit
temperatureTc. More details will be reported elsewher
[14]. Such nonlinear dynamical behavior of the KD
crystal suggests that, in the paraelectric neighborhood
Tc, where the average polarization is zero, higher ord
of the order-parameter fluctuation play an important ro
as is represented by Duffing’s highly nonlinear equatio
Along with the polarization fluctuation, electromechanic
coupling, caused by the piezoelectric effect, gives anot
source of nonlinear phenomena in the low-frequency
gion of KDP crystal near the phase transition temperatu
Tc in a drivenRLC circuit.

In conclusion, we have observed a large variety of no
linear dynamical responses of the KDP crystal near t
ferroelectric phase transition temperatureTc, including pe-
riod doubling of a fixed point, quasiperiodicity associate
with frequency locking, and period doubling of a toru
It is associated with the polarization fluctuation, given b
Duffing’s nonlinear damped-anharmonic oscillator leadin
to period doubling, and the electromechanical coupling b
tween the polarizationP and the shear strainX of the KDP
crystal, leading to quasiperiodicity. Observation of a fini
number of period doublings of a torus in the crystal su
1854
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gests that polarization fluctuation, as well as an electr
mechanical coupling due to the large atomic displaceme
of the crystal near the phase transition, plays a crucial ro
in the nonlinear dynamical behavior of the crystal. Now
it is our conjecture that torus-doubling transition to chao
can be observed frequently in most ferroelectric mate
als because they have a strong electromechanical coup
between the piezoelectric oscillation and the large pola
ization fluctuation near the phase transition.
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