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Dynamic Transition in Vortex Flow in Strongly Disordered Josephson Junction Arrays
and Superconducting Thin Films
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We study the dynamics of vortices in strongly disordered= 2 Josephson junction arrays and
superconducting films driven by a current. We find a dynamic phase transition in vortex flow at a
currentl, > I.. Below, there is plastic flow characterized by an average-velocity correlation length
scale¢, in the direction of motion, which diverges when approachipg Abovel, we find a moving
vortex phase with homogeneous flow and short range smectic order. A finite-size analysis shows that
this phase becomes asymptotically a liquid for large length scales. [S0031-9007(98)08089-2]

PACS numbers: 74.60.Ge, 74.50.+r, 74.60.Ec

The study of nonequilibrium steady states of drivensuch as the dynamics of JJA with percolation disorder
many-degrees-of-freedom systems with quenched disord§t8,19] and the plastic flow of vortices have been studied
are of importance in many condensed matter systems [1lrecently [20]. Also, there is an intrinsic interest in the
21]. Examples of this problem are the dynamics of vorticesionlinear dynamics of JJA and their nonequilibrium
in type-ll superconductors [1,2] and charge density waveproperties; see, for example, [21]. In this paper we will
[3]. For low driving forces the dynamics is dominated by show that there is a dynamic transition in driven JJA with
disorder leading to a plastic flow regime [1,2,4—6]. On thestrong positional disorder.
other hand, for very large driving forces the randomness The current flowing in the junction between two super-
should be less important and all the internal degrees of freesonducting islands in a JJA is modeled as the sum of the
dom will move more or less coherently as a whole [1,2].Josephson supercurrent and the normal current [19-21],
Recently, Koshelev and Vinokur [2] have proposed that
there is an ordered moving vortex phase. However, Gia- I,(m) = 1°(n)sind,(n) + ®y  30,(n)
marchi and Le Doussal [7] have shown that some modes of # K’ # 2mcRy Ot

static disorder are still present in the moving system, lead- R . . .
ing to a moving Bragg glass (MBG) phase [7]. In tum,wherelﬂ(n) is the critical current of the junction between

Balents, Marchetti, and Radzihovsky [8] have argued thafe Sitesn andn + u in a square latticen = (n, n,),

the driven state is a moving smectic (MS), consisting of lig-**, — %.9], Ry is the normal Etate resistance, a?)Qn) »
uid channels with transverse periodic order. Experimen-é'(n + ’_L) B .0(n) B A“(n)__ Aub(n) B Au(m) |§Wthe
tally, studies of current-voltage characteristics [10,11] and@uge invariant phase difference with,(n) = 3 X
neutron-scattering experiments [12] have found a reorderfn“a“‘)“ A - dl. In the presence of an external magnetic
ing of the vortex structure when increasing the current biadield H we haveA, X A,(m) = A,(n) — A,(n +y) +
Recently, Pardet al. [13] have found in decoration ex- Ay(n + x) — A,(n) = 27 f, f = Ha?/®,, anda is the
periments that for low magnetic fields there is a MS vortexarray lattice spacing. Here we consider a distribution of
structure while for high fields there is a MBG. Numerical critical currents Iﬁ(n) = Ip6,(m) = Ip[1 + 6(RAN —
simulation studies have also found an ordering of the vord /2)] with RAN a random uniform number if0,1]. We
tex system for high currents [1,2,14—-17]. Moetral. [14]  take periodic boundary conditions (p.b.c.) in both direc-
have found a MS phase id = 2 molecular dynamics tions in the presence of an external currépt in the y
simulations with a short-range interaction potential, whiledirection in arrays with. X L junctions. The vector po-
in [17] a MBG phase was found in a drivexl’ model tential is taken ad ,(n,7) = A?L(n) — a,(t) where in the
simulation ford = 3 and large magnetic fields. There- Landau gauget?(n) = —27 fn,, Ag(n) =0, and a,,(¢)
fore, questions such as those considering the existence andl| allow for total voltage fluctuations. With this gauge
nature of a moving phase and which effects of the disordethe p.b.c. for the phases atdn, + L,n,) = 6(n,,n,)
remain once the vortices are in motion are currently undeand 6(n,,n, + L) = 6(n,,n,) — 27 fLn,. The condi-
discussion. tion of a current flowing in they direction, Y, 7,(n) =
Most of the experimental systems mentioned above,,,125,, ,, determines the dynamics af, (¢) [22]. After
have the difficulty that there is no control of the nature ancconsidering the conservation of currer,, - I,(n) =
amount of disorder. Therefore the study of disordered’ 7,(n) — I,(n — u) = 0, we obtain the equations
Josephson junction arrays (JJA) becomes particularly
promising here, since they can be specifically fabricated A2 96(m) _ “A, - S, () @)
with controlled randomness [18]. For example, questions BT po TR

. (@
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da 1

TIM = Iexta,u,,y - E ZS,U,(H)’ (3)
where S,(n) = 6,(m)siMA,0(m) — A%(n) — a,], we
have normalized currents by, and time by r, =
2mcRyly/ Py, and we have defined the discrete Lapla-
cian AZ0(m)=6m + %) + 6(n — %) + 6(n + §) +

f(n — §) — 40(n). These same equations represent
the dynamics of a superconducting thin film (STF) after

discretization of a time-dependent London model.

One

starts with the current density as the sum of supercurrent
and normal current:

J=1UJs +Jn,
J=@[w*w-(n«p)*qf] @) -
m o 4
ody o 2 "
+ 20 % (yp - 2T A
27 al‘( (I)() )’

0 o ’.‘,eme*”"'v“e'j.

One takes the discretizationr = (n.&,n,é) = én 1

with the rule D, W(r) — +{W(n + u) — ex—isr X
A ) Dy (a) Voltage vs current for 200 X 200 Josephson
A,(m)]¥(n)}. After considering conservation of current, junction array (or a200¢ X 200¢ superconducting thin film,

and assumind¥(n)| is quenched and depends only on'STF) with field f = 1/25 (B/H,, = 27 /25 for a STF) and
disorder, one obtains the same equations as in (2) ardlsorders = 0.5. (b) &,: Average voltage correlation length

(3). Now /,(n) has to be interpreted as current densityalong the direction of the Lorentz force; inset: finite-size
normalized by Jo = 2eh|Wol?/mé = D/ (872A2¢), dependence of,,. (c) S(Q,): Intensity of the Bragg peak
time normalized byr = ¢/(47aA?), 8,(n) = |[¥(n + for smectic order.
)| ¥ (@m)|/|¥ol?, and the field density i = HE? /D, =
H/2mwH.. TheT = 0 dynamical equations (2) and (3) previous current. We obtain similar results by slowly de-
are solved with a second order Runge-Kutta algorithnereasing the current from a random vortex configuration at
with time stepAr = 0.057; and integration timd 0007, 1 = 0.8. Above a critical current of. = 0.105 (in units
after a transient of007,. The discrete Laplacian is in- 0f /) there is a nonlinear onset of voltage with a plas-
verted with a fast Fourier plus tridiagonalization algorithmtic flow of vortices. We study the time-averaged voltage
as in [20]. in the bonds parallel to the direction of the current drive:
We consider here very strong disorder wish= 0.5.  v,(n) = (d6,(n, r)/dt), which is proportional to the av-
For STF, this corresponds to an extremely dense distribierage vortex speed in the direction of the Lorentz force.
tion of pinning sites with a pinning potential with®%  We see in Fig. 2(a) that neér vortex flow is very inho-
fluctuation in amplitude in the length scale 6f while =~ mogeneous, as typical for the plastic flow regime, showing
for JJA it corresponds to 40% fluctuation in the criti- channels of flow for low currents. Forincreasing drives the
cal currents. The ground stalg, = 0 vortex configu- flow becomes more homogeneous as shown in Fig. 2(b).
ration is a vortex glass with no structure in the structuréVe characterize the inhomogeneity of the flow with the
factor (no Bragg peaks). We study a magnetic field ofcorrelation function for voltages along the direction of mo-
f = 1/25 and system sizes af = 50, 100, 150, 200. tion: C,(x) = %Zn vy(m)vy(m + x%) — (vy)?. We see
We calculate the time average of the total voltdge=  in Fig. 2(c) that the voltage correlation increases for in-
(v(1)) = (da,(1)/dt) (normalized byRyIy) as a func- creasing values of. There is a characteristic correlation
tion of I as shown in Fig. 1(a) for one sample of sizelength &, defined byC,(x) = C,(0) exp(—x/&,). This
L = 200. The error bars ofV [obtained from the sta- voltage correlation length was proposed by Bhattacharya
tistics of the time averaging af(z)] are smaller than the and Higgins [10] as a characteristic length scale for the
symbol size in Fig. 1(a) (error il ~ 107°-10"%). This  dynamics of plastic flow. We see in Fig. 1(b) that in-
suggests that the sample size is large enough to be setfreases with current and it diverges £, > L) at a cur-
averaging. The initial condition is a thermally quenchedrent/,(L). We have also analyzed the voltage correlation
vortex configuration af = 0. From this state the cur- function alongy, C,(y). In this case, there is always a
rent I is slowly increased in steps &/ = 0.01 taking fast decay ofC,(y) for any bias current; therefore above
as an initial condition the last phase configuration of the/, the voltage distributior¥/,(n) becomes homogeneous
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FIG. 2. Time-averaged voltage distribution,(n) for low _5 ‘*-.__.FL'2

currents in the plastic flow regime. The gray scale is 10 ‘ -
proportional to the voltage intensity. (&)= 0.12[, = 1.21; 10 100 1000
(b) I = 0.161, = 1.61.; (c) C,(x): correlation function of the L

average voltage along the direction of vortex motion.

FIG. 3. (a) Surface intensity plot of the structure facfgk)

of the moving vortex system for a current= 0.40/, =~ 4.
along thex direction, but it always has fluctuations along @nd L = 150. We set the central peak(0) = 0 for clarity.
they direction. This reflects the fact that for large drivesgme%{iiy;ggg(gfns'ty af (k). (c) Finite-size analysis of the
the effect of the disorder potential becomes negligible only v
along the direction of the Lorentz force, but along the trans-
verse direction it is still important [7,8]. The size depen-pectsy, < 2, while v, = 2 is the value for a liquid. We
dence off,(L) is shown in the inset of Fig. 1(b). We see obtainn, = 1.96 = 0.06 =~ 2. Therefore in the thermo-
that in the limit of largeL, I, tends to a finite value of dynamic limit vortex flow is always liquidlike in nature
I, = 0.31 in this case. This shows that in the thermody-for sufficiently large length scales, and smectic ordering
namic limit there is alynamic phase transition is only a short-range phenomenondn= 2, at least for

Above I, we study the ordering of the moving vortex strong disorder. This is consistent with renormalization

structure. In order to follow the vortex positions di- group calculations which find that a moving smectic phase
rectly, we obtain the vorticity at the plaquetie(associ- might be unstable i@ = 2 [8]. In Fig. 1(c) we show the
ated with the sitm) asb(ii) = —A, X nin{#,(n)/27]  parameter of short-range smectic ord¢p,) as a func-
with ninfx] the nearest integer of. We calculate the tion of I for a lattice size. = 200. We find that for large
time-averaged vortex structure factorsdk) = |<§ >aXx  drives S(Qy) is nearly current independent, it decreases
b(i) explik - A)|>. For currentsl < I,, S(k) has only ~when decreasing, and it vanishes when approachifg
the density peaks(k = 0) = f? and an isotropic ring- from above. This confirms the result that there is a dy-
like structure as expected for plastic flow [14—16]. Onnamic transition af, where there is an onset of anisotropic
the other hand, for > 1, there are well-defined peaks in short-range order.
S(k) as shown in the surface plot of Fig. 3(a) for= 150. The “flux flow noise” has been studied in many current-
We see that there are two strong peaks inkthdirection, ~ voltage measurements [24,25]. Here we analyze the volt-
atvectorK = +Q,§, consistent with smectic ordering in age noise response with the power spectriify) =
the direction transverse to motion [8]Q{ = 27 /a, with |+ fg dtv(t)expi27vt)|>. We find that in the plastic
a; =~ 4.5 = (v/3/2f)"/? the row spacing in a triangular lat- flow regime, very near td., the power spectrum shows
tice.] There are also small satellite peaks in the oler 1/» noise; see Fig. 4(a). On the other hand, for large
directions. The position of the peaks is better seen in thdrives! > I,, the power spectrum tends to a frequency in-
two dimensional gray scale plot of Fig. 3(b). We see thadependent value far — 0 as shown in Fig. 4(b). These
the strongest spots besidés= *=Q,y are atthe reciprocal two types of power spectra far< 7, and/ > I, have
spaceK vectors corresponding to a triangular lattice, sug-also been found in the experiments [24,25].
gesting the presence of some orientational order [23]. In In conclusion, we find a dynamic phase transition at a
Fig. 3(c) we show a finite-size analysis $fQ;) ~ L™*. current/, above the critical currenf.. This transition
For a moving smectic with quasi-long-range order one exis between two different types of liquids which differ in
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FIG. 4. Voltage power spectrumP(v), with frequencies
normalized by v, = 57— (for a STF, v, = 47 A*/c).
@1 =0.12I, =~ 1.21.. (b)T = 0.40I, =~ 4.01..

their dynamicsand the spatiotemporal nature of the flow.
Below 7, there is a plastic flow regime (“turbulent”) with
an isotropic liquid structure. The inhomogeneity of the
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length [10]. Above, there is a regime with homogeneous
flow in the direction of motion (“laminar”) and with a
structure with anisotropic short-range order.
analysis shows that moving smectic order is only a short
range phenomenon id = 2 [8]. These moving vortex

phases could be observable experimentally in Josephson

junction arrays using vortex-imaging techniques.
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vortex lattices is always destroyed on large length scales
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