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This paper provides necessary and sufficient conditions for constructing a universal quantum
computer over continuous variables. As an example, it is shown how a universal quantum computer
for the amplitudes of the electromagnetic field might be constructed using simple linear devices such
as beam splitters and phase shifters, together with squeezers and nonlinear devices such as Kerr-effect
fibers and atoms in optical cavities. Such a device could in principle perform “quantum floating
point” computations. Problems involving noise, finite precision, and error correction are discussed.
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Quantum computation has traditionally concerned itselthe continuous variables: A set of continuous quantum
with the manipulation of discrete systems such as quameperations will be termed universal for a particular set
tum bits, or “qubits” [1,2]. Many quantum variables, such of transformations if one can by a finite number of
as position and momentum or the amplitudes of electroapplications of the operations approach arbitrarily closely
magnetic fields, are continuous. Although noise and finiteo any transformation in the set.
precision make precise manipulations of continuous vari- This paper provides necessary and sufficient conditions
ables intrinsically more difficult than the manipulation of for universal quantum computation over continuous vari-
discrete variables, because of the recent developments ables for transformations that are polynomial in those
guantum error correction [3—5] and quantum teleportavariables. Such a continuous quantum computer is shown
tion [6,7] of continuous quantum variables, it is worth-to be capable in principle of performing arithmetical
while addressing the question of quantum computatiomanipulations of continuous variables in a “guantum
over continuous variables. floating point” computation. In principle, a continuous

At first it might seem that quantum computation overquantum computer could perform tasks that a discrete
continuous variables is an ill-defined concept. Firstquantum computer cannot. In practice, noise and finite
consider quantum computation over discrete variablegrecision make quantum floating point operations, like
A universal quantum computer over discrete variablesheir classical counterparts, effectively discrete. A quan-
such as qubits can be defined to be a device thaum computer that uses continuous variables cannot there-
can by local operations perform any desired unitaryfore perform a task that a discrete quantum computer
transformation over those variables [1,2,8]. More pre-cannot. However, continuous quantum computers may
cisely, a universal quantum computer applies “local’still be able to perform some tasksore efficiently
operations that effect only a few variables at a timethan their discrete counterparts. The results derived here
(such operations are called quantum logic gates): Bwpply to any collection of continuous variables, includ-
repeated application of such local operations it caring phonons, photons, Josephson junction circuits, Bose-
effect any unitary transformation over a finite numberEinstein condensates, etc. To be concrete, as results are
of those variables to any desired degree of precisiorderived they will be expressed both in terms of abstract
Now consider the continuous case. Since an arbitrargontinuous variables and in the familiar context of quadra-
unitary transformation over even a single continu-ture amplitudes of the electromagnetic field.
ous variable requires an infinite number of parameters Consider a single continuous variable corresponding
to define, it typically cannot be approximated by anyto an operatorX. Let P be the conjugate variable:
finite number of continuous quantum operations suchX, P] = i. For exampleX and P could correspond to
as, for example, the application of beam splitters, phasquadrature amplitudes of a mode of the electromagnetic
shifters, squeezers, and nonlinear devices to modes of tliield (the quadrature amplitudes are the real and imaginary
electromagnetic field. It is possible, however, to defineparts of the complex electric field). First investigate the
a notion of universal quantum computation over continuproblem of constructing Hamiltonians that correspond to
ous variables for various subclasses of transformationgrbitrary polynomials of andP. It is clearly necessary
such as those that correspond to Hamiltonians that arhat one be able to apply the HamiltoniansX and
polynomial functions of the operators corresponding toxP themselves. In the Heisenberg picture, applying
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a Hamiltonian H gives a time evolution for operators e'X, P — ¢ 'P: S “stretches”X and “squeezesP by

A = i[H, A], sothatA(r) = ¢f"A(0)e f". Accordingly, some amount. Similarly-S squeeze¥X and stretche#.
applying the HamiltoniaiX for timet takesX — X, P —  In the case of the electromagnetic fielcorresponds to

P — t, and applyingP for time ¢ takesX — X + ¢, P —  asqueezer operating in the linear regime. It can easily be
P: The HamiltoniansY and P have the effect of shifting verified that[H, S] = i(X> — P?). Looking at the alge-

the conjugate variable by a constant. In the case dfra generated frox, P, H, andS by commutation, one

the electromagnetic field, these Hamiltonians correspondees that translations, phase shifts, and squeezers allow
to linear displacements or translations of the quadraturéhe construction of any Hamiltonian that is quadraticin
amplitudes. and P, and of no Hamiltonian of higher order.

A simple geometric construction allows one to de- To construct higher order Hamiltonians, nonlinear
termine what Hamiltonian transformations can be con-operations are required. One such operation is the “Kerr”
structed by the repeated application of operations fronHamiltonian H> = (X* + P?)?, corresponding to ay*
some set. Apply the Hamiltonias for time &¢, followed ~ process in nonlinear optics. This higher order Hamil-
by B, —A, —B, each for the same time. Since tonian has the key feature that whereas commuting the
previous HamiltoniansX, P, H, andS with some poly-
nomial inX andP resulted in a polynomial with the same
in the limit that 6+ — 0, the result is the same as if or lower order, commutingd> with a polynomial inX
one had applied the HamiltoniaifA, B] for time 6:2.  and P typically increasests order. By evaluating a few
In general, if one can apply a set of Hamiltonianscommutators, e.g[H?, X] = i(X*P + PX? + 2P3)/2,
{*H;}, one can construct any Hamiltonian that is a[H?2 P] = —i(P2X + XP? + 2X%)/2, [X,[H?% S]] =
linear combination of Hamiltonians of the form p3 [P, [H?, S]] = X> one sees that the algebra gener-
*i[H;, H;], =[H;, [H;, H]], etc. [9-13], and no other ated byX, P, H, S, andH? by commutation includes all
Hamiltonians. That is, one can construct the Hamiltonianshird order polynomials ik andP. A simple inductive
in the algebra generated from the original set by commuproof now shows that one can construct Hamiltonians
tation. This key point, originally derived in the context of that are arbitrary Hermitian polynomials in any order of
quantum control and discrete quantum logic, makes if¥ andP. Suppose that one can construct any polynomial
relatively straightforward to determine the set of Hamil- of orderM or less, wheré is of degree at least 3. Then
tonians that can be constructed from simpler operations. since [P3, P"X"] = iP™"2X" '+ lower order terms,

Now apply this result to the continuous variablesand [X3, P"X"] = iP" 'X"*2+ lower order terms,
introduced above. SinckX, P] = i, the application of one can by judicious commutation &f® and P? with
the translationstX and =P for short periods of time monomials of orde/ construct any monomial of order
clearly allows the construction of any HamiltoniaX + A + 1. Since any polynomial of orde¥ + 1 can be
bP + ¢ that is linear inX and P; this is all that it constructed from monomials of ordéf + 1 and lower,
allows. To construct more complicated Hamiltonianspby applying linear operations and a single nonlinear
one must also be able to perform operations that argperation a finite number of times one can construct
higher order polynomials inX and P. Suppose now polynomials of arbitrary order iX andP to any desired
that one can apply the quadratic Hamiltonidn= (X* +  degree of accuracy. Comparison with similar results for
P%)/2. Since P = i[H, P]= X, X = i[H, X] = —P, the discrete case [14] shows that the number of operations
application of this Hamiltonian for time takesX —  required grows as a small polynomial in the order of
costX — sintP, P — costP + sintX. If X and P are the polynomial to be created, the accuracy to which that
quadrature amplitudes of a mode of the electromagnetipolynomial is to be enacted, and the time over which it is
field, thenH is just the Hamiltonian of the mode (with to be applied.
frequency w = 1) and corresponds to a phase shifter. The use of the Kerr Hamiltoniafi? was not essential:
Hamiltonians of this form can be enacted by letting theAny higher order Hamiltonian will do the trick. Note
system evolve on its own or by inserting artificial phasethat commutation of a polynomial ixX and P with X
delays. Note that since”’ is periodic with periodi /477,  and P themselves (which have order 1) always reduces
one can effectively apply-H for a time 6t by applying  the order of the polynomial by at least 1, commutation
H for atime4s7 — ot. The simple commutation relations with H# and S (which have order 2) never increases
betweenH, X, and P imply that the addition ofxH  the order, and commutation with a polynomial of order
to the set of operations that can be applied allows th& or higher typically increases the order by at least 1.
construction of Hamiltonians of the formH + bX +  Judicious commutation of, P, H, andS with an applied
cP + d. Hamiltonian of order 3 or higher therefore allows the

Suppose that in addition to translations and phaseonstruction of arbitrary Hermitian polynomials of any
shifts one can apply the quadratic HamiltonianorderinX andP.
+§ = =(XP + PX)/2. S hasthe effeck = i[S, X] = The above set of results shows that simple linear
X, P =i[S, P]=—P, i.e., applying +S takes X —  operations, together with a single nonlinear operation,

. . . . _ 2
etAStetBﬁte 1A8te iBSt __ e(AB BA)dt + 0(8t3), (1)
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allow one to construct arbitrary polynomial Hamiltonian qubits of discrete quantum information. This is compara-
transformations of a single quantum variable. Let usble to the degree of entanglement currently available using
now turn to more than one variable, e.g., the case oifon-trap quantum computers.

an interferometer in which many modes of the elec- Quantum computation over continuous variables can be
tromagnetic field interact. Suppose now that there ar¢hought of as the systematic creation and manipulation of
many variables{X;, P;} on each of which the simple qunats. Universal quantum computation for polynomial
single-variable operations described above can be petransformations of continuous variables effectively allows
formed. Now let the variables interact with each other.one to perform quantum floating point manipulations
For simplicity, we assume that we can apply interactionon those variables. For example, it is clearly pos-
Hamiltonians of the form =B;; = £(P;X; — X,P;): sible using linear operations alone to take the inputs
A more complicated interaction Hamiltonian can al- X, X, and to map them tX,, aX; + bX, + ¢. Simi-
ways be used to generate interactions of this formlarly, application of the three-variable Hamiltonian
by combining it with single-variable operations. X;X,P3; takes X; — Xi, Xo — Xo, X3 — X3 + X1 Xot:
Since X; = i[Bij, Xi] = X;, X; = ilByj, X;] = =X, That is, this operation allows one to multipk; and X,

P; = i[B;j, P;] = P;, P; = i[B;j, P;] = —P;, this op- and place the re_sult in _the “regis‘gexg. A wide \_/ariety
eration has the effect of taking; — costA; + sint4;,  of quantum floating point operations are possible. Any

Aj — costA; — sintA;, for A; = X;, Pi, A; = X, P;. polynomial transformation of the continuous variables
For the electromagnetic fieldg;; functions as a beam is clearly possible, as is any transformation that can be
splitter, linearly mixing together the two modesand j.  infinitesimally represented by a convergent power series.

By repeatedly taking commutators 8f; with polynomi- ~ Just as classical computation over continuous variables in
als in X;, P;, for differenti, it can be easily seen by the principle allows one to solve problems more rapidly than
same algebraic arguments as above that it is possible {8 Possible digitally [14], it is interesting to speculate that
build up arbitrary Hermitian polynomials ifX;, P;}. gquantum computation over continuous variables might in
This concludes the derivation of the main result;principle allow the solution of problems more rapidly than
Simple linear operations on continuous variables, togethdp possible using a “conventional,” discrete quantum com-
with any nonlinear operation and any interaction betweedputer. Continuous variable computation has its own set of
variables suffice to enact to an arbitrary degree of accuProblems that might be sped up by the application of
racy Hamiltonian operators that are arbitrary polynomialscontinuous quantum computation:  For example, such
the set of continuous variables. In the case of moded continuous quantum computer might be used to in-
of the electromagnetic field, linear operations such ayestigate continuous/P-complete problems such as the
translations, phase shifts, squeezers, and beam splittef@ur-feasibility problem, that is, the problem of deciding
combined with some nonlinear operation such as a Kerwvhether or not a real degree 4 polynomialdrvariables
nonlinearity, allow one to perform arbitrary polynomial has a zero [15]. In practice, of course, due to finite pre-
transformations on those modes. Note that in contrast tision a continuous quantum computer will effectively be
the case of qubits, in which a nonlinear coupling betweer@ble to solve the same set of problems that a conventional
qubits is required to perform universal quantum compudiscrete quantum computer can, although it may be able
tation, in the continuous case ongjingle variablenon-  to perform some operations more efficiently.
linearities are required, along with linear couplings The ability to create and manipulate qunats depends

between the variables. crucially on the strength of squeezing and of the non-
In analog with information over classical continuouslinearities that one can apply. 10 dB squeezers (6 dB af-
variables, which is measured in units of “natd’nat = ter attenuation in the measurement apparatus) currently

log, e bits), the unit of continuous quantum information exist [16]. HighQ cavity quantum electrodynamics can
will be called the “qunat.” Two continuous variables supply a strong Kerr effect in a relatively lossless context,
in the pure stately);, possess—trp;Inp; qunats of and quantum logic gates constructed for qubits could be
entanglement, where, = tr,|)1.(|. For two squeezed Used to provide the nonlinearity for continuous quantum
vacua (squeezed by an amount”) entangled using a variables as well [17]. Here the fact that only single-
beam splitter as in Refs. [5—7] the entropy so computednode nonlinearities are required for universal quantum

from the approximate Einstein-Podolsky-Rosen state i§omputation simplifies the problem of effecting continu-
given by ous quantum logic. Nonetheless, the difficulty of per-

_ _ o forming repeated nonlinear operations in a coherent and

S(p) = A+ m)In(l +7) —alniqunats  (2)  |osq free rﬁanner is likely toplimit the possibilities for
with 7 = " sinhr. For exampleg? = 10 gives 10 dB  quantum computation over the amplitudes of the electro-
of squeezing in power, corresponding to= 1.151 29.  magnetic field. Vibrational modes of ions in traps or ex-
By Eq. (2), two continuous variables entangled using aitations of a Bose-Einstein condensate might provide the
10 dB squeezer then possess 2.607 77 qunats of shardohg-lived, lossless states required for quantum computa-
continuous quantum information, equivalent to 3.762 21tion over continuous variables.
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Noise poses a difficult problem for quantum compu-
tation [18—-20], and continuous variables are more sus-
ceptible to noise than discrete variables. Since an
uncountably infinite number of things can go wrong
with a continuous variable, it might at first seem that
continuous error correction routines would require infinite
redundancy. In fact, continuous quantum error correction
routines exist and require no greater redundancy than
conventional routines [3—5]. Such routines are capable
of correcting for noise and decoherence in principle: In
practice, measurement noise, losses, and the lack of per-
fect squeezing will lead to imperfect error correction [5].
Surprisingly, continuous quantum error correction routines

are in some sense easier to enact than discrete quantum er-

ror correction routines, in that the continuous routines can
be implemented using onlinear operations together with
classical feedback [5]. The relative simplicity of such
routines suggests that robust, fault-tolerant quantum

computation may in principle be possible for continuous [9]

quantum variables as well as for qubits. (A scheme for

guantum computation is fault tolerant if quantum compu-10]

tations can be carried out even in the presence of noise
and errors [21,22]. A fault-tolerant scheme that allows for
arbitrarily long quantum computations to be carried out

R1477 (1998), showing how to perform arbitrary unitary
operators using only linear devices such as beam splitters,
though of considerable interest and potential practical
importance, does not constitute quantum computation by
the usual definition. Reclet al. and Cerfet al. propose
performing arbitrary unitary operations @hvariables not

by acting on the variables themselves but by expanding
the information in the variables into an interferometer with
0(2") arms and acting in this exponentially larger space.
Local operations on the original variables correspond to
highly nonlocal operations in this “unary” representation:
To flip a single bit requires one to act on ha(2V1)]

of the arms of the interferometer. Actually to perform
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