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This paper provides necessary and sufficient conditions for constructing a universal qu
computer over continuous variables. As an example, it is shown how a universal quantum co
for the amplitudes of the electromagnetic field might be constructed using simple linear device
as beam splitters and phase shifters, together with squeezers and nonlinear devices such as K
fibers and atoms in optical cavities. Such a device could in principle perform “quantum flo
point” computations. Problems involving noise, finite precision, and error correction are disc
[S0031-9007(99)08418-5]
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Quantum computation has traditionally concerned its
with the manipulation of discrete systems such as qu
tum bits, or “qubits” [1,2]. Many quantum variables, su
as position and momentum or the amplitudes of elec
magnetic fields, are continuous. Although noise and fin
precision make precise manipulations of continuous v
ables intrinsically more difficult than the manipulation
discrete variables, because of the recent developmen
quantum error correction [3–5] and quantum telepor
tion [6,7] of continuous quantum variables, it is wort
while addressing the question of quantum computat
over continuous variables.

At first it might seem that quantum computation ov
continuous variables is an ill-defined concept. Fi
consider quantum computation over discrete variab
A universal quantum computer over discrete variab
such as qubits can be defined to be a device
can by local operations perform any desired unita
transformation over those variables [1,2,8]. More p
cisely, a universal quantum computer applies “loc
operations that effect only a few variables at a tim
(such operations are called quantum logic gates):
repeated application of such local operations it c
effect any unitary transformation over a finite numb
of those variables to any desired degree of precis
Now consider the continuous case. Since an arbitr
unitary transformation over even a single contin
ous variable requires an infinite number of paramet
to define, it typically cannot be approximated by a
finite number of continuous quantum operations su
as, for example, the application of beam splitters, ph
shifters, squeezers, and nonlinear devices to modes o
electromagnetic field. It is possible, however, to defi
a notion of universal quantum computation over contin
ous variables for various subclasses of transformatio
such as those that correspond to Hamiltonians that
polynomial functions of the operators corresponding
0031-9007y99y82(8)y1784(4)$15.00
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the continuous variables: A set of continuous quant
operations will be termed universal for a particular s
of transformations if one can by a finite number
applications of the operations approach arbitrarily clos
to any transformation in the set.

This paper provides necessary and sufficient conditi
for universal quantum computation over continuous va
ables for transformations that are polynomial in tho
variables. Such a continuous quantum computer is sh
to be capable in principle of performing arithmetic
manipulations of continuous variables in a “quantu
floating point” computation. In principle, a continuou
quantum computer could perform tasks that a discr
quantum computer cannot. In practice, noise and fin
precision make quantum floating point operations, l
their classical counterparts, effectively discrete. A qu
tum computer that uses continuous variables cannot th
fore perform a task that a discrete quantum compu
cannot. However, continuous quantum computers m
still be able to perform some tasksmore efficiently
than their discrete counterparts. The results derived h
apply to any collection of continuous variables, inclu
ing phonons, photons, Josephson junction circuits, Bo
Einstein condensates, etc. To be concrete, as result
derived they will be expressed both in terms of abstr
continuous variables and in the familiar context of quad
ture amplitudes of the electromagnetic field.

Consider a single continuous variable correspond
to an operatorX. Let P be the conjugate variable
fX, Pg ­ i. For example,X and P could correspond to
quadrature amplitudes of a mode of the electromagn
field (the quadrature amplitudes are the real and imagin
parts of the complex electric field). First investigate t
problem of constructing Hamiltonians that correspond
arbitrary polynomials ofX andP. It is clearly necessary
that one be able to apply the Hamiltonians6X and
6P themselves. In the Heisenberg picture, apply
© 1999 The American Physical Society
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a HamiltonianH gives a time evolution for operator
ÙA ­ ifH, Ag, so thatAstd ­ eiHtAs0de2iHt. Accordingly,
applying the HamiltonianX for time t takesX ! X, P !
P 2 t, and applyingP for time t takesX ! X 1 t, P !
P: The HamiltoniansX andP have the effect of shifting
the conjugate variable by a constant. In the case
the electromagnetic field, these Hamiltonians corresp
to linear displacements or translations of the quadra
amplitudes.

A simple geometric construction allows one to d
termine what Hamiltonian transformations can be co
structed by the repeated application of operations fr
some set. Apply the HamiltonianA for time dt, followed
by B, 2A, 2B, each for the same time. Since

eiAdteiBdte2iAdte2iBdt ­ esAB2BAddt2

1 Osdt3d , (1)

in the limit that dt ! 0, the result is the same as
one had applied the HamiltonianifA, Bg for time dt2.
In general, if one can apply a set of Hamiltonia
h6Hij, one can construct any Hamiltonian that is
linear combination of Hamiltonians of the form
6ifHi , Hjg, 6fffHi , fHj , Hkgggg, etc. [9–13], and no othe
Hamiltonians. That is, one can construct the Hamiltonia
in the algebra generated from the original set by comm
tation. This key point, originally derived in the context
quantum control and discrete quantum logic, makes
relatively straightforward to determine the set of Ham
tonians that can be constructed from simpler operation

Now apply this result to the continuous variabl
introduced above. SincefX, Pg ­ i, the application of
the translations6X and 6P for short periods of time
clearly allows the construction of any HamiltonianaX 1

bP 1 c that is linear in X and P; this is all that it
allows. To construct more complicated Hamiltonia
one must also be able to perform operations that
higher order polynomials inX and P. Suppose now
that one can apply the quadratic HamiltonianH ­ sX2 1

P2dy2. Since ÙP ­ ifH, Pg ­ X, ÙX ­ ifH, Xg ­ 2P,
application of this Hamiltonian for timet takes X !
costX 2 sintP, P ! costP 1 sintX. If X and P are
quadrature amplitudes of a mode of the electromagn
field, thenH is just the Hamiltonian of the mode (wit
frequency v ­ 1) and corresponds to a phase shift
Hamiltonians of this form can be enacted by letting t
system evolve on its own or by inserting artificial pha
delays. Note that sinceeiHt is periodic with period1y4p,
one can effectively apply2H for a timedt by applying
H for a time4p 2 dt. The simple commutation relation
betweenH, X, and P imply that the addition of6H
to the set of operations that can be applied allows
construction of Hamiltonians of the formaH 1 bX 1

cP 1 d.
Suppose that in addition to translations and ph

shifts one can apply the quadratic Hamiltoni
6S ­ 6sXP 1 PXdy2. S has the effectÙX ­ ifS, Xg ­
X, ÙP ­ ifS, Pg ­ 2P, i.e., applying 1S takes X !
f
d
e

-

s
-

it

e

ic

e

e

etX, P ! e2tP: S “stretches”X and “squeezes”P by
some amount. Similarly2S squeezesX and stretchesP.
In the case of the electromagnetic field,S corresponds to
a squeezer operating in the linear regime. It can easily
verified thatfH, Sg ­ isX2 2 P2d. Looking at the alge-
bra generated fromX, P, H, andS by commutation, one
sees that translations, phase shifts, and squeezers
the construction of any Hamiltonian that is quadratic inX
andP, and of no Hamiltonian of higher order.

To construct higher order Hamiltonians, nonline
operations are required. One such operation is the “K
Hamiltonian H2 ­ sX2 1 P2d2, corresponding to ax3

process in nonlinear optics. This higher order Ham
tonian has the key feature that whereas commuting
previous Hamiltonians,X, P, H, andS with some poly-
nomial inX andP resulted in a polynomial with the sam
or lower order, commutingH2 with a polynomial inX
andP typically increasesits order. By evaluating a few
commutators, e.g.,fH2, Xg ­ isX2P 1 PX2 1 2P3dy2,
fH2, Pg ­ 2isP2X 1 XP2 1 2X3dy2, fffX, fH2, Sgggg ­
P3, fffP, fH2, Sgggg ­ X3 one sees that the algebra gen
ated byX, P, H, S, andH2 by commutation includes al
third order polynomials inX andP. A simple inductive
proof now shows that one can construct Hamiltonia
that are arbitrary Hermitian polynomials in any order
X andP. Suppose that one can construct any polynom
of orderM or less, whereM is of degree at least 3. The
since fP3, PmXng ­ iPm12Xn211 lower order terms,
and fX3, PmXng ­ iPm21Xn121 lower order terms,
one can by judicious commutation ofX3 and P3 with
monomials of orderM construct any monomial of orde
M 1 1. Since any polynomial of orderM 1 1 can be
constructed from monomials of orderM 1 1 and lower,
by applying linear operations and a single nonline
operation a finite number of times one can constr
polynomials of arbitrary order inX andP to any desired
degree of accuracy. Comparison with similar results
the discrete case [14] shows that the number of operat
required grows as a small polynomial in the order
the polynomial to be created, the accuracy to which t
polynomial is to be enacted, and the time over which i
to be applied.

The use of the Kerr HamiltonianH2 was not essential
Any higher order Hamiltonian will do the trick. Note
that commutation of a polynomial inX and P with X
and P themselves (which have order 1) always redu
the order of the polynomial by at least 1, commutati
with H and S (which have order 2) never increas
the order, and commutation with a polynomial of ord
3 or higher typically increases the order by at least
Judicious commutation ofX, P, H, andS with an applied
Hamiltonian of order 3 or higher therefore allows th
construction of arbitrary Hermitian polynomials of an
order inX andP.

The above set of results shows that simple lin
operations, together with a single nonlinear operati
1785
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allow one to construct arbitrary polynomial Hamiltonia
transformations of a single quantum variable. Let
now turn to more than one variable, e.g., the case
an interferometer in which many modes of the el
tromagnetic field interact. Suppose now that there
many variableshXi , Pij on each of which the simpl
single-variable operations described above can be
formed. Now let the variables interact with each oth
For simplicity, we assume that we can apply interact
Hamiltonians of the form 6Bij ­ 6sPiXj 2 XiPjd:
A more complicated interaction Hamiltonian can
ways be used to generate interactions of this fo
by combining it with single-variable operation
Since ÙXi ­ ifBij , Xig ­ Xj , ÙXj ­ ifBij , Xjg ­ 2Xi,
ÙPi ­ ifBij , Pig ­ Pj , ÙPj ­ ifBij , Pjg ­ 2Pi, this op-
eration has the effect of takingAi ! cos tAi 1 sin tAj,
Aj ! cos tAj 2 sin tAi , for Ai ­ Xi , Pi , Aj ­ Xj , Pj .
For the electromagnetic field,Bij functions as a beam
splitter, linearly mixing together the two modesi and j.
By repeatedly taking commutators ofBij with polynomi-
als in Xi , Pi , for different i, it can be easily seen by th
same algebraic arguments as above that it is possib
build up arbitrary Hermitian polynomials inhXi , Pij.

This concludes the derivation of the main resu
Simple linear operations on continuous variables, toge
with any nonlinear operation and any interaction betw
variables suffice to enact to an arbitrary degree of ac
racy Hamiltonian operators that are arbitrary polynom
the set of continuous variables. In the case of mo
of the electromagnetic field, linear operations such
translations, phase shifts, squeezers, and beam spli
combined with some nonlinear operation such as a K
nonlinearity, allow one to perform arbitrary polynomi
transformations on those modes. Note that in contras
the case of qubits, in which a nonlinear coupling betwe
qubits is required to perform universal quantum com
tation, in the continuous case onlysingle variablenon-
linearities are required, along with linear couplin
between the variables.

In analog with information over classical continuo
variables, which is measured in units of “nats”s1 nat ­
log2 e bitsd, the unit of continuous quantum informatio
will be called the “qunat.” Two continuous variable
in the pure statejcl12 possess2tr r1 ln r1 qunats of
entanglement, wherer1 ­ tr2jcl12kcj. For two squeezed
vacua (squeezed by an amounte2r) entangled using a
beam splitter as in Refs. [5–7] the entropy so compu
from the approximate Einstein-Podolsky-Rosen state
given by

Ss rd ­ s1 1 n̄d lns1 1 n̄d 2 n̄ ln n̄ qunats (2)

with n̄ ­ er sinhr. For example,e2r ­ 10 gives 10 dB
of squeezing in power, corresponding tor ­ 1.151 29.
By Eq. (2), two continuous variables entangled usin
10 dB squeezer then possess 2.607 77 qunats of sh
continuous quantum information, equivalent to 3.762
1786
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qubits of discrete quantum information. This is compa
ble to the degree of entanglement currently available us
ion-trap quantum computers.

Quantum computation over continuous variables can
thought of as the systematic creation and manipulation
qunats. Universal quantum computation for polynom
transformations of continuous variables effectively allow
one to perform quantum floating point manipulatio
on those variables. For example, it is clearly po
sible using linear operations alone to take the inp
X1, X2 and to map them toX1, aX1 1 bX2 1 c. Simi-
larly, application of the three-variable Hamiltonia
X1X2P3 takes X1 ! X1, X2 ! X2, X3 ! X3 1 X1X2t:
That is, this operation allows one to multiplyX1 and X2
and place the result in the “register”X3. A wide variety
of quantum floating point operations are possible. A
polynomial transformation of the continuous variabl
is clearly possible, as is any transformation that can
infinitesimally represented by a convergent power ser
Just as classical computation over continuous variable
principle allows one to solve problems more rapidly th
is possible digitally [14], it is interesting to speculate th
quantum computation over continuous variables might
principle allow the solution of problems more rapidly tha
is possible using a “conventional,” discrete quantum co
puter. Continuous variable computation has its own se
problems that might be sped up by the application
continuous quantum computation: For example, su
a continuous quantum computer might be used to
vestigate continuousNP-complete problems such as th
four-feasibility problem, that is, the problem of decidin
whether or not a real degree 4 polynomial inn variables
has a zero [15]. In practice, of course, due to finite p
cision a continuous quantum computer will effectively b
able to solve the same set of problems that a conventio
discrete quantum computer can, although it may be a
to perform some operations more efficiently.

The ability to create and manipulate qunats depe
crucially on the strength of squeezing and of the no
linearities that one can apply. 10 dB squeezers (6 dB
ter attenuation in the measurement apparatus) curre
exist [16]. HighQ cavity quantum electrodynamics ca
supply a strong Kerr effect in a relatively lossless conte
and quantum logic gates constructed for qubits could
used to provide the nonlinearity for continuous quantu
variables as well [17]. Here the fact that only singl
mode nonlinearities are required for universal quant
computation simplifies the problem of effecting contin
ous quantum logic. Nonetheless, the difficulty of pe
forming repeated nonlinear operations in a coherent
loss-free manner is likely to limit the possibilities fo
quantum computation over the amplitudes of the elect
magnetic field. Vibrational modes of ions in traps or e
citations of a Bose-Einstein condensate might provide
long-lived, lossless states required for quantum compu
tion over continuous variables.
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Noise poses a difficult problem for quantum comp
tation [18–20], and continuous variables are more s
ceptible to noise than discrete variables. Since
uncountably infinite number of things can go wro
with a continuous variable, it might at first seem th
continuous error correction routines would require infin
redundancy. In fact, continuous quantum error correc
routines exist and require no greater redundancy t
conventional routines [3–5]. Such routines are capa
of correcting for noise and decoherence in principle:
practice, measurement noise, losses, and the lack of
fect squeezing will lead to imperfect error correction [
Surprisingly, continuous quantum error correction routin
are in some sense easier to enact than discrete quantu
ror correction routines, in that the continuous routines
be implemented using onlylinear operations together with
classical feedback [5]. The relative simplicity of su
routines suggests that robust, fault-tolerant quan
computation may in principle be possible for continuo
quantum variables as well as for qubits. (A scheme
quantum computation is fault tolerant if quantum comp
tations can be carried out even in the presence of n
and errors [21,22]. A fault-tolerant scheme that allows
arbitrarily long quantum computations to be carried
is said to be robust [23].) If this is indeed the case th
quantum computation over continuous variables, des
its intrinsic difficulties, may be an experimentally viab
form of quantum information processing. Continuo
variables might be used to simulate continuous quan
systems such as quantum field theories. Even in the
sence of fault tolerance, the large bandwidths availabl
continuous quantum computation make it potentially u
ful for quantum communications and cryptography [24
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