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Finite Temperature Drude Weight of the One-Dimensional Spinl/2 Heisenberg Model
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Using the Bethe ansatz method, the zero frequency contribution (Drude weight) to the spin current
correlations is analyzed for the easy plane antiferromagnetic Heisenberg model. The Drude weight is a
monotonically decreasing function of temperature fol0att A = 1; it approaches the zero temperature
value with a power law and appears to vanish for all finite temperatures at the isavepid point.
[S0031-9007(99)08507-5]
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The low frequency dynamics in one-dimensional spining with nearest neighbor interaction using the Jordan-
chains is a long standing problem. It has recently attracte@igner transformation [12]. The direct analogy between
renewed interest, due partly to the fabrication of excellentharge and spin current correlations also suggests the
quasi-one-dimensional, spin“d magnetic materials as use of the name “Drude weight” in the context of spin
SrLCuG; and CuGe®. Detailed NMR experiments [1] correlations.
revealed an unusually high value of the spin diffusion In this Letter, we calculate the Drude weight for the
constant and nearly ballistic behavior. antiferromagnetic Heisenberg model using the procedure

The first issue on the question of spin diffusion isproposed in Refs. [8] and [9]. The formulation and
the zero frequency contribution (or Drude weight) to thenotation of the thermodynamic Bethe ansatz equations by
dynamic spin current correlations at finite temperaturesTakahashi and Suzuki [13] will be closely followed. This
If the Drude weight turns out to be finite, the currentconstruction is based on the string assumption for the
correlations do not decay to zero at long times, implyingexcitations, and it is particularly complex for arbitrary
ideal conducting behavior. If they decay to zero, thevalues of the anisotropy parameté&y. The allowed
guestion still remains open whether they decay fastype of strings are constrained by the normalizability of
enough so that transport coefficients can be definedhe wave functions [14]. Therefore, for simplicity and
Several numerical studies have been devoted to theithout loss of generality, the analysis will be limited at
analysis of the diffusive behavior in the Heisenberg modelA = coq#/v), v = integer, where only a finite number
[2—5] with suggestive, but not conclusive, results. of string excitations is allowed.

In relation to this problem, it has been proposed that The results presented here are in good agreement
the integrability of the spin-A2 Heisenberg model implies with numerical results obtained by exact diagonaliza-
pathological spin dynamics and presumably the absend®n of the Hamiltonian matrix on finite size lattices
of spin diffusion [2,6]. A straightforward demonstration [4]. They lend support to both the string construc-
on the way in which conservation laws, characterizingtion and the novel procedure for calculating the Drude
integrable systems, might affect the long time dynamicsveight from finite size corrections to the Bethe ansatz
was pointed out in Ref. [7]. There it was shown that ineigenvalues.
several quantum integrable models the uniform current The XXZ anisotropic Heisenberg Hamiltonian for a
correlations do not decay to zero at long times due tewhain of N sites with periodic boundary conditions
the overlap of the currents to conserved quantities. UnSy.; = S is given by
fortunately, this simple idea turned out to be insufficient N
for deciding on the decay of spin currents in the spi@-1 H=17 Z(Sf5f+1 + 887+ ASESEL ), (D)
Heisenberg model at zero magnetic field. i=1

On the other hand, a new method was proposed “ 4 a o ]
recently by Fujimoto and Kawakami [8] that allows WhereSi = o7, o; are the Pauli spin operators with
the direct analytical evaluation of the Drude weightCOmponents = x,y,z atsitei. The region0 = A =1
at finite temperatures. This procedure is based on th Parametrized byA = cosf, 6 = 7 /v, v = integer.
calculation of finite size corrections of the energy eigen-1ne pseudomoments, and phase shiftg, s character-

values obtained by the Bethe ansatz method [9]. Th&ing the Bethe ansatz wave functions are expressed in
analysis starts from a convenient expression for the filerms of the rapidities,

nite temperature Drude weight as the thermal average of ke, P Ox,
curvatures of energy levels in a Hamiltonian subject to COf(;) = cot<?>tank< > )

term [10,11]. Note that the anisotropic Heisenberg model cot(
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¢a,8
is equivalent to the model of spinless fermions interact- )
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For M down spins an&vV-M up spins, the energy and by introducing the functior;, g»;:
momentumk are given by _ _ ‘
M M Xy = xe + — 4+ =, (20)
E=JZ(coska—A), K=Zka. 3 o N N
= = where x4 (x%) are the rapidities for a system of size
Coupling the spin flipping term to a fictitious flug, N (). Next, we expand Eq. (9) to orders ofN and,
the Hamiltonian becomes in the thermodynamic limit, introduce the densities of
excitationsp; and hole densitiep;. The sums over the
=J Z <§ e'?oi o, +h C) +ASIST (4) pseudomomjenta are replaced bi/ integrals over excitation

i=1 " . .
The finite temperature Drude weigh can then be densities plus boundary terms using the Euler-Maclaurin

formula.
calculated by [11] To O(1) we recover the integral equations for the
p-Ll > 1 32En(2¢) (5)  excitation densities in the thermodynamic limit [13]
n 9 aqs ¢—>0’
whereE, are the eigenvalues of the Hamiltonian amd aj = Ai(pj + p) + D Tjx © pi. (11)
are the corresponding Boltzmann weights. By imposing k
periodic boundary conditions on the Bethe ansatz wave denotes the convolutiona o b(x) = ffia(x —
functions, the following relations are obtained: Vb(y)dy, Tj(x) = (1/27)d0Ojx(x)/dx, and a;(x) =
[Sihh%@(xa + i)]N (1/277)dtj()g)/dx. ‘The sum ovelk is constrained to the
TV allowed strings, given in our case by Egs. (7) and (8) and
sinh360(x, — i)

Aj=1,j=1,...,v — l,andA, = —1.

— _idN l—[ sinh5 H(Xa xg t+ 2i) To 0(1/N),
sinh3 G(xa — xg — 2i) nj
o = 1,2,...,M. (6) Ajgijlpj + p}) ZTk ° (g1kpx) + 2—- (12)
In the thermodynamic limit, the solutions of Egs. (6) 2
X X s To O(1/N?),
are grouped into strings of order;, j = 1,...,» and | d
parity v; = + or —. Foré = = /v the aIIov_ved strings )\jgzj(ijerh) + ZTjk o (gupr) = — —
are ofordem; = j, j = 1,...,» — 1 and parityv; = + k 2 dx
of the form
Xt + p) + S Ty o (g2
IR I oI N i81i(pj + pj) % ik © (ghpe)
k=1,2,....n, 0 + boundary terms (13)
and strings of ordern, = 1 and parityv, = — of the Minimizing the free energy we obtain the standard
form Bethe ansatz equations for the equilibrium densitjgs=

h _ .
Xao = Xa + iv + 0(e™V), 5>0. © P /pj at temperaturd (B = 1/«kpT):

By multiplying the terms in Eq. (6) corresponding to N7 = —2vsin(z/v)Ja;B + Z)‘kTJk oln(l + n; "),
different members of a string and taking the logarithm, (14)

we obtain . i .
These relations define the temperature dependent effective

Ni;(xl) =27l + Z Z 0 (x) — x’é) + n;¢N, dis_persionszj = (1_/,8)_In(pj’~’/pj). In the string represen-
k=1 B=1 (9) tation the energy is given by

o= 12 M. E=N§ [ af 2vsi( )i ot as)

Expanding this expression for the energy we find that
ti(x) = f(x;nj,v;), the first order correction in/N vanishes. Therefore, the
_ . . L ' second derivative with respect tb of the second order
Ok () = fOxilnj = melvjvi) + fOen; + nivjvi) correction gives us the final expression for the Drude
min(n;,n;)—1 Welght

+ 2 Z fleln; — ngl + 2i,vivy), +o0 _
! ! D = % Zf dx|:(l?j ) gdl)j:| d (1 T lﬁe,>
flx;n,v) = 2utan” 1{[Cot(n77/21/)]” tanh(mx/2v)}. j 7 ¢

Following Ref. [9], the finite size corrections to the « 1 ﬁ (16)
energy eigenvalues for a system of si¥eare calculated pj + p;l dx |

1% are integers (or half-integers) aii, is the number of
strings of typek,
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This expression is formally similar to the one obtained
in Ref. [8] for the Drude weight in the Hubbard model.

It has an elegant interpretation by comparing it to the
analogous expression for independent fermions. Taking
the second derivative of the free energy with respect tc
the flux ¢, we find

9°F d%e deu\?
fg = Sw gk — S0 <n,L>>(a—<;‘) ,
17)
where (n,) is the Fermi-Dirac distribution for particles
with dispersione,. Considering that the left-hand side
(the persistent current susceptibility) vanishes in the
thermodynamic limit for any finite temperature and that
the first term in the right-hand side is equal2¥D, we
find that

~ B _ den)’
D=3 St - e (55)

Rewriting Eqg. (16), we arrive at a similar expression:

0.15 |

D(T)

FIG. 1. D(A) evaluated at the pointg = 3,...,16 and vari-
(18)  ous temperatures. The continuous line is the high temperature
proportionality constanC;; = D/B. The diamondg¢) indi-
cate exact diagonalization results from Ref. [4].

_ 1 - h involved in the whole Bethe ansatz procedure for calculat-
b=3 ’8; f—oc dx(pj + pj)np (1 = (n;)) ing thermodynamic properties and finite size corrections.
de; ag1;\2 The next observation is that the D_rude weight ap-
<§ 8¢> (19)  proaches the zero temperature value with a power law of
with (n;) = 1/(1 + eP<). Therefore, the Bethe ansatz the form
expression for the Drude weight resembles that of inde- D(T) = D(T = 0) — constx T¢, o = 2 '
pendent fermionlike excitations. v —1
To obtain the distributiong;, p/ and aagd')-’, the coupled (20)
integral equations (11), (12), and (14) are numericallyro indicate this point, in Fig. 2D(T = 0) — D(T) is
solved by iteration. _ shown forr = 3,...,6 in a logarithmic plot along with
In Fig. 1, D is shown as a function ah for 2 = v = |ines of slopea. Note that the exponent is half that

16 (0 = A < 0.98) and different characteristic tempera- for the low temperature spin susceptibility as obtained by
tures. The main result is that the Drude weightis  Apelian bosonization [16]. It is also consistent with the
a monotonically decreasing function df and tempera- yajuea = 2 for free fermions ¢ = 2).

ture. AtT =0, D = %2'?57”,/2)) [15]. Most interest- The results presented above concern only the zero
ingly, D seems to vanish at all temperatures for= 1.  frequency contribution to the spin current correlations. A
This result excludes an ideal conducting behavior for the
isotropic Heisenberg model. Still, an anomalously slow
long time decay of the current correlation functions could
lead to pathological low frequency dynamics and nondif-

fusive behavior. Furthermore, the vanishing of the Drude | *
weight at the isotropic point suggests that it remains zerc '* | 6
at all temperatures in the regidn > 1, the easy axis case 5

(or insulating state in the fermionic model). This conclu-
sion is in accord with the numerical results of Ref. [2].
We should note that numerical investigation close to thek
isotropic point is somewhat difficult since the number of
equations to solve diverges.

In the high temperature limitd — 0), D is propor-
tional to 8. The constant of proportionalit¢;;, equal to
the long time asymptotic value of the current correlations
[7], is compared with the results obtained in Ref. [4] by 10° pres ppes o
exact diagonalization of the Hamiltonian on finite size lat- T
tices extrapolated to the infinite size limit. The quantita-FiG. 2. D(T = 0) — D(T) at different temperatureso§) in
tive agreement obtained lends support to the assumptiorslogarithmic scale. The lines indicate slopes= 2/(v — 1).

10°
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reliable method for studying tHew frequencybehavior in [6] B.M. McCoy, Statistical Mechanics and Field Theory,
integrable quantum many body systems (and the influence Proceedings of the Seventh Summer Physics School
of nonintegrable perturbations) remains a challenging  (World Scientific, Singapore, 1995).
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