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Model of Surface Instabilities Induced by Stress
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We propose a model based on a Ginzburg-Landau approach to study a strain relief mechanism
at a free interface of a nonhydrostatically stressed solid, commonly observed in thin-film growth.
The evolving instability, known as the Grinfeld instability, is studied numerically in two and three
dimensions. Inherent in the description is the proper treatment of nonlinearities. We find that these
nonlinearities can lead to competitive coarsening of interfacial structures, corresponding to different
wave numbers, as strain is relieved. We suggest ways to experimentally measure this coarsening
[S0031-9007(99)08572-5]

PACS numbers: 68.55.–a, 64.60.My
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Elastic effects can strongly influence the morpholo
of materials, and hence influence material propert
If nonequilibrium elastic energies build up, there a
different ways for solids to release that energy. One is
plastic deformation, involving dislocations, and anothe
by elastic deformation, which is commonly seen in th
film growth. A nonhydrostatically strained solid which
in contact with its own melt or vapor can partially relea
its elastic energy by a morphological instability at t
interface. This strain relief mechanism gives rise to w
appears to be a buckling of the surface into trenches
islands, of a particular spacing. It was first predicted
Asaro and Tiller [1]. Experimentally, it has been o
served and studied by Torii and Balibar [2] who strain
He4 crystals nonhydrostatically as well by Berréh
et al. [3] in polymer crystals. Furthermore, it is ofte
associated with the dislocation-free Stranski-Krastan
growth mode (also called island-on-layer mode)
epitaxially grown thin films as being observed for GeySi
[4], InGaAsyGaAs [5], and InGaAsyInP [6]. Since the
independent rediscovery of the instability by Grinfeld [
and Srolovitz [8], it is often referred to as the Grinfe
instability.

Several approaches have been employed to study
instability. They are based either on static energy m
mization calculations by a variational principle [7] o
on a dynamical interface equation which describes m
transport, mainly surface diffusion, under the influence
the chemical potential which comprises surface free
ergy and elastic energy [8–14]. Linear stability analy
[8,10,11] predicts conditions for the onset of instabilit
Spencer and Meiron [13], and Yang and Srolovitz [1
studied the nonlinear evolution numerically, whereby t
surface profile evolved to smooth flat peaks with sh
deep grooves. The numerical studies have been lim
to dimensiond ­ 2: Within the interface formulation,
sharp cusps form within the grooves, leading to numer
stability problems [13] in this regime, where the interfa
formulation is potentially inapplicable. To make conne
tion to the experiments, one requires a model which co
6 0031-9007y99y82(8)y1736(4)$15.00
.
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prises a full nonlinear description, and which can be u
in three dimensions.

In this paper, we present a Ginzburg-Landau pha
field model of the phenomena. An order parameter fi
fs$rd determines whether one is in a hard solid pha
which supports shear, or a soft disordered phase, h
after called the liquid phase, which does not. The po
tion of the interface coincides with the rapid variation
this field. Such an approach has been applied success
to other moving-boundary-value problems, such as ph
segregation and crystal growth [15]. Indeed, our mode
numerically robust, can be implemented in three dim
sions, and is readily generalizable. We show below
we recover the Grinfeld instability in linear and high
nonlinear regimes. We furthermore probe the trans
dynamics during the morphological instability, findin
that competitive coarsening of interface structures ta
place. We suggest ways to measure this experimenta

The physical mechanism for the stress-driven morp
logical instability can be understood easily. A stress
solid can partially relieve its stress by differentially mo
ing material from valleys to hills, buckling at a particul
wave number. In the less constrained peaks, lateral rel
tion occurs, unlike in the more constrained valleys. T
resulting stress gradient drives the instability by creat
deeper valleys, thereby increasing the stress gradient
sustaining the growth of the perturbation. At sufficien
small length scales, capillarity prevents the formation
sharp cusps.

The model we propose is based on a Ginzburg-Lan
approach in which the elastic strain is a subsidi
tensor variable coupled to a nonconserved scalar o
parameter. This approach is related to that of Onuki [1
Onuki and Nishimori [17], and Sagui, Somoza, and De
[18], which was used to analyze elastic effects in pha
separating alloys [19]. The coarse-grained Ginzbu
Landau free energy is

F sf, uijd ­
Z

$r

"
fsf, uijd 1

l2

2
j=fj2

#
, (1)
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where integration over$r is indicated by the subscript o
the integral,uij ­

1
2 s≠uiy≠xj 1 ≠ujy≠xid is the strain,

and ui is the displacement field. The bulk free ener
densityfsf, uijd is given by

fsf, uijd ­
1
a

f2sf2 2 1d2 1
´2

2k
g2sfd

1 ´gsfd= ? $u 1 felsf, uijd , (2)

where the first term describes a three-well potential w
f ­ 0 being the liquid andf ­ 61 being the solid
phase, ensuring that the liquid-solid phase transition
first order. The potential depths are determined by
model parametera which, together with the parameterl
being proportional to the surface tension, determines
interfacial thickness. The second term shifts the energ
that, for constant elastic coefficients, solid and liquid a
at coexistence. The convenient choicegsfd ­

1
2 f2 2

1
4 f4 guarantees [15] that both bulk phases keep th
equilibrium valuesf ­ 0 (liquid) and f ­ 61 (solid).
The coupling constant́ is related to the externally
applied stress. The trace of the strain tensor is= ? $u, and
felsf, uijd is the isotropic elastic free energy [20]:

felsf, uijd ­
k

2
s= ? $ud2 1 gsfdm

3
X
ij

µ
uij 2

dij

d
= ? $u

∂2

, (3)

wherek is the compressibility andm is the shear modulus
in the solid phase alone. By construction, the sh
modulus in the soft liquid phase is zero, whereas it st
nonzero and constant in the hard solid phase. Since
solid phase supports shear, whereas the liquid phase
not, our phase-field order parameter has a transpa
meaning in the context of the liquid-solid transition.

It is reasonable to suppose that the elastic field rela
much faster thanf. The elastic field can then be solved
terms of the order parameter using the condition of lo
mechanical equilibrium:dF ydui ­ =jsij ­ 0, where a
summation convention over repeated indices is impli
The stress tensor,sij ­ dF yduij, is then given by

sij ­ sss´gsfd 1 k= ? $uddddij 1 2mgsfd

3

µ
uij 2

dij

d
= ? $u

∂
. (4)

The solution of this to first order in the shear modulus

= ? $u ­ TrA 2
´

k
gs$rd 1 2m

e

k2

Z
$r 0

Z
$r 00

Gs$r , $r 0d=0
i=

0
j

3 fgs$r 0dMijs$r 0, $r 00dgs$r 00dg , (5)

wheregs$rd ­ gsssfs$rdddd,

=iuj ­ Aij 2 seykd=i=j

Z
$r 0

Gs$r, $r 0dgs$r 0d , (6)
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=2Gs$r , $r 0d ­ ds$r 2 $r 0d, andMijs$r, $r 0d ­ =i=jGs$r , $r 0d 2

sdijyddds$r 2 $r 0d. In the absence of external strai
that is Aij ­ 0, the solid will be stressed, whereas t
liquid is stress-free. For a flat surfacef ­ fsyd, the
solution of Eq. (6) in two dimensions isuxx ­ uxy ­ 0
and uyysyd ­ 2s´ykdgsyd. Therefore, the solid will be
uniaxially strained with́ determining the strength of tha
strain.

The elastic field can now be expressed in terms of
order parameter. Substituting the solution for the str
field gives the free energy in terms off alone. The long-
range character of the elastic field appears throughM.
Assuming relaxational dynamics, the equation of mot
is given by

≠f

≠t
­ 2G

dF

df

­ 2G

"
f 0sfd

a
2 l2=2f 1 m

´2

k2 g0sfdhsfd

#
,

(7)

with G being the mobility and

hsfd ­ 2
Z

$r 0

Z
$r 00

fGs$r , $r 0d=0
i=

0
jMijs$r 0, $r 00d

1 Mijs$r , $r 0dMijs$r 0, $r 00dggs$r 0dgs$r 00d .

(8)

Rescaling length and time scales$r ! $ryl, wherel is
a characteristic length scale, such as the wavelengt
the perturbation,t ! tGyl2, rescales the parameters
b ­ l2ya, e ­ l

p
ayl and c ­ ma´2yk2. We obtain

an equation of motion

≠f

≠t
­ 2bf f 0sfd 2 e2=2f 1 cg0sfdhsfdg , (9)

with three parametersb, e, and c giving the mobility,
capillarity, and shear strength, respectively.

Numerical simulations on a discrete lattice were p
formed in two and three dimensions. Euler’s method w
used for the integration in time. The Green function w
solved in Fourier space. For all simulations presen
here, the mesh sizeDx ­ 0.01 or 0.005, the time step
Dt ­ 0.1 or 0.05, b ­ 1.0, and e ­ 0.01. This choice
of Dx and e guarantees that the surface is resolved
at least eight points. The parameter set (Lx, Ly, Lz , Y0,
c) will be specified below, whereY0 gives the initial am-
plitude of the surface. Length scales will be measured
units ofDx. Periodic boundary conditions were employ
in all directions. Thus, the solid was in contact with
liquid phase at the bottom and at the top. It was ensu
that the solid was sufficiently thick so that the interfac
at the top and bottom acted independently.

A numerical linear stability analysis was performe
in two dimensions. The system was prepared with
small amplitude sinusoidal surface profileY sx, t ­ 0d ­
Y0 sinsqxd, whereq is the wave number, and its subseque
1737
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FIG. 1. Early-time amplitude of growing modev plotted as
vyq vs wave numberq to show that the dispersion relatio
is consistent withv ­ Aq 2 Bq2 (Lx ­ Ly ­ 256, c ­ 6.2,
Y0 ­ 4, 1000 time steps). Lower inset:v vs q. Upper inset:
Time evolution of a configuration in two dimensions samp
every 200 time steps (Lx ­ Ly ­ 512, Y0 ­ 12.1, q ­ 4yLx ,
c ­ 6.2, 2000 time steps). Linear theory describes only
initial stages of the instability before asymmetry becom
apparent.

evolution was monitored. We found that the growth
the amplitude of the Fourier modes was initially ind
pendent and exponential, obeying expfvsqdtg, followed
by slower constant velocity growth. The fitted dispe
sion vsqd is consistent withv ­ Aq 2 Bq2, whereA ø
28.2 and B ø 1 (see Fig. 1). Perturbations with a wa
number larger than a critical wave number are sta
lized by surface tension, whereas wave numbers sm
than the critical wave number are unstable, therefore
ing a long wavelength instability. The flat interfac
however, is stable. This agrees with the linear sta
ity analysis carried out by Srolovitz [8] for the ca
where evaporation-condensation is the material trans
mechanism, which is appropriate for our model. W
have done a multiple-scale analysis to obtain the eq
tions corresponding to the sharp-interface limit of o
continuous field model [21]. The coefficients we o
tain numerically for linear stability are the same, with
our numerical accuracy, as those we obtain analyticall

Linear stability analysis predicts only the condition
the onset of instability. To study the later-stage morph
ogy, a complete nonlinear description has to be emplo
One advantage of the phase-field description is that n
linearities are taken into account implicitly. A typical s
of configurations is shown in Fig. 1. The nonlinear
fect gives rise to a clear asymmetry between peaks
valleys, wherein deep grooves appear in the valleys. T
behavior has been observed experimentally, as well a
previous theoretical studies [9,12–14]. Unlike previo
studies, no numerical instabilities limit the study of the fo
mation of the grooves here. However, we have not m
a detailed investigation of regimes where grooves are
1738
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dominant. We expect that other phenomena not includ
in our model, such as the nucleation of dislocations, co
become important there. It is interesting to note that
the early stages of the instability we can fit the interfac
profile with a simple functionK ­

P
i aistdYi, where the

curvatureK ­ Y 00sxdyf1 1 Y 0sxd2g3y2 is a low-order poly-
nomial function of the heightY sxd of the interface.

Experimentally, random fluctuations in the interfac
will give rise to the competitive growth of differen
structures corresponding to different wave numbers.
study this, we prepared the system with an interfac
profile consisting of a superposition ofp linearly unstable
modes, Y sxd ­ Y0

Pp
i­1 cossqix 1 fid with qi , qc

and f being a uniformly distributed random variable i
the intervalf0, 2pg. We did 100 runs over 500 time step
of a two-dimensional system with 100 unstable mod
where sLx , Ly , Lz , Y0, cd ­ s1024, 512, 0, 0.24, 12.3d.
Figure 2 shows the Fourier transform of the equal-tim
height-height correlation function, which we shall call th
structure factorSsq, td. For early times, there is a stron
similarity between this behavior and early-stage spino
decomposition in long-range force systems [22]; we sh
the results of a linear Cahn-Hilliard-type theory of th
modes in the figure as well. Note that the structure fac
vanishes forq ! 0 due to elasticity, not a conservatio
law. For later times, when the linear theory no long
describes the data, coarsening is evident: The location
the peak of the structure factorqmaxstd moves to smaller
wave numbers, as the peak height increases and sharp
The peak height followsSsqmax, td , ta11, wherea ø 2,
while the peak width sharpens with time asw , t2g ,
where g ø 0.5. The former dependence is due to th
total interface length increasing linearly with time for an
unstable wave number. The latter dependence is du
competitive ordering between different wave numbe

0.0 0.6
q

0.0

300.0

S
(q

,t)

FIG. 2. Structure factor at equal time intervals. Solid lin
show the structure factor derived from a linear Cahn-Hilliar
type theory, which only describes the data for early times. F
later times, the structure factor is consistent with scaling,
shown in the inset.
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FIG. 3. Typical configuration in three dimensions after 1
time steps, during the coarsening regime (Lx ­ Ly ­ Lz ­
128, Y0 ­ 1, c ­ 18.5).

analogous to phase ordering. Within the accuracy
our study, we find that the structure factor shows sc
invariance:Ssq, tdySsqmax, td ­ Spsqpd, where the scaled
wave numberqp ­ sq 2 qmaxdyw (see Fig. 2). Fitting
to Sp , sqpdd andSp , s1yqpdc , for small and largeqp,
respectively, givesd , 1 2 andc , 5 6.

Although these results were obtained in two dime
sions, we expect qualitatively similar results in three
mensions. To show this, we simulated a system w
Lx ­ Ly ­ Lz ­ 128, with z being the direction norma
to the surface. Starting with a small amplitude sinusoi
perturbation inx, trenches with sharp deep grooves for
while a small amplitude sinusoidal perturbation in thex
and y directions resulted in islands. The instability
qualitatively the same as in two dimensions. Starting w
a superposition of unstable modes, coarsening was a
observed. Figure 3 shows the interfacial profile wh
coarsening is taking place. We expect that our results
transient coarsening phenomena can be observed thr
microscopy or by x-ray diffraction [23].

In conclusion, our model recovers the main features
the Grinfeld instability. Our description can be eas
extended. Anisotropic effects can be included throu
the surface tension, the elastic coefficients, or the exte
stress. The effect of phase separation or of impurities
be studied by coupling an additional field to the phase fie
Instead of evaporation-condensation, surface diffusion
be chosen as the material transport mechanism, and
addition, the influence of a constant flux can be studi
Finally, we note that in some cases the stress field at
groove tip can become so high that dislocations can
nucleated [5,24]. To study this, we are presently extend
our model by coupling the phase field to a dislocati
density field.
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