VOLUME 82, NUMBER 8 PHYSICAL REVIEW LETTERS 22 EBRUARY 1999

Model of Surface Instabilities Induced by Stress
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We propose a model based on a Ginzburg-Landau approach to study a strain relief mechanism
at a free interface of a nonhydrostatically stressed solid, commonly observed in thin-film growth.
The evolving instability, known as the Grinfeld instability, is studied numerically in two and three
dimensions. Inherent in the description is the proper treatment of nonlinearities. We find that these
nonlinearities can lead to competitive coarsening of interfacial structures, corresponding to different
wave numbers, as strain is relieved. We suggest ways to experimentally measure this coarsening.
[S0031-9007(99)08572-5]
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Elastic effects can strongly influence the morphologyprises a full nonlinear description, and which can be used
of materials, and hence influence material propertiesn three dimensions.
If nonequilibrium elastic energies build up, there are In this paper, we present a Ginzburg-Landau phase-
different ways for solids to release that energy. One is byield model of the phenomena. An order parameter field
plastic deformation, involving dislocations, and another is¢ () determines whether one is in a hard solid phase,
by elastic deformation, which is commonly seen in thin-which supports shear, or a soft disordered phase, here-
film growth. A nonhydrostatically strained solid which is after called the liquid phase, which does not. The posi-
in contact with its own melt or vapor can partially releasetion of the interface coincides with the rapid variation of
its elastic energy by a morphological instability at thethis field. Such an approach has been applied successfully
interface. This strain relief mechanism gives rise to whato other moving-boundary-value problems, such as phase
appears to be a buckling of the surface into trenches, aegregation and crystal growth [15]. Indeed, our model is
islands, of a particular spacing. It was first predicted bynumerically robust, can be implemented in three dimen-
Asaro and Tiller [1]. Experimentally, it has been ob- sions, and is readily generalizable. We show below that
served and studied by Torii and Balibar [2] who strainedwe recover the Grinfeld instability in linear and highly
He' crystals nonhydrostatically as well by Berréharnonlinear regimes. We furthermore probe the transient
et al.[3] in polymer crystals. Furthermore, it is often dynamics during the morphological instability, finding
associated with the dislocation-free Stranski-Krastanothat competitive coarsening of interface structures takes
growth mode (also called island-on-layer mode) ofplace. We suggest ways to measure this experimentally.
epitaxially grown thin films as being observed for (& The physical mechanism for the stress-driven morpho-
[4], InGaAs/GaAs [5], and InGaAdnP [6]. Since the logical instability can be understood easily. A stressed
independent rediscovery of the instability by Grinfeld [7] solid can partially relieve its stress by differentially mov-
and Srolovitz [8], it is often referred to as the Grinfeld ing material from valleys to hills, buckling at a particular
instability. wave number. In the less constrained peaks, lateral relaxa-

Several approaches have been employed to study th®n occurs, unlike in the more constrained valleys. The
instability. They are based either on static energy minitesulting stress gradient drives the instability by creating
mization calculations by a variational principle [7] or deeper valleys, thereby increasing the stress gradient, and
on a dynamical interface equation which describes massustaining the growth of the perturbation. At sufficiently
transport, mainly surface diffusion, under the influence osmall length scales, capillarity prevents the formation of
the chemical potential which comprises surface free ensharp cusps.
ergy and elastic energy [8—14]. Linear stability analysis The model we propose is based on a Ginzburg-Landau
[8,10,11] predicts conditions for the onset of instability. approach in which the elastic strain is a subsidiary
Spencer and Meiron [13], and Yang and Srolovitz [14]tensor variable coupled to a nonconserved scalar order
studied the nonlinear evolution numerically, whereby theparameter. This approach is related to that of Onuki [16],
surface profile evolved to smooth flat peaks with shargOnuki and Nishimori [17], and Sagui, Somoza, and Desai
deep grooves. The numerical studies have been limitefl 8], which was used to analyze elastic effects in phase-
to dimensiond = 2: Within the interface formulation, separating alloys [19]. The coarse-grained Ginzburg-
sharp cusps form within the grooves, leading to numericalandau free energy is
stability problems [13] in this regime, where the interface P2
fprmulatlon is po_tentlally mapphcgble. To make connec- Fldb,uij) = [[f(d)ﬂq) + = |V¢|2] 1)
tion to the experiments, one requires a model which com- P 2

1736 0031-900799/82(8)/1736(4)$15.00 © 1999 The American Physical Society



VOLUME 82, NUMBER 8 PHYSICAL REVIEW LETTERS 22 EBRUARY 1999

where integration over is indicated by the subscript on V2G(#,7') = §(F — #), andM;;(F,7') = V;V;G(F,F') —
the integral,u;; = %(aui/axj + du;/dx;) is the strain, (8;;/d)8(F — 7). In the absence of external strain,
and u; is the displacement field. The bulk free energythat is A;; = 0, the solid will be stressed, whereas the

densityf (¢, u;;) is given by liquid is stress-free. For a flat surfack = ¢(y), the
. 5 solution of Eq. (6) in two dimensions ig,, = u,, =0

) = — X2 — 1) + & 2 and uy,,(y) = —(e/k)g(y). Therefore, the solid will be

F($,ui) a ¢ (¢ ) 2« & () uniaxially strained withe determining the strength of that

+ Vit fould,u), 2y  strain.
eg(@IV - it + fuld.uij) @ The elastic field can now be expressed in terms of the

where the first term describes a three-well potential withorder parameter. Substituting the solution for the strain
¢ = 0 being the liquid and¢ = =1 being the solid field gives the free energy in terms ¢falone. The long-
phase, ensuring that the liquid-solid phase transition isange character of the elastic field appears throMgh
first order. The potential depths are determined by thé\ssuming relaxational dynamics, the equation of motion
model parametes which, together with the parametér is given by
being proportional to the surface tension, determines the 96 SF
interfacial thickness. The second term shifts the energyso — = —T' —-
that, for constant elastic coefficients, solid antlj liquid are ot 5¢

. . . o 2 / 2
allt cioemstence. The convenient choiggp) = 5 ¢ . _ —F[f () PV + 8—28/(05)}1((15)]
7 ¢ guarantees [15] that both bulk phases keep their a K
equilibrium values¢ = 0 (liquid) and ¢ = =1 (solid). 7)
The coupling constant is related to the externally ) .
applied stress. The trace of the strain tensdr isiz, and  With I" being the mobility and

(b, u;;) is the isotropic elastic free energy [20]:
et P o (20 wor=2 [ [ 166w,

+ M (R M (FL ) g (Fg (7).
Sij < .V (8)
X u;i ——V-ul, 3)
(o %59

Rescaling length and time scalés— 7/A, whereA is

wherex is the compressibility ang is the shear modulus a characteristic length scale, such as the wavelength of
b y the perturbations — ¢I'/A?, rescales the parameters to

in the solid phase alone. By construction, the shear, ", . T 2 ]
modulus in the soft liquid phase is zero, whereas it staygnta /:Je{tciléneof_ni(\)/tiao/r? andc = pae?/k*. We obtain
nonzero and constant in the hard solid phase. Since the 9
solid phase supports shear, whereas the liquid phase does d¢ _ , 2 /
not, our phase-field order parameter has a transparent g; BLf'(¢) — € V=g + cg'(d)h(¢)],  (9)
meaning in the context of the liquid-solid transition.

It is reasonable to suppose that the elastic field relax

much faster thawp. The elastic field can then be solved in : . . ) .
Numerical simulations on a discrete lattice were per-

terms of the order parameter using the condition of Ioca}ormed in two and three dimensions. Euler’s method was

mechanical equilibriumé F/éu; = V;o;; = 0, where a : L .
summation convention over repeated indices is implicit.used for the integration in time. The Green function was

o il : solved in Fourier space. For all simulations presented
The stress tensow;;; = 8.F/6u;;, is then given by here, the mesh sizAx = 0.01 or 0.005, the time step

faldoug) = 5 (V- i) + g()p

e‘é’ith three parameter®@, e, and ¢ giving the mobility,
Capillarity, and shear strength, respectively.

o = (sg(p) + kV - )d;; + 2ug(p) Ar = 0.1 or0.05, 8 = 1.0, ande = 0.01. T_his choice
5. of Ax and e guarantees that the surface is resolved by
% (“ij — % V- ﬁ) (4) atleast eight points. The parameter se,(L,, L., Yo,

¢) will be specified below, wher&, gives the initial am-
The solution of this to first order in the shear modulus is Plitude of the surface. Length scales will be measured in
units of Ax. Periodic boundary conditions were employed
- e - € > - in all directions. Thus, the solid was in contact with its
V-u= TrA — — +2u — ,FHVIV. C ’
" K 8(7) g f;, /;,, G, VIV, liquid phase at the bottom and at the top. It was ensured

X [¢(F )M (7, F") g (7" that the solid was sufficiently thick so that the interfaces
Lo (M (7, 7)g (), ®) at the top and bottom acted independently.
whereg(r) = g(¢ (7)), A numerical linear stability analysis was performed

in two dimensions. The system was prepared with a

Viu; = A;; — V.V, f GG e (7). 6 sma_tll amplitude si_nusoidal surface proﬂﬂ’é)g,t =0) =
" i~ (/Y] 2 (7 )g (7). (6) Y, sin(gx), whereg is the wave number, and its subsequent
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30 dominant. We expect that other phenomena not included
in our model, such as the nucleation of dislocations, could
become important there. It is interesting to note that in
the early stages of the instability we can fit the interfacial
profile with a simple functiork = Y'; a,(1)Y’, where the
curvaturekK = Y”(x)/[1 + Y'(x)*]/%is a low-order poly-
nomial function of the height(x) of the interface.
Experimentally, random fluctuations in the interface
will give rise to the competitive growth of different
structures corresponding to different wave numbers. To
study this, we prepared the system with an interfacial
profile consisting of a superposition pflinearly unstable
modes, Y(x) = Yo >+, codgix + ¢;) with ¢; < g,

20
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q and ¢ being a uniformly distributed random variable in
20 o 1 20 20 2 theintervall0,277]. We did 100 runs over 500 time steps
q of a two-dimensional system with 100 unstable modes,

FIG. 1. Early-time amplitude of growing mode plotted as where  (Ly, Ly, Lz, Yo, c) = (1024, 512, 0, 0.24, 12.3).
w/q' VS wave numberg to show that the dispersion relation Figure 2 shows the Fourier transform of the equal-time

is consistent withw = Aq — Bg® (L, = L, = 256, ¢ = 6.2, height-height correlation function, which we shall call the
Yo = 4, 1000 time steps). Lower insei vs g. Upper inset:  structure factoS(g, 7). For early times, there is a strong
Time evolution of a configuration in two dimensions sampledsimilarity between this behavior and early-stage spinodal
SVEr)é gogotggetiﬁzpié :) L'VL; e5 alr-Z'tr{é)oT ljéls'cﬁbzes% Im, hedecomposition in long-range force systems [22]; we show
initial s:tages of the irF\)stabiIity before gsymmetry becz)lmesthe resglts of_a linear Cahn-Hilliard-type theory of the
apparent. modes in the figure as well. Note that the structure factor
vanishes forg — 0 due to elasticity, not a conservation
evolution was monitored. We found that the growth oflaw. For later times, when the linear theory no longer
the amplitude of the Fourier modes was initially inde-describes the data, coarsening is evident: The location of
pendent and exponential, obeying Euxjg)¢], followed the peak of the structure factqr.x(r) moves to smaller
by slower constant velocity growth. The fitted disper-wave numbers, as the peak height increases and sharpens.
sionw(q) is consistent withw = Ag — Bg?, whereA =  The peak height follows (gimax. 1) ~ t**!, wherea = 2,
28.2 andB = 1 (see Fig. 1). Perturbations with a wave while the peak width sharpens with time as~ 77,
number larger than a critical wave number are stabiwherey = 0.5. The former dependence is due to the
lized by surface tension, whereas wave numbers smallgotal interface length increasing linearly with time for any
than the critical wave number are unstable, therefore bainstable wave number. The latter dependence is due to
ing a long wavelength instability. The flat interface, competitive ordering between different wave numbers,
however, is stable. This agrees with the linear stabil-
ity analysis carried out by Srolovitz [8] for the case 300.0
where evaporation-condensation is the material transport
mechanism, which is appropriate for our model. We
have done a multiple-scale analysis to obtain the equa-
tions corresponding to the sharp-interface limit of our
continuous field model [21]. The coefficients we ob-
tain numerically for linear stability are the same, within
our numerical accuracy, as those we obtain analytically.
Linear stability analysis predicts only the condition of
the onset of instability. To study the later-stage morphol-
ogy, a complete nonlinear description has to be employed.
One advantage of the phase-field description is that non-
linearities are taken into account implicitly. A typical set
of configurations is shown in Fig. 1. The nonlinear ef- 5
fect gives rise to a clear asymmetry between peaks and o iz R
valleys, wherein deep grooves appear in the valleys. This 00 q 06
behavior has been observed experimentally, as well as in

; ; ; _ ; i11eFIG. 2. Structure factor at equal time intervals. Solid lines
previous theoretical studies [9,12-14]. Unlike preVlousshow the structure factor derived from a linear Cahn-Hilliard-

stud_les, no numerical instabilities limit the study of the for—type theory, which only describes the data for early times. For
mation of t.he grooves here. However, we have not madgter times, the structure factor is consistent with scaling, as
a detailed investigation of regimes where grooves are preshown in the inset.
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