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Sound Propagation in Suspensions of Colloidal Spheres with Viscous Coupling
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We measure attenuation and phase velocity of sound waves in suspensions of colloidal silica spheres.
As the concentration of colloids increases, the dependence of the attenuation changes from linear to
at least quadratic in volume fraction. This change is attributed to a viscous coupling of neighboring
scatterers. When the wavelength is comparable to the sphere size, the sound velocity decreases with
increasing volume fraction and falls below that of the pure liquid. [S0031-9007(99)08508-7]

PACS numbers: 43.20.+g, 62.30.+d, 82.70.Dd
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Propagation of acoustic and electromagnetic wave
inhomogeneous media is a phenomenon of great
damental importance and increasing technological r
vance. In the case of strong multiple scattering, intrigu
effects such as band formation or wave localization
expected to occur as a result of interference [1]. These
citing predictions have stimulated experimental resea
largely focused on the electromagnetic case, for m
years. Anderson localization of light has recently inde
been observed [2]. By contrast, to date only a few
periments on sound propagation in the strongly scatte
regime have been performed [3–6]. However, these
periments yielded astonishing results. Liuet al. [3], for
example, studied phonon dispersion curves in collo
suspensions and found, contrary to a pure liquid, two
gitudinal propagating modes. These authors also re
gaps in the dispersion relation.

One of the parameters that play a decisive role is
ratio of the sound wavelength to the size of scatter
In general, the scattering cross section depends stro
on this ratio. Another important length scale that c
profoundly influence acoustic propagation is the visc
penetration depthd (d ­

p
2hyrv, with h being the

shear viscosity,r the density, andv the angular fre-
quency). If transverse or vortex modes are excited
liquid, their amplitude decays exponentially with dec
lengthd. For long wavelength sound propagation the v
cous depth can be of great importance. In liquid satur
porous media, for instance, propagating modes can
come diffusive and vice versa, depending on the ratio
the viscous length to the pore size [7]. Recent aco
tic band structure calculations predict similar effects
suspensions of isolated spherical scatterers, where th
terparticle separation plays the role of the pore size
If d is larger than the interparticle separation, scatte
are coupled by viscous forces. Despite the importanc
d, there are to date no experiments addressing pos
effects of viscous coupling in the regime where the so
wavelength becomes comparable to the inhomogen
length scales.

In this paper, we report the first investigation of aco
tic wave propagation in strongly scattering media with v
76 0031-9007y99y82(8)y1676(4)$15.00
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cously coupled scatterers. Brillouin spectroscopy is u
to measure sound attenuation and velocity dispersion
suspensions of colloidal silica spheres. The viscous pe
tration depth is of the order of the sphere radius in
frequency range investigated. The separation between
surfaces of the spheres,lfree, is varied by changing the solid
volume fractionf. We are thus able to perform measur
ments in the two regimesd , lfree (no viscous coupling)
and d $ lfree (viscous coupling). This is in contrast t
previous studies [3–6]. We find that, in the absence
viscous coupling, the sound attenuation increases line
with volume fraction, as expected. To our surprise,
attenuation increases at least quadratically withf in the
cased $ lfree. However, the absolute values of the atten
ation for d $ lfree are, at not too large volume fraction
smaller than expected from the low-f results. These or
similar effects have not, to our knowledge, been repor
before. The sound velocityy decreases with increasin
volume fraction when the wavelength is comparable to
sphere size. Viscous coupling has no effect ony.

Monodisperse colloidal silica spheres with radiusr ­
59 nm are suspended in an optically index matching m
ture of ethanol and benzyl alcohol. The colloid volum
fraction is controlled by centrifuging the initial suspe
sion and removing the liquid on top of the sedime
Then, known amounts of liquid are added stepwise a
the particles resuspended. The colloid concentrationc is
determined by drying a known volume of the last susp
sion in the series and weighing the residue; the rang
0 # c # 1.188 gycm3. The density of our colloidal sil-
ica is about2 gycm3, giving0 # f # 0.59 for the volume
fraction.

The colloids are slightly charged if dispersed in a liqu
and interact by a screened repulsive coulomb poten
inhibiting aggregation. As a result, the diffusion of th
colloids “freezes” at volume fractions of about 35%. T
freezing transition is detected by the appearance of a l
time tail in the intensity autocorrelation function of re
sidual light scattered from the particles, which we me
sure by dynamic light scattering. In the following, we w
refer to the low-f phase of the colloids, where the pa
ticles diffuse freely, as the “fluid phase.” The high-f
© 1999 The American Physical Society
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state, where diffusion is absent, will be referred to
the “solid phase.” These terms should not be confu
with the “liquid” and the “solid,” meaning the suspendin
medium and the colloidal particles themselves, resp
tively. Another possibility to stabilize colloidal suspe
sions is the coating of the particles with a thin polym
layer. However, the acoustic properties of a polymer la
on the sphere surface are unknown and, consequently
solid-liquid interface becomes ill defined. More impo
tantly, a polymer layer would prevent the particle surfa
from approaching to distances much smaller than the
cous depth.

Concerning the acoustic parameters, the suspens
are strongly inhomogeneous on the length scale of
particle radius. The density ratiorsolidyrliquid is about
2 and the (longitudinal) velocity contrastysolidyyliquid is
about 4. The ratio of the transverse sound velocity
the solid to the longitudinal velocity in the liquid is abo
2.6. This acoustic mismatch is substantially larger tha
earlier experiments [3].

The viscosity of the suspending alcohol mixture
2.77 mPa s. Brillouin measurements are performed in
range 0.72 # qr # 2.04, where q is the sound wave
vector. In the corresponding frequency range, we h
11 # d # 18 nm. Forf $ 0.37 the average penetratio
depthkdl ­ 14.5 nm is larger than the average separat
between the sphere surfaces (lfree ­ N21y3 2 2r, where
N ­ 3fy4pr3 is the number density of scatterers), su
that viscous coupling of spheres occurs.

Brillouin spectra are obtained using an argon ion la
at l ­ 514.5 nm. The scattered light is imaged on
a 200-mm pinhole and collimated into a Fabry-Per
interferometer (free spectral range 18.2 GHz), opera
in triple-pass configuration. The sound wave vector
selected by changing the scattering angleu. The phase
velocity is obtained from the center frequencyvsqd ­ yq
of the Brillouin peaks, and the attenuation coefficienj

from the full width at half maximumDv.
Figure 1 shows typical Brillouin spectra at differe

volume fractions. We observe one propagating so
mode for all concentrations of colloids and wave vecto
Whereas the center frequency of the peaks chan
only weakly with increasing volume fraction, the wid
increases strongly and eventually becomes of the s
order as the center frequency.

The sound dispersion relationvsqd is shown in Fig. 2
for two different volume fractions. At the lowest volum
fraction we obtain a straight line, as in the pure liqu
At larger volume fractions the sound velocity becom
dependent on the wave vector, thus depressing the dis
sion relation at largeq. This depression becomes contin
ously larger as the volume fraction is increased. A
result, the dependence of the sound velocity on volu
fraction at large wavelengths (or smallq) is qualitatively
different from that at small wavelengths (or largeq), as is
evident from Fig. 3. It shows the sound velocity, norm
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FIG. 1. Rayleigh-Brillouin spectra atu ­ 90± for three vol-
ume fractions of colloidal silica spheres in an optically ind
matching alcohol mixture. Volume fractions aref ­ 0.074
(1), 0.23 (≤), and 0.46 (3). The lines are Lorentzian fits t
the data.

ized by that of the pure liquid, as a function off. Data at
two representative wave vectors, obtained from the dis
sion curves (Fig. 2), are presented. At large waveleng
the sound velocity increases with increasing volume fr
tion and becomes larger than that in the pure liquid. T
increase is expected for the composite medium, since
sound velocity in the colloidal spheres is much larger th
that in the liquid. At small wavelengths, the behavior b
comes completely different: Here, the sound velocityde-
creaseswith increasing volume fraction, despite the fa
that the amount of high velocity material increases. T
sound velocity even falls below that of the pure liqu
Such slow propagation velocities have also been obse
in ultrasonic experiments on macroscopic glass sphere

FIG. 2. Sound dispersion relation for colloidal suspensi
with volume fractionsf ­ 0.074 (1) and 0.28 (±). The
dashed line represents the long wavelength limit forf ­ 0.28.
1677
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FIG. 3. Phase velocity of the high frequency sound mode
suspensions of silica colloids as a function of colloid volum
fraction. The velocity is shown for two representative wa
vectors:qr ­ 0.89 (3) and 1.87 (±). The data are normalized
by the sound velocity in the pure liquid. The dashed li
represents the long wavelength limit. No spectrum could
obtained for the largest volume fraction atqr ­ 1.87 due to
overdamping of the sound mode.

water [4] and can be understood in terms of multiple sc
tering theory [9,10]. Most of the wave energy at larg
q is confined to the liquid because of the large acous
contrast (andyliquid , ysolid); as a result, the propagatio
velocity is close to that of the pure liquid [10].

As mentioned above, the average viscous penetra
depth is larger than the separation between sphere surf
for f $ 0.37. This viscous coupling does not have
noticeable influence on the velocity.

The sound velocity shows a modest, but significant,
pendence on wavelength and volume fraction. The atte
ation, however, will show a much stronger dependen
as the quantities governing wave propagation enter m
directly. Damping effects are described by the extincti
mean free pathlext, which is related to the extinction cros
sectionsext by 1ylext ­ Nsext 1 1yl0 [11]. The extinc-
tion cross section contains the scattering cross section
possibly a contribution due to friction at the solid-liqui
interface. The term1yl0 denotes absorption due to th
pure liquid. If sext is independent ofN, one expects a
linear increase of the attenuation with increasing conc
tration of scatterers. The width of the Brillouin peaks
related to the extinction mean free path byDv ­ yylext,
since the intensity of the sound wave in a given directi
decays exponentially with decay lengthlext.

Figure 4 showsDv as a function of squared wav
vector for three volume fractions. In a pure liquid
the width is related to losses by diffusive process
which leads to aq2 dependence [12]. In the colloida
suspensions considered here, we also observeDv ­ jq2

in the q range investigated. However, in this case t
q2 dependence, seen at all volume fractions, is to a la
extent due to the scattering cross section of a sin
1678
in
e
e

e
e

t-
e
ic

on
ces

e-
u-
e,
re
n

nd

n-
s

n

,
s,

e
ge
le

FIG. 4. Full width at half maximum of Brillouin peaks versu
squared wave vector. Data for three volume fractions of si
colloids are shown:f ­ 0.074 (1), 0.28 (±), and 0.59 (¶).
The straight lines are fits to the data.

sphere [10]. The attenuation coefficientj increases by
almost 1 order of magnitude from the pure liquid to t
most concentrated sample, showing that the presenc
inhomogeneities strongly affects wave propagation.
order to focus on thisf dependence, we plotj as
a function of volume fraction in Fig. 5. For a prop

FIG. 5. Sound attenuation coefficientj ­ DvFWHMyq2 for
the sound mode in suspensions of colloidal silica spheres ve
colloid volume fraction. The dashed line is a fit to the poin
for 0.074 # f # 0.28. The dash-dotted line is a guide to th
eye. The suspensions are in a fluid phase atf # 28 vol %,
whereas the colloid diffusion is frozen in at the larger volu
fractions; the corresponding branches are treated separate
is seen that the points at low volume fractions lie on a stra
line through jsf ­ 0d, whereas the points at high volum
fractions do not. f0 is obtained fromf by replacingr with
r 1 kdl. The dotted line representsf0 ­ 0.64.
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(or
analysis of the volume fraction dependence, the po
taken in the colloidal fluid phase (f # 0.28) must be
treated independently from those in the solid phase (f $

0.37). Strikingly, the attenuation coefficient manifests
change in concentration dependence at aboutf ­ 0.3:
Whereasj increases linearly with concentration at sm
f (“fluid phase branch”), as expected for independ
scattering, the increase is at least quadratic at la
volume fractions (“solid phase branch”).

Contrary to the sound velocity, viscous effects are e
dent in the attenuation. It is known from the long wav
length limit that viscosity leads to an enhancement of
scattering cross section, ifd is not negligible with re-
spect tor [12]. We observe a similar effect here. T
demonstrate this, we replace the “bare” radiusr by r 0 ­
r 1 kdl. The cross section depends on the radius via
size parameterqr and the geometric cross sectionpr2;
in our case, we havesypr2 ~ sqrd2. With the transfor-
mationr ! r 0 the cross section, derived from the straig
line in Fig. 5 according to1ylext ­ Nsext 1 1yl0, is in
reasonable quantitative agreement with a calculation
the scattering cross section for a comparable system
glass sphere in water) in the regimed ø r [10]. Obvi-
ously, this description in terms of scattering by indep
dent scattering units with radiusr 0 is only valid as long
as the scattering units do not overlap; in the case of o
lap, the total volume occupied by the scattering units
smaller than the sum of the individual volumes, whi
will lead to a reduction of the damping as compared
the case of nonoverlapping scatterers. Indeed, the
sition of the attenuation to the solid phase branch occ
if the renormalized volume fractionf0 (f0 ­ fr03yr3)
approaches the value of random close packing, and th
tenuation coefficient is at first smaller than expected fr
an extrapolation of the low-f values. These observation
corroborate our interpretation. Now, comparing the
erage viscous depth to the average separation betw
the sphere surfaces,lfree, we find that kdlylfree ø 1 at
f ­ 0.37. At this volume fraction, the spheres becom
connected by viscous forces. Viscous coupling of sphe
provides an energy transfer mechanism between neigh
ing scatterers through excitation of transverse modes
will depend at least quadratically on volume fraction. T
energy transferred by viscous coupling will be seen as
effective loss in the sound mode observed, and thu
an increase in attenuation. We believe that this mec
nism is responsible for the qualitative difference seen
the volume fraction dependence between the solid ph
branch and the fluid phase branch. The quantitative
portance of viscous coupling may be sensitive to the
gree of order in the solid phase. On the basis of th
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measurements, however, possible structural effects ca
be quantified.

In conclusion, we have shown that strong scattering
sound waves leads to the counterintuitive effect that
propagation velocity decreases with an increasing amo
of high velocity material. We have presented eviden
that the parameterdylfree is of great importance for the
sound attenuation: In the regime of viscous coupl
(d $ lfree), new effects have been observed.
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