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Helium trimer bound states are calculated with a variational method described in terms of pair
atom coordinates and distributed Gaussian functions by assuming zero total angular momentum. With
the two-body interaction potential used, a weakly bound state for the dimer and only two bound
states for the trimer are found. Although strictly speaking the first excited trimer state is not an
Efimov state, we show that this state presents several characteristics of the Efimov behavior which
are extensively discussed in the present work. Special emphasis is placed on the main geometrical
configurations contributing to the two bound trimer states, and suggestions are made on the possible
ways of experimentally detecting the Efimov-type state. [S0031-9007(99)08513-0]
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Small 4He clusters (in particular, dimers and trimer
present a series of unusual quantum properties of fun
mental interest. These properties can play a role not o
in connection with the statistical behavior of collectiv
modes of4He gas at low temperatures [1], but also wi
the Bose-Einstein condensation [2,3] as well as with
appearance of the so-called Efimov states in three body
teractions [4]. A lot of theoretical work concerning the
special states has been done in order either to con
or to disprove their existence [5–8]. However, much
the controversy about their existence is chiefly due to
certainties on the two-body (2B) interaction potential a
only in part to the different dynamical methods applied

In this Letter, our purpose is twofold. First, to app
a variational method based on pair coordinates lead
to a more suitable way to discuss configurations a
symmetrization of the ground and excited states of
trimer; and, second, to discuss whether or not Efim
states can be observed. Concerning the first point
is obvious that even using the same 2B interaction,
theoretical model applied to solve the trimer discre
spectrum can be crucial for bound states very near to
three-body threshold, as is the case for the Efimov sta
Moreover, using this kind of coordinate the weight
the different geometrical configurations can be estima
allowing one to know which of them would dominantl
contribute to those special states. As far as we kno
this is the first “exact” variational calculation includin
the proper symmetry of the problem. Finally, from o
knowledge of the pair distribution function and of th
main geometrical configurations, it becomes possible
determine the average size of this floppy system, a
therefore to envisage different ways to observe them.

Considering a zero total angular momentum state, us
atom-atom pair coordinates (R1, R2, R3) and including a
scale factorsR1R2R3d1y2 to attain the standard normaliza
tion in the total wave function, a totally symmetric Hami
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with V being the 2B-interaction potential (which corre
sponds in this work to that of Ref. [9]), and where th
effective kinetic energy operatorsti are expressed as
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with i fi j fi k. As can be clearly seen from Eq. (1
theseti operators reflect the deviations in the total Ham
tonian from that formed by the sum of pair Hamiltonian

The eigenfunctions of the total Hamiltonian given b
Eq. (1) are expanded in terms of basis functions as

FksR1, R2, R3d ­
X

j

a
skd
j fjsR1, R2, R3d , (3)

where j denotes a collective index,j ­ sl # m # nd.
The fj functions, in turn, are built up as symmetrize
products of pair functions given by

fjsR1, R2, R3d ­ N
21y2
lmn

X
P[S3

PfwlsR1dwmsR2dwnsR3dg ,

(4)

where the coefficients

Nlmn ­ 6ssllsmmsnn 1 slls
2
mn 1 smms2

ln

1 snns2
lm 1 2slmslnsmnd (5)

define a normalization factor expressed in terms of
overlap integrals written as

spq ­ kwp j wql . (6)
© 1999 The American Physical Society
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The one-dimensional functionswp are chosen here to
be distributed Gaussian functions (DGF) [10] centered
Rs pd positions

wpsRid ­
4

s
2Ap

p
ef2Ap sRi2Rs pdd2g. (7)

In order to fulfill the triangular requirement

jR1 2 R2j # R3 # R1 1 R2 , (8)

the productwlwmwn is taken into the basis set as long
the corresponding DGF centers verify that

Rsnd # Rsld 1 Rsmd . (9)

Because of the fact that our method provides the to
wave function, averages and fluctuations of triangu
magnitudes are closely related to the nature of the pro
bound states.

The basis set given by Eq. (4) is not orthonorm
but the pseudoeigenvalue problem can be transform
to a standard eigenvalue problem by using the met
developed originally by Löwdin [11]. Starting with
39 Gaussian functionswp , 17 of them equally spaced i
the region of the 2B potential well (say, between 3–11
and the rest ranging up to 139 Å with increasingly larg
spacings, a number of about 3000 symmetrizedFk func-
tions is included. This is equivalent to considering a ba
set of approximately 18 000 nonsymmetrized functio
The quality of the numerical calculations is controlle
via the moments of the radial and angular distributio
Moreover, this method has been also successfully app
to the trimer systems Ar3 and Ne3 [12].

In Fig. 1 we present the 2B interaction potential (dash
line, and expressed in cm21) together with the two-pair dis
tribution functions corresponding to the ground (k ­ 0)
and first (k ­ 1) excited trimer states (solid lines) as we
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FIG. 1. Pair distribution functions (in Å21) for the ground
(k ­ 0) and first (k ­ 1) excited trimer states (solid lines
together with the square modulus of the dimer wave funct
(dot-dashed line) and the two-body interaction potential (das
line) multiplied by a factor of 0.01 and expressed in cm21. R
(in Å) stands for any of the three-pair distances.
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as the square value of the diatomic wave function (d
dashed line). As can be seen, for the ground state, the
distribution function is mainly located in the region lim
ited by the 2B interaction potential and presents an aver
distance of 7.88 Å and standard deviation of 3.72 Å. T
relative magnitude of the spread of this pair distributio
function about the mean value is therefore 47% indicat
that the fluctuation is quite important. Two maxima a
also found, the first one more pronounced than the sec
in a ratio of about 2 to 1. This bimodal distribution ca
be interpreted as being due to the presence of quasilin
configurations, as will be discussed below. Concern
the pair distribution function for the excited state, the a
erage distance is 50 Å with a standard deviation of 28
Here the fluctuation is even larger, of the order of 60
In Table I, some statistical quantities extracted from t
total wave functions for the ground and first excited trim
states are collected. Furthermore, the percentage of
pair distribution function in the excited state inside the 2
potential well is about 3% when taking an effective radi
of the 2B-interaction potential ofr0 ­ 7.35 Å and a scat-
tering length ofa ­ 100.13 Å. Compared to the square
modulus of the 2B wave function, both behaviors are qu
similar at very large distances where the interaction pot
tial is now negligible. Therefore, this excited state cou
be considered as a good candidate for an Efimov state

According to the 2B interaction potential which w
have employed [9], the dimer presents, through the D
method, a weakly bound state at20.8 3 1023 cm21

versus20.91 3 1023 cm21 obtained from a direct nu-
merical integration of the Schrödinger equation. T
bound energy values found for the trimer are20.15 cm21

(ground state) and21.24 3 1023 cm21 (first excited
state). These energy values are quite close to those
ported in the literature (see, for example, Ref. [8] whic
utilizes the same 2B-interaction potential but an appro
mate adiabatic method). Recently, quantum Monte Ca
(DMC) methods have been also applied to the trim
ground state [13,14]. Very similar results have been o
tained for the ground state by using slightly differe
2B interactions. As it is well known, the DMC metho
does not yield excited states. However, some discrep
cies have been found about the main geometrical confi
rations contributing to the ground state. Moreover, af
the formula to estimate the number of Efimov stat

TABLE I. Average (kxlk) and root mean square (kx2l1y2
k ) of

several magnitudes,x, obtained from the ground (k ­ 0) and
Efimov-type (k ­ 1) trimer states. The cosu is any of the
three cosines of a triangle.

Magnitude (x) kxl0 kx2l1y2
0 kxl1 kx2l1y2

1

Distance (Å) 7.9 8.7 50 57.3
cosu 0.396 0.82 0.398 0.789
Area (Å2) 15 26 684 994
Diameter (Å) 6.7 7.4 44.7 50.3
1649
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sssN ø s1ypd ln j ayr0 j ddd, we obtain in our caseN ø 0.8.
Therefore, as the number of Efimov states is very sensi
to the 2B binding energy [15], the usual way to charact
ize such states is to carry out an analysis of the disc
spectrum by varying the strength of the 2B interaction p
tential through a factorl. In Fig. 2, the bound states (i
cm21) for the dimer (solid line) and trimersssdashed lines;
He3(0) fork ­ 0 and He3(1) fork ­ 1ddd are plotted as a
function of l covering the rangef0.8, 1.15g. Several re-
gions inl can be considered: (i) Betweenlhalo ­ 0.8942
and l2B ­ 0.9755, where only a trimer bound state ex
ists but not a dimer state; this type of trimer bound sta
are usually called halo states; (ii) betweenl2B ­ 0.9755
andlEfimov ­ 0.9849, where the first excited state for th
trimer begins to appear; this state could be character
as a virtual state since it becomes a bound state as
interaction increases; (iii) betweenlEfimov ­ 0.9849 and
lghost ­ 1.0256, where the Efimov-type state is belo
the 2B continuum threshold and finally is overrun by th
threshold; and (iv)lghost . 1.0256 where the first excited
state for the trimer is above the 2B continuum thresh
and is generally called a ghost state.

In the inset of Fig. 2 an enhancement of the critical

region is shown. The limiting values of the parame
1650
e

e

d
e

l are slightly different from those estimated in Ref. [8
However, the ratiolhaloyl2B ­ 0.92 is quite close in both
methods and should be independent on the shape o
pairwise potential (in nuclear physics this ratio is inste
of ,0.8, probably due to the different nature of nucle
and molecular interactions). It should be stressed at
point that in region (iii) only one Efimov-type state appe
(according to the estimateN ø 0.8) but no more. The
striking result in our case is that this region includesl ­ 1,
i.e., the case for which we consider the 2B interaction
be the actual physical interaction. This fact implies t
the Efimov states must be quite elusive because very s
fluctuations or uncertainties in the 2B interaction poten
can lead to different conclusions about their existence

In the coordinates used here the kinetic energy o
ators of the total Hamiltonian, Eq. (2),do not presenta
clear behavior of an effective attractive long-range int
action of the1yR2 type, with R being one of the given
coordinates. It would be instead the balance among
the terms involved in these kinetic operators which sho
be responsible for the long-range interaction, at least
distances larger thanr0.

An additional advantage of the coordinates used in
work is that they permit us to make a quantitative analy
nd ghost
FIG. 2. Evolution of the bound states for the dimer and trimer (in cm21) as a function of the factor strengthl. The solid line
corresponds to the two-body bound state and the dashed lines to the two-trimer bound states. In each region ofl values (see text)
the character of the bound states [He3(0), ground state and, He3(1), first excited state] is marked: halo, Efimov-type, a
states. The inset shows an enhancement of the critical region.
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of the different geometrical configurations contributin
to each triatomic bound state. Thus, averages and
mean squares of the area and cosine of any of
three angles for both trimer states can be easily obta
from the total wave function via the Heron formu
and the cosine theorem, respectively (see Table I).
following considerations can be made from the pres
analysis: the ground state is formed by about 30%
quasilinear configurations and a negligible contributi
from equilateral triangles. Moreover, if these quasiline
configurations are not taken into account in the total wa
function the ground level disappears. According to t
ground pair distribution function plotted in Fig. 1, th
two peaks placed at 4.53 and 8.81 Å can be underst
as quasilinear configurations presenting two sides of ab
4.5 Å and the third side of about 9 Å resulting in a rat
between the two maxima of nearly two. The existen
of quasilinear structures was also pointed out in
earlier DMC calculation [14] and we interpret such
existence as due to intermediate configurations among
the possible triangular ones. Concerning the Efimov-ty
state, a preference of scalene configurations (about 7
is found, with negligible contributions of quasilinear an
equilateral configurations.

Finally, our next point here is to suggest possible wa
of observing Efimov-type states. Recently, He dim
and trimers have been detected by diffraction from
transmission grating [16]. The signal corresponding
He trimers has not been resolved in terms of the t
different bound states of this system which we fou
here. The diffraction grating was built with a perio
of 200 nm with bars and slits of equal size. Accordi
to our estimates trimers can pass through this kind
gratings independently of the bound states which
populated in the experiment. The question now is
envisage a way to select or discriminate one of th
two bound states. Moreover, the average diameter
the circumscribed circumference for all of the triangu
configurations (see Table I) is,7 Å for the ground state
and ,45 Å for the first excited state. Because of th
difference, if the grating is tilted with respect to th
incident orientation of the He beam, the effective s
can be smaller than the average diameter of the Efim
type state and therefore it would be possible to filter
From the different populations (and if the experimen
resolution in intensity is good enough) it could therefo
be possible to discriminate it. Alternative ways to isola
such states could also come from the kinetics of format
of dimers and trimers in He beams [17], three-bo
recombination of ultracold atoms [18], and from th
ot
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properties of liquid helium. In this last case, a comple
different dynamics could be developed by consider
that the He dimer interaction potential is affected
the surroundings in many ways similar to what we ha
simulated by varying thel value and, therefore, dimer
and trimers could play a very important role when o
analyzes the well known properties of liquid He.
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