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We propose a reformulation of SU(2) Yang-Mills theory in terms of new variables, appropria
describing the theory in its infrared limit. These variables suggest a dual picture of the Yang
theory where the short distance limit describes asymptotically free, massless point gluons and t
distance limit describes extended, massive knotlike solitons. [S0031-9007(99)08490-2]
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In the high energy limit the Yang-Mills theory is asymp
totically free and can be solved perturbatively. It describ
the interactions of massless gluons which correspond to
transverse polarizations of the gauge fieldAm [1].

At low energies the Yang-Mills theory becomes strong
coupled. Perturbative techniques fail and nonperturba
methods must be developed. To this, substantial eff
have been devoted, but numerical lattice approaches
remain the most viable tool to effectively explore the lo
energy theory. Despite our lacking theoretical understa
ing of the low energy Yang-Mills theory, we expect th
it exhibits color confinement with ensuing mass gap. T
physical spectrum is supposed to describe massive c
posites ofAm such as glueballs. When quarks are intr
duced the gauge field should form stringlike flux tub
which confine quarks inside hadrons.

In the present Letter we propose an approach to inv
tigate the SU(2) Yang-Mills theory in the infrared limi
Our proposal is motivated by the qualitative picture d
veloped in particular by ’t Hooft [2] and Polyakov [2]
who asserted that the ultraviolet and infrared limits o
Yang-Mills theory represent different phases, with co
confinement due to a dual Meissner effect in a conden
of magnetic monopoles. This picture suggests that e
though the gauge fieldAm is the proper order paramete
for describing the theory in its ultraviolet limit, in the in
frared limit with monopole condensation some other or
parameter could become more adequate. Naturally we
pect that such a change of variables may also imply a
tain need to reformulate the Yang-Mills action.

In the high energy limit the theory is described by t
standard Yang-Mills action

S ­
1
g2

Z
dx Tr F2. (1)

This is theuniqueLorentz and gauge invariant local actio
which is renormalizable in four dimensions and admit
Hamiltonian interpretation which identifies the transve
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polarizations ofAm as the physical fields present in th
ultraviolet limit.

In the following we shall propose new variables for d
scribing the infrared limit of a four dimensional SU(2
Yang-Mills theory. We argue that, instead ofAm, in
this limit the appropriate order parameter involves a th
component vectornasxd sa ­ 1, 2, 3d with unit lengthn ?

n ­ 1. When combined with standard Wilsonian reno
malization group arguments, this suggests that the ac
contains [3,4]

S ­
Z

dx m2s≠mnd2 1
1
e2 sn, dn 3 dnd2. (2)

Herem is a mass scale ande is a dimensionless coupling
constant: This is theunique local and Lorentz-invariant
action for the unit vectorn which is at most quadratic in
time derivatives so that it admits a Hamiltonian interpre
tion and involvesall such terms that are either relevant
marginal in the infrared limit.

Observe that the action (2) can be related to the SU
Skyrme model, restricted to a sphereS2. However, the
topological features of these two models are quite differe

We note that in four dimensions the action (2) fails to
perturbatively renormalizable in the ultraviolet. But sin
it is expected to describe the physical excitations of a SU
Yang-Mills theory in the low energy strong coupling limi
lack of perturbative renormalizability should not pose
problem provided that we can interpret (2) adequately.
deed, we have recently established [5] that in3 1 1 di-
mensions the classical action (2) describes stable knot
solitons. This suggests that a proper route to its quant
tion should be based on the investigation of the quant
mechanical properties of these solitons.

From the point of view of a Yang-Mills theory the
presence of knotlike solitons is actually quite appealin
It is natural to relate these solitons with the stringlike flu
tubes that we expect to be present in the infrared spect
of a Yang-Mills theory, to provide the confining forc
© 1999 The American Physical Society
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between two quarks. In the absence of quarks such
tubes may still be present. They now close on themse
in knotted, stable solitonic configurations which are natu
candidates for describing glueballs. In this manner
arrive at a dual picture of the Yang-Mills theory, wi
the high energy limit described by massless and point
transverse polarizations ofAm and the low energy limit
described by massive solitonic flux tubes which close
themselves in stable knotlike configurations.

We shall now proceed to present our novel parametr
tion of the connectionAa

m: In the picture developed in
particular by ’t Hooft [2], confinement is viewed as a du
Meissner effect in a condensate of magnetic monopo
In a SU(2) Yang-Mills theory the relevant magne
monopole is the (singular) Wu-Yang configuration [6]

Aa
i ­ eaik

xk

r2 , Aa
0 ­ 0 . (3)

In order to describe a condensate of these monopoles
need to properly extend (3) by introducing a smooth fi
for the corresponding order parameter. A natural an
for extending (3) into a condensate is

Aa
i ­ eabc≠in

bnc ; dn 3 n , (4)

with n a three component unit vector field that describ
the condensate. It reproduces (3) when we specify to
singular “hedgehog” configuration

n ­ xyr . (5)

The unit vectorn describes two independent field va
ables. Since agauge fixedfour dimensional SU(2) con
nectionAm describes six polarization degrees of freedo
we need to extend the parametrization (4) by four ad
tional polarizations. In order to search for a natural
tension, we first observe that under an infinitesimal ga
transformation

dAa
m ­ =ab

m ´b ­ ≠m´a 1 eacbAc
m´b ,

which is parametrized by the Lie algebra element´asxd ­
´sxdnasxd, (4) fails to remain form invariant. But if we
improve (4) into

Am ­ Cmn 1 dn 3 n , (6)

where Cmsxd is a vector field which transforms as a
Abelian connection

Cm ! Cm 1 ≠m´ , (7)

the functional form of the configuration (6) remains inta
under this gauge transformation.

The functional form (6) of SU(2) connections has be
previously studied in particular by Cho [7], as a consist
truncation of the full four dimensional connectionAa

m.
He was interested in identifying those field degrees
freedom in Aa

m which are relevant for describing th
ux
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Abelian dominance, a concept that originates from [2] a
is expected to be relevant for color confinement.

The Abelian gauge invariance (7) implies that (6) d
scribes four field components, corresponding to the t
transverse polarizations of the U(1) connectionCm and the
two independent components ofn. In order to extend (6)
so that it describes all six field components of an arbitra
connectionAm, we consider an arbitrary finite gauge tran
formation of a generic connectionAm. With

Usxd ­ exp

Ω
i

1
2

an ? t

æ
,

the SU(2) group element that determines this gau
transformation, we find for the gauge transformation
an arbitrary connectionAa

m

AU ­ fsA, nd 1 dagn 1 dn 3 n

1 sinasdn 1 A 3 nd
2 cosasdn 1 A 3 nd 3 n . (8)

From this we conclude that a generic connectionAm

should have the functional form

Am ­ Cmn 1 dn 3 n 1 wBm 1 Bm 3 n , (9)

wherew is a scalar field andBa
m is an orthogonal SU(2)

valued vector,n ? Bm ­ 0 for all m. Since the number
of independent field components carried by afour dimen-
sional SU(2) connection is six, the orthogonal fieldBm

should describe only a single component, and we can
lect it to be proportional todn. This yields the follow-
ing ansatz for parametrizing a genericfour dimensional
connection,

Am ­ Cmn 1 dn 3 n 1 rdn 1 sdn 3 n . (10)

Notice that we have here separated the second and fo
terms on the right-hand side, even though these terms
linearly dependent. The reason for this separation is
it allows us to combine the scalarsr ands into a complex
field

f ­ r 1 is (11)

with the property that under a SU(2) gauge transformat
generated byaa ­ a ? n the functional form of (10)
remains intact, with the multipletsCm, fd transforming
like the field multiplet in the Abelian Higgs model.

If we again specify to the singular hedgehog config
ration (5), we find that (10) incorporates the most gene
cylindrically symmetric SU(2) connection [8]. Indeed, ou
main proposal is thecompletenessof the parametrization
(10) in four dimensions. For this we substitute (10) to t
classical Yang-Mills action (1) and derive equations of m
tion obtained by varying the component fieldssn, Cm, fd.
For completeness these equations should reproduce
original Yang-Mills equations=mFmn ­ 0, obtained by
first varying w.r.t.Am in (1) and then substituting (10).
1625
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If we introduce the U(1) covariant derivative

Dmf ­ ≠mf 1 iCmf ­ ≠mr 2 Cms 1 is≠ms 1 Cmrd ­ Dmr 1 iDms , (12)

we find

Fmn ­ nhGmn 2 f1 2 sr2 1 s2dgHmnj 1 sDmr≠nn 2 Dnr≠mnd 1 sDms≠nn 3 n 2 Dns≠mn 3 nd , (13)

where

Gmn ­ ≠nCm 2 ≠mCn ,

Hmn ­ sn, ≠mn 3 ≠nnd .

When we substitute (13) into the Yang-Mills action (1) we get

S ­
1
g2

Z
dx hnfGmn 2 s1 2 fr2 1 s2gdHmng 1 sDmr≠nn 2 Dnr≠mnd 1 sDms≠nn 3 n 2 Dns≠mn 3 ndj2,

(14)
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and when we perform the variations w.r.t.sCm, f, nd
we get

n ? =mFmn ­ 0 ,

≠nn ? =mFmn ­ 0 ,

≠nn 3 n ? =mFmn ­ 0 ,

sDnr 1 Dns ? n3d ? =mFmn ­ 0 ,

which are all proportional to the Yang-Mills equatio
=mFmn ­ 0, evaluated at the field (10). But the U(1) in
variance (7) implies that in four dimensions only six
these equations can be independent. These equation
incide with the six independent second order equati
that we obtain when we first vary the action (1) w.r.t. t
full connectionAa

m and then substitute for the parametriz
tion (10). Thus we assert that the parametrization (10
indeed complete. [We remind one that the variation
(1) w.r.t. Aa

m yields twelve equations, but the threeAa
0 are

Lagrange multipliers and three of the equations are fi
order, corresponding to Gauss law in the Hamiltonian
proach. Consequently, in four dimensional SU(2) Yan
Mills theory there are only six independent second or
equations.]

We observe that the second term in (2) is already p
ent in (14). Furthermore, if in the original Yang-Mill
equation=mFmn ­ 0 we substitute (10) withCm ­ f ­
0, we find that the result also coincides with the equat
we obtain by varying the second term in (2) with resp
to n. The first term in (2) involves a mass scale and it
absent in (1),(14). Indeed, there is no way to introdu
a mass scale in four dimensional Yang-Mills by emplo
ing ultraviolet renormalizable, local, Lorentz, and gau
invariant functionals ofAm. However, when we represen
the Yang-Mills action using the component field (9),(10
standard Wilsonian renormalization group arguments s
gest that in the infrared limit the first term in (2) shou
also be included: It is a relevant operator in the infrar
hence it should emerge when we account for fluctuation
1626
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a gradient expansion. This can be verified explicitly,
integrating over the Abelian Higgs multiplet in (14) em
ploying, e.g., a heat-kernel expansion [9]. Alternative
we simply average over the scalar fieldf ­ r 1 is in
(14) to the effect

kj≠lfj2hmn 2 ≠mfp≠nfl ­ m2hmn . (15)

As a consequence we conclude that the full action (2
contained in a gradient expansion of the effective ac
for the order parametern.

Obviously the full effective action for the order param
tern obtained by integrating over the complete set of fie
in the parametrization (9) will also contain various ad
tional functionals ofn besides the two terms that appe
in (2). However, (2) isuniquein the sense that it contain
all such infrared relevant and marginal, local Lorentz
variant operators ofn which are at most quadratic in tim
derivatives, as is necessary for a Hamiltonian interpr
tion. In this sense (2) is theuniqueaction to describe the
low energy limit of a SU(2) Yang-Mills theory, in the con
fining phase where magnetic monopoles condense.
results of [5] then suggest that at low energies the ph
cal states of the Yang-Mills theory are knotlike solitons
the monopole condensate, and it becomes natural to
these configurations as candidates for describing glueb

Notice that the present interpretation of (2) is entir
analogous to the common point of view to consider
as the fundamental action for the high energy Yang-M
theory, even though, e.g., a gradient expansion of the la
Yang-Mills action involves higher derivative terms whic
all become irrelevant in the continuum (short-distan
limit where the lattice spacing tends to zero.

Besides the order parametern which is appropriate
for describing the phase with monopole condensation,
have also found that the Abelian Higgs multipletsCm, fd
naturally appears in the parametrization of four dim
sional connections. Elimination ofn in (14) then pro-
duces an effective action for the Abelian Higgs multip
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which comprises a natural order parameter for describ
the SU(2) theory in a “Higgs phase,” also considered
[2]. Indeed, since we have the spontaneously broken H
self-coupling present in (14),

V sfd ­ kH2
mnl s1 2 fr2 1 s2gd2 , ls1 2 jfj2d2,

we can expect the corresponding effective action to s
port Nielsen-Olesen-type vortices as infinite energy l
solitons. In a sense, these Abelian Higgs variables ca
viewed as dual to the vector fieldn in the expansion (10)
It would be of interest to study further the properties of t
Higgs phase.

In conclusion, we have derived a novel parametrizat
of the SU(2) Yang-Mills field, appropriate for describin
the theory in its infrared limit. As an application, w
have argued that (2) is the unique action for describ
SU(2) Yang-Mills theory at low energies, consistent w
various natural first principles. In particular, the first te
in (2) should be included since it is relevant in the infrar
limit. This term introduces a mass gap and the ensu
action supports knotlike configurations as stable solito
Our parametrization then suggests a dual picture of
Yang-Mills theory where the high energy limit describ
massless pointlike gluons and the infrared limit descri
massive knotted solitons, consistent with the commo
accepted picture of color confinement.
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