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We investigate stochastic resonance in a globally coupled oscillator system with time delay.
system shows multistability of a desynchronized state and two synchronized states with di
collective frequencies, which may be interpreted as multistable perception of ambiguous or rev
figures. Under the influence of a weak periodic external signal, the system exhibits a maximum
signal-to-noise ratio at an optimum noise level—the characteristic signature of stochastic reso
We also show stochastic resonance between two limit-cycles in the system. [S0031-9007(99)08
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Synchronization of oscillators has been the topic
much recent investigation [1–3]. Recent experiments
showed the synchronized oscillations of neuronal activ
in the visual cortex of the cat suggesting that informati
processing is a cooperative process of neurons. A cou
oscillator model was suggested to understand the temp
and spatial coherence of the oscillations of neuronal
tivity [2]. The inclusion of time delay into the system i
natural in the realistic consideration of finite transmissi
of interaction. Recently, it was shown that the coupl
oscillator system with time delay exhibits multistability o
synchronized and desynchronized states [5]. In the s
chronized state, the system has also two limit-cycles w
different collective frequencies; one is larger than the
trinsic frequency and the other is smaller than the intr
sic frequency. This multistability was interpreted as t
perception of ambiguous or reversible figures. Percep
of the ambiguous or reversible figures is characterized
noisy multistable dynamics, that is, the different interpr
tations of the figures are switched with a stochastic ti
course [6]. Recently, there have been studies on the n
multistable dynamics in connection with the developme
of dynamical models of brain function during such switc
ings in perception [7].

There has also been a growing interest in stochastic re
nance (SR) associated with noisy nonlinear dynamical s
tems [8]. SR is characterized by the optimization of t
response of the system to an input signal as a function
the input noise strength. The response of the system
measured by a signal-to-noise ratio (SNR) which show
peak as a function of the input noise strength. This i
plies that noise may enhance the transmission of inf
mation. SR has been demonstrated in numerous phys
experiments such as electronic trigger circuits [9], tw
mode ring lasers [10], and mammalian neuronal netwo
[11]. The possible importance of SR for the process
of information in neural systems seems evident at all le
els of information processing. Indeed, it has long be
recognized that noise can improve the performance of c
tain neural networks [12], and that an optimum noise le
0031-9007y99y82(8)y1620(4)$15.00
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can achieve the maximum improvement. SR in low
mensional dynamical systems with attractors is by no
familiar phenomenon, but SR in spatially distributed s
tems or the systems with limit cycles remains the focus
current research.

In this Letter, we investigate SR in the globally coupl
oscillator system with time delay. We choose the para
ter values with which the system shows multistability
a desynchronized state and two synchronized states
different collective frequencies. We apply a weak perio
external signal to the system, and measure SNR a
function of the input noise strength showing a peak
an optimum noise strength: the characteristic signatur
SR. We also investigate SR in the system with tim
delayed self-interaction which shows the bistability
limit cycles.

A system ofN globally coupled oscillators under stud
is described by the equation of motion

dfistd
dt

­ v 2 b sinffistdg

2
K
N

NX
j­1

sinffistd 2 fjst 2 tdg , (1)

wherefi, i ­ 1, 2, . . . , N , is the phase of theith oscil-
lator. v is an intrinsic frequency that is uniformly give
to each oscillator. The sum in Eq. (1) runs over all
cillators describing the time-delayed interaction which
pends on the phase difference of two oscillators with de
time t. The second term on the right-hand side of Eq.
represents the pinning force introduced to mimic the
namics of limit-cycle oscillators or excitable elemen
[13–15]. Here, we choose the parameter values of the
tem asv ­ 1, b ­ 0.5, K ­ 1, and t ­ 3 with which
the system shows the multistability of a desynchroni
state and two synchronized states with different collec
frequencies [5].

To investigate SR in the system we apply the we
periodic signal to the system in the presence of addi
© 1999 The American Physical Society
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noises obtaining the stochastic differential equation

dfistd
dt

­ v 2 b sinffistdg

2
K
N

NX
j­1

sinffistd 2 fjst 2 tdg

1 e sinsVtd 1 jistd , (2)

where e and V are the amplitude and frequency of t
signal, respectively. In Eq. (2)jistd’s are independen
Gaussian white noises characterized by

kjistdl ­ 0 ,

kjistdjjst0dl ­ 2Ddijdst 2 t0d ,

wherek· · ·l means an ensemble average overjistd’s. D
measures intensity of the additive noisesjistd’s. Here, we
consider the signal withe ­ 0.2, which does not induc
the transition among the multistable states in the abs
of noise, for various values ofV.

When N ­ 1, the stochastic equation (2) describ
the motion of an oscillator with self-interaction delay
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FIG. 1. Plot of time evolutions ofvav ; k df

dt l averaged ove
time interval (a) Dt ­ 0.1 for the system withN ­ 1 and
e ­ D ­ 0 and (b)Dt ­ 10 for the system withN ­ 1, e ­
0.2, V ­ 0.01, and D ­ 0.08. Solid and dashed lines in (a
represent two stable limit-cycles with frequenciesvs ­ 0.235
andvf ­ 1.748, respectively. Dashed line in (b) indicates t
signal and solid line in (b) represents the response to the si
ce

s

al.

by t exhibiting bistability of limit cycles with different
frequencies whene ­ D ­ 0. In Fig. 1(a), we show
wavstd, average ofdf

dt over time intervalDt ­ 0.1 at
time t, for the limit cycles obtained from different initia
conditions. Figure 1(a) exhibits bistability of fast and slo
moving states with frequenciesvf ; 1.748 and vs ;
0.235, respectively. In Fig. 1(b), we showvavstd, average
of df

dt over time intervalDt ­ 10, for the oscillator with
V ­ 0.01 at D ­ 0.08. Figure 1(b) exhibits coheren
transitions between the limit cycles to the signal appl
to the oscillator with a missing transition att , 2700.

Here, we introduce the state function of the oscillator

Gstd ; usssvav std 2 vddd ,

which characterizes whether the oscillator is in the f
moving state withvav . v or the slow moving state
with vav , v presenting 1 and 0, respectively. In th
state functionGstd, the modulation of the response du
to the input signal modulation is removed. To meas
output signal intensity we calculate the power spectrum
Gstd. Figure 2 shows the power spectrum for the oscilla
with V ­ 0.01 at D ­ 0.1 exhibiting peaks at the signa
frequencyV and the multiples of the signal frequency2V

and3V.
To observe SR in the system we calculate SNR from

usual formula,

SNR ­ 10 log10

∑
S

NsVd

∏
in dB, whereS is the output signal strength given by th
area under the fundamental peak in the power spectral
sity andNsVd is the noise level at the fundamental fr
quency. The results for the oscillator with three differe
signal frequencies are shown in Fig. 3 exhibiting a pea
an optimum noise level; the characteristic signature of S

To investigate SR in theN globally coupled oscillator
system we characterize the state of the system calcula
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FIG. 2. Plot of power spectrum of the time series of the st
function Gstd for the system withN ­ 1, e ­ 0.2, V ­ 0.01,
andD ­ 0.1.
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FIG. 3. Plot of SNR as a function ofD for the system with
N ­ 1, e ­ 0.2, and V ­ 0.01 (e), 0.05 (n), and 0.1 (h).
Lines are merely guides to the eyes.

the correlation functionCstd defined by

Cstd ­
2

NsN 2 1d

X
sijd

coskfistd 2 fjstdl ,

where the summation is over all pairs of oscillato
Cstd presents 1 for the perfectly synchronized state
0 for the perfectly desynchronized state. In Fig. 4,
show Cav std and vavstd, averages ofCstd and df

dt over
time intervalDt ­ 10, for the system withN ­ 10, e ­
0.2, andV ­ 0.01 at D ­ 0.08. Figure 4 exhibits three
states of the system denoted byF, S, and U which
represent the fast moving synchronized state, slow mo
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FIG. 4. Plot of time evolutions ofCav and vav averaged
over time interval Dt ­ 10 for the system withN ­ 10,
e ­ 0.2, V ­ 0.01, andD ­ 0.08. Dashed line represents th
signal applied to the system.F, S, and U indicate the fast
moving synchronized state, slow moving synchronized st
and desynchronized state, respectively.
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synchronized state, and desynchronized state, respect
The states are characterized by the following condition

F: vav . v and Cav , 1 ;

S: vav , v and Cav , 1 ;

U: vav , v and Cav , 0 .

Figure 4 also shows transitions among the three st
correlated with the signal applied to the system.

To remove the modulation of the response due to
input signal modulation we introduce the state function
the system as

GN std ­ sgnsssvav std 2 vdddusssCav std 2 0.4ddd ,

which presents 0, 1, and21 for U, F, and S states,
respectively. The power spectrum ofGN std for the system
with N ­ 10, e ­ 0.2, andV ­ 0.1 atD ­ 0.1 is shown
in Fig. 5 exhibiting peaks at the signal frequencyV and
the multiples of the signal frequency2V and 3V. The
broad peak at3V comes from the existence of the transie
U state inserted in the transition betweenS andF states.
Figure 6 shows SNR as a function ofD for various
system sizes withe ­ 0.2 andV ­ 0.1 exhibiting peaks
at optimum noise levels; characteristic signature of S
As N increases, the width of the peak in SNR decrea
approaching a finite value in the limit ofN ! `.

Figure 6 also shows the fast increase of SNR at smaD
and the slow decrease of SNR at largeD. While the fast
increase of SNR at smallD results from the interplay o
the noise and the input signal, the slow decrease of SN
largeD comes from the pure stochastic switchings amo
the multistable states,F, S, and U by the noise. The
pure stochastic switchings are present even in the abs
of the input signal at largeD. As the noise intensity
increases, the pure stochastic switching frequency
increases, leading to the slow decrease of SNR at largD.
As N increases the pure noise effect decreases due to
averaging, i.e., the cooperation of independent noises a
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FIG. 5. Plot of power spectrum of the time series of the s
functionGN std for the system withN ­ 10, e ­ 0.2, V ­ 0.1,
andD ­ 0.1.
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FIG. 6. Plot of SNR as a function ofD for the system with
e ­ 0.2, V ­ 0.1, andN ­ 10 (e), 20 (1), 30 (h), 40 (3),
and 50 (n). Lines are merely guides to the eyes.

different oscillators reduces the pure stochastic switchin
This results in the narrowing of the width of the peak
SNR asN increases. In the limit ofN ! `, the self-
averaging removes the pure stochastic switching, lea
the width of the peak in SNR with a finite value due to t
interplay of the noise and the input signal.

In conclusion, we have investigated the coupled osc
tor systems with time delay in the presence of the addi
noise and the weak periodic signal. The system was
sented as a model for the multiple perception of ambigu
or reversible figures, which is characterized by stocha
switchings in perception. We have showed SR in the s
tem which implies that the stochastic switchings in m
tiple perception may be maximized at an optimum no
level. It would be interesting if our results can be tes
in psychological systems. We have also investigated
in the oscillator with time-delayed self-interaction whi
shows bistability of two limit-cycles.
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