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Dynamics of Self-Organized Delay Adaptation
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Adaptation of interaction delays is essential for the functioning of many natural and technical systems.
We introduce a novel framework for studying the dynamics of delay adaptation in systems which
optimize coincidence of inputs. For the important case of periodically modulated input we derive
conditions for the existence and stability of solutions which constrain the set of mechanisms for reliable
delay adaptation. Using numerical examples we show that our approach is applicable to more general
than periodic input patterns such as Poissonian point processes with coordinated rate fluctuations.
[S0031-9007(99)08395-7]

PACS numbers: 87.10.+e, 02.30.Ks, 87.18.Sn

Distributed systems occur ubiquitously in the physical,receives its input via delay lines (Fig. 1a). THhah
biological, and social sciences. A fundamental problenmaction potential (spike) at théth presynaptic neuron
concerns how the flow of information from the distinct, occurs at timet;, (i = 1,...,N, k € Z), and after a
independent components can best be regulated to optilelay 7;, the excitatory postsynaptic potential arrives
mize a prespecified performance of the network. For exat the postsynaptic neuron, where it contributes to the
ample, in parallel computing machines the asynchronousiembrane potentidll according to the synaptic efficacy
output of independent processors must be integrated t@;. The input/ to the postsynaptic neuron then reads
yield well-defined results [1]. In the brain, time delays (1) = >.;, ;8(t — (t;x + 7;)) o E(t), whereo denotes
arise because interneural distances and axonal conductiopnvolution ands(-) is the Dirac delta distribution. The
times are finite. In several sensory systems, delay linegostsynaptic neuron is a nonlinear threshold device such
are essential for coordinating activity, e.g., the auditoryas a Hodgkin-Huxely neuron [8] or, more conveniently,
system of barn owls, echo location in bats, and the lateradn integrate-and-fire neuron [9,10]. At times the
line system of weakly electric fish [2]. postsynaptic neuron fires, depending on this input and its

Several models for supervised delay adaptation havewn previous activations.
been developed [3]. However, these are not always We employ a local adaptation rule for neural interac-
applicable since there is no global teacher signal in mangion delays which was already proposed by Hebb [11]
systems. There is some evidence that unsupervisgg. 63). The Hebbian learning rule depends on cor-
activity-dependent adaptation of delays occurs in the nerelations between presynaptic and postsynaptic activity
vous system [4]. Here we introduce a novel framework towithin a certain time window. Assume that temporal
describe the dynamics of self-organized delay adaptation
expressed in the form of integro-differential equations
which permit the mechanisms of delay adaptation to be

explored in a precise manner. We illustrate our results W, (X)
with a study of delay adaptation in a network of neurons.

Two mechanisms have been proposed for the self
organized adaptation of transmission delays in the nervous X
system. One mechanism (“delay shift”) assumes that the
transmission delays are altered [5,6]. This mechanism is W, (X)

possible because transmission velocities in the nervous
system can be altered, for example, by changing the
length and thickness of dendrites and axons, the extent
of myelination of axons, or the density and type of
ion channels. The second mechanism (“delay selection”)
supposes that a range of delay lines are present in tHdG. 1. (a) Overview of the neural network. (b) Schematic

beginning from which, during development, appropriateexamples for the window function®,, and W, corresponding

to weight adaptation (top) and delay adaptation (bottom),
subsets become selected [7]. respectively. In the case of a finite rise time of the postsynaptic

Consider a neural network consisting of a large numbepotential, £, both functions have to be slightly shifted to the left
of presynaptic neurons and one postsynaptic neuron whiabn the abscissa [7].
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pattern35‘ = (9,...,9y)T occur at timest; such that the learning rules described in the previous section. The
at synapsei there is activation at times;; =, +  dynamics of the input are governed by two simultaneous
9¥;. Hebbian adaptation usually corresponds to changesquations: a balance equation for the input density,
of ® = (w1,...,wy)" according to the contributions 9 9
of the corresponding synapses to the occurrence of a EJ(T,I) = —a—[J(T, Hu(r,0)] + 0(7,1), (2)
postsynaptic spike [7]. In our case, this means that T
synapses whose contributions arrive simultaneously witland a continuity equation folp(r,?), indicating the
the postsynaptic spike become strengthened, while otrsonservation of the number of neural connections,
ers do not change or even become weakened. The learn- 9 9
ing rule then readd\ w; « W,(tx + & + 7 — t,) (i = —p(r,1) = ——[p(r,)v(r,1)]. (3)
1,...,N), whereW, (x) represents a learning window that ot o7
is maximal just before the time of spiking (Fig. 1b, with The drift velocity, v(r,t), and the source ternQ(r,1),
a slight shift ofW,, to the left). Intuitively, this rule leads will be defined below according to Hebbian principles.
to a selection of delay lines for which the effects align atWhile in general,p and » will be modified simultane-
the soma [7]. A similar Hebbian scheme can be used fopusly, we consider here the two limiting cases of delay
delay shift,Ar; « W,(t; + 9% + 7, — t;), whereW, de-  shift and delay selection which serve to illucidate basic
notes a learning window for delay adaptation [6),(x)  mechanisms.
should be positive when the presynaptic contribution Case 1: Delay shift—In this case, the weights are not
precedes the postsynaptic spike, and negative in the othgrodified and the source termi(r, ), on the right-hand
case (Fig. 1b, with a slight shift d¥, to the left). This side of (2) vanishes. The dynamics are governed by (3),
rule will adjust the delays such that their effects will align where the drift velocityy = d7/dt, of the delays realizes
in time at the soma [6]. the Hebbian adaptation,
A common framework of investigating the dynamics 2
introduced by the above learning rules can be obtained v(r,1) = %[ W.(r — 7)P(r',)d7’,  (4)
by considering a continuous set of input connections w
described by two functionsp(7,t) and w(7,t), for the  and y, denotes the learning rate. For delayswhere
delays and weights, respectivelyp(r,t)dr gives the p(7,0) # 0, we assumew(r,0) = 1 without loss of
fraction of connections with delays ir; 7 + d7], and  generality, and (2) and (3) imply that(r,7) = 1 for all ¢
w(7,t) is the average weight of connections with delayif p(7,t) # 0.
7. Assume thatp and w change on a slow time scale The distribution of spike timesP(r,t), of a neuron
t such that their temporal development is determinedlepends on the input and its statistics. In general,
by an average over an ensemble of presynaptic inpuhe input patterns appear irregularly and are obscured
patterns; the faster time scale of neuronal dynamic®y random nonsynchronous background activity. The
is described by the variable. This assumption is spike generation of the neuron also depends on various
equivalent to assuming that delays in the nervous systearameters as its own firing history, the timing of inputs,
adapt on a developmental time scale, though we dand on the dynamics of the synapses. In the following, we
not exclude the possibility of post-ontogenetic changesconsider the firing times of an integrate-and-fire neuron
Without loss of generality, the input patterns consist[10] which receives periodic input with periofl, #;, =
of synchronous firing of a portion of the presynaptick7. In this case the adaptation dynamics can be evaluated
neurons such that the activation time offsets of thedy defining a periodic continuation qf(z,1), p(7,1) =
corresponding synapses vanish € O) Note, however, p(7 + T,1).
that other choices are equally possible and mathematically For the distribution of spike times we assume a lin-
equivalent by transforming; into an effective synaptic ear neural responseP(r,r) = BJ(r,t). Whereas an
delay; == 7; + 0. integrate-and-fire neuron receiving periodic input can ex-
In this continuous description, the input densityr,z)  hibit phase locking, aperiodic firing, or quenching when
provided by the synapses at timeafter presentation of a firing eventually stops [14], it has been shown that adding
pattern has the particularly simple form a small amount of noise to the input approximately lin-
. earizes the behavior [15]. Therefore, our approximation
I(r.1) = o(r.0)p(r.1) (1) is valid if the input is sufficiently high and if there is some
[12]. The general case with explicit postsynaptic poten+tandom background activity. Linear neural behavior may
tials will be discussed elsewhere [13]. also occur even without background noise. A numerical
The input densityJ(r,t), as a function ofr results example is shown in Fig. 2.
in a distribution of spike times of the postsynaptic neuron, Equation (3) has two equilibrium solutions. The first
P(r,t) « >, 8(r — 7)), wherer), denotes thexth spike is the homogeneous solutignz, ) = p, around which
time. The firing of the postsynaptlc neuron in turn actsa linear stability analysis yields eigenvalugs with
on the weightsw (7, ) and the delayg (7, ) via one of  ReA,) = 27) 2By, pon Im[W,.(—27n/T)]/T, where
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FIG. 2. Example of a firing distribution?(r,¢) (histogram), /.\J
of an integrate-and-fire neuron which is proportional to the 0 0 5
input, J(7,7) (solid line) for fixed r. In this case, the 00 02 o4 06 08 10 00 0z 04 08 08 10

periodicity of the input implies that the addition of input noise
is unnecessary. The histogram is rescaled by a constant fact
to facilitate comparison.® = 1, T = 1.2.

1G. 3. Numerical iteration of (3) witf¥. as used in Fig. 1b.

a) Initial delay distributionp(7,0) = 1 + £(7), where £(7)

is Gaussian white noise. (b)—(¢h)(7,?) for r = 12.0, 18.0,
and 20.0, respectively. Two peaks transiently emerge and
. then merge into a single delta peak which corresponds to the
W, is the Fourier transform of the window function equilibrium solution of the distribution of delaysT = 1.0,

W,. For an antisymmetric window function such as theB8y- = 0.1, ¢ = 0.2.
one in Fig. 1b at least one of the RE,) exceeds zero,
and the solution is unstable. The second equilibriu
solution is given byp(7,t) = 8(r — 79) provided that

> . W.(nt) = 0 which is the case for antisymmetric

Motal input of the postsynaptic neuron is not conserved.
Equations (2) and (3) result in

window functions. The solutions form a one-dimensional dw(r,t)

manifold described by a parameteyr € [0; T] which is a p(r.)—— = Q0(r.1). (5)
delay offset common to all input neurons. The Liapunov ) o

functional  L[p] = [p(r.t)(r — [ p(r',0)7' dr')? dr From a straightforward generalization of the Hebb rule,

yields the result that the equilibrium solutions We obtain the source density
are marginally stable in thery, direction and
stable in the other directions provided thEf(x) > 0 for

x < 0andW,(x) < 0forx > 0. (@) T

We llustrate our results for the special case where
the window function is given by, (x) = —x exp(—x2/ * * Lt
c?)/c, wherec > 0. In this case, the real parts of the | |1l
eigenvalues are given by Re) = 2728y, ponc? X ) ‘

exp(—n?m2c?/T?) > 0. Figure 3 shows the dynamics of 0.04
the change in the distribution of delays(r,t), as the
network evolves in time. Starting from an initial uniform 02

distribution perturbed by random noigdr, 0) (Fig. 3a), HH HH

the delay distributiorp (7, r) progressively contracts to a

single delta peak (Fig. 3d), as expected from the analysis.
During contraction, a bimodal distribution can transiently
appear (Fig. 3c).

The above results also hold for the more general case (g
of nonperiodic and unreliable input patterns which are
superimposed on background activity. Consider, e.g., the
situation where the presynaptic neurons fire according to 0
a Poisson process with a constant background rateAt
certain random times this rate is increased to vajuéor  F|G. 4. Delay shift dynamics with Poissonian input. (a) Sche-
a short time period of lengtlh which, e.g., happens in matic drawing of the spiking behavior of three presynaptic
response to an external stimulus. Figure 4 illustrates thateurons. Action potentials occur independently in all neurons
also under these conditions, the delay shift dynamics magccordmg to a Poisson point process with raje During

. AT resentation of a stimulus (bar), this rate is increasea,to
yield narrow delay d'St”th'O”S- . (b) Randomized delay distributiom,(7), prior to learning and

Case 2: Delay selection-For pure delay selection, (c) after 1700 learning stepsN = 400, ® = 1, w, = 0.005,
the drift velocity of the delaysy(7, ), vanishes and the vy, = 0.001, r, = 0.04, r, = 12.0, andA = 0.03.
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O(r,1) = yoo(r,1)p(7,1) [i Wo(r — 7)P(r',1)d7’,
(6)

with y, denoting the corresponding learning rate. In
analogy to the previous case, a periodic continuation
of w(r,t) is introduced: w(7,t) = w(r + T,t), and
without loss of generality we assumér,0) = 1, which
implies p(7,t) = 1 for arbitraryt becausev(7,r) = 0.
Equation (5) has an equilibrium solutiom(7,t) =
wo provided that [©_ W, (x)dx = 0. The real parts
of the eigenvalues are given by RE,) = /27 8 X
Yo woWo(—nw), whereW,, is the Fourier transform of
the window functionW,,. For a symmetric window func-
tion such as the one shown in Fig. 1b, the homogeneous
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Self-organized delay adaptation in sensory neural sys-
tems requires that information carried along separate
axons be regulated such that these signals arrive at a poEc—
synaptic neuron simultaneously. Our analysis places con-
straints that ensure that stable solutions exist for arbitrary
temporal inputs. A comparison of our results with recent
experimental estimations of Hebbian learning windows
[16] indicates that the interactions in cortex, in fact, self-
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We anticipate that it will be possible to incorporate these
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of the window functions and the neural network architec-
ture. By analogy with other parallel computing devices,
the nervous system may also have, as yet undiscovered,
mechanisms to regulate temporally staggered information
flow based on delay adaptation.
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