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Dynamics of Self-Organized Delay Adaptation
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Adaptation of interaction delays is essential for the functioning of many natural and technical systems
We introduce a novel framework for studying the dynamics of delay adaptation in systems which
optimize coincidence of inputs. For the important case of periodically modulated input we derive
conditions for the existence and stability of solutions which constrain the set of mechanisms for reliable
delay adaptation. Using numerical examples we show that our approach is applicable to more gener
than periodic input patterns such as Poissonian point processes with coordinated rate fluctuation
[S0031-9007(99)08395-7]
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Distributed systems occur ubiquitously in the physica
biological, and social sciences. A fundamental proble
concerns how the flow of information from the distinc
independent components can best be regulated to o
mize a prespecified performance of the network. For e
ample, in parallel computing machines the asynchrono
output of independent processors must be integrated
yield well-defined results [1]. In the brain, time delay
arise because interneural distances and axonal conduc
times are finite. In several sensory systems, delay lin
are essential for coordinating activity, e.g., the audito
system of barn owls, echo location in bats, and the late
line system of weakly electric fish [2].

Several models for supervised delay adaptation ha
been developed [3]. However, these are not alwa
applicable since there is no global teacher signal in ma
systems. There is some evidence that unsupervi
activity-dependent adaptation of delays occurs in the n
vous system [4]. Here we introduce a novel framework
describe the dynamics of self-organized delay adaptat
expressed in the form of integro-differential equation
which permit the mechanisms of delay adaptation to
explored in a precise manner. We illustrate our resu
with a study of delay adaptation in a network of neurons

Two mechanisms have been proposed for the se
organized adaptation of transmission delays in the nervo
system. One mechanism (“delay shift”) assumes that t
transmission delays are altered [5,6]. This mechanism
possible because transmission velocities in the nervo
system can be altered, for example, by changing t
length and thickness of dendrites and axons, the ext
of myelination of axons, or the density and type o
ion channels. The second mechanism (“delay selectio
supposes that a range of delay lines are present in
beginning from which, during development, appropria
subsets become selected [7].

Consider a neural network consisting of a large numb
of presynaptic neurons and one postsynaptic neuron wh
0031-9007y99y82(7)y1594(4)$15.00
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receives its input via delay lines (Fig. 1a). Thekth
action potential (spike) at theith presynaptic neuron
occurs at timeti,k (i ­ 1, . . . , N, k [ Z), and after a
delay ti, the excitatory postsynaptic potentialE arrives
at the postsynaptic neuron, where it contributes to
membrane potentialU according to the synaptic efficacy
vi. The input I to the postsynaptic neuron then rea
Istd ­

P
i,k vidssst 2 sti,k 1 tidddd ± Estd, where±denotes

convolution andds?d is the Dirac delta distribution. The
postsynaptic neuron is a nonlinear threshold device s
as a Hodgkin-Huxely neuron [8] or, more convenientl
an integrate-and-fire neuron [9,10]. At timests the
postsynaptic neuron fires, depending on this input and
own previous activations.

We employ a local adaptation rule for neural intera
tion delays which was already proposed by Hebb [1
(p. 63). The Hebbian learning rule depends on c
relations between presynaptic and postsynaptic activ
within a certain time window. Assume that tempor

t1,k tN,ktN-1,ktN-2,kt3,kt2,k

ω1 ω2 ω3 ωΝωΝ−1ωΝ−2

τ1 τ2 τ3 τN-1 τNτN-2

Σ
Θ

(a) (b)

x

x

W (x)ω

W (x)τ

FIG. 1. (a) Overview of the neural network. (b) Schema
examples for the window functionsWv andWt corresponding
to weight adaptation (top) and delay adaptation (bottom
respectively. In the case of a finite rise time of the postsynap
potential,E, both functions have to be slightly shifted to the le
on the abscissa [7].
© 1999 The American Physical Society
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patterns $q ­ sq1, . . . , qN dT occur at timestk such that
at synapsei there is activation at timesti,k ­ tk 1

qi. Hebbian adaptation usually corresponds to chang
of $v ­ sv1, . . . , vN dT according to the contributions
of the corresponding synapses to the occurrence o
postsynaptic spike [7]. In our case, this means th
synapses whose contributions arrive simultaneously w
the postsynaptic spike become strengthened, while o
ers do not change or even become weakened. The lea
ing rule then readsDvi ~ Wvstk 1 qi 1 ti 2 tsd (i ­
1, . . . , N), whereWvsxd represents a learning window tha
is maximal just before the time of spiking (Fig. 1b, with
a slight shift ofWv to the left). Intuitively, this rule leads
to a selection of delay lines for which the effects align a
the soma [7]. A similar Hebbian scheme can be used f
delay shift,Dti ~ Wtstk 1 qi 1 ti 2 tsd, whereWt de-
notes a learning window for delay adaptation [6].Wtsxd
should be positive when the presynaptic contributio
precedes the postsynaptic spike, and negative in the ot
case (Fig. 1b, with a slight shift ofWt to the left). This
rule will adjust the delays such that their effects will align
in time at the soma [6].

A common framework of investigating the dynamic
introduced by the above learning rules can be obtain
by considering a continuous set of input connection
described by two functions,rst, td and vst, td, for the
delays and weights, respectively.rst, td dt gives the
fraction of connections with delays inft; t 1 dtg, and
vst, td is the average weight of connections with dela
t. Assume thatr and v change on a slow time scale
t such that their temporal development is determine
by an average over an ensemble of presynaptic inp
patterns; the faster time scale of neuronal dynami
is described by the variablet. This assumption is
equivalent to assuming that delays in the nervous syst
adapt on a developmental time scale, though we
not exclude the possibility of post-ontogenetic change
Without loss of generality, the input patterns consi
of synchronous firing of a portion of the presynapti
neurons such that the activation time offsets of th
corresponding synapses vanish ($q ; $0). Note, however,
that other choices are equally possible and mathematica
equivalent by transformingti into an effective synaptic
delayt̃i :­ ti 1 qi.

In this continuous description, the input densityJst, td
provided by the synapses at timet after presentation of a
pattern has the particularly simple form

Jst, td ­ vst, tdrst, td (1)

[12]. The general case with explicit postsynaptic pote
tials will be discussed elsewhere [13].

The input density,Jst, td, as a function oft results
in a distribution of spike times of the postsynaptic neuro
Pst, td ~

P
m dst 2 tp

md, wheretp
m denotes themth spike

time. The firing of the postsynaptic neuron in turn ac
on the weightsvst, td and the delaysrst, td via one of
es
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the learning rules described in the previous section. T
dynamics of the input are governed by two simultaneo
equations: a balance equation for the input density,

≠

≠t
Jst, td ­ 2

≠

≠t
fJst, tdyst, tdg 1 Qst, td , (2)

and a continuity equation forrst, td, indicating the
conservation of the number of neural connections,

≠

≠t
rst, td ­ 2

≠

≠t
frst, tdyst, tdg . (3)

The drift velocity, yst, td, and the source term,Qst, td,
will be defined below according to Hebbian principles
While in general,r and v will be modified simultane-
ously, we consider here the two limiting cases of dela
shift and delay selection which serve to illucidate bas
mechanisms.

Case 1: Delay shift.—In this case, the weights are no
modified and the source term,Qst, td, on the right-hand
side of (2) vanishes. The dynamics are governed by (
where the drift velocity,y ­ dtydt, of the delays realizes
the Hebbian adaptation,

yst, td :­ gt

Z `

2`

Wtst 2 t0dPst0, td dt0, (4)

and gt denotes the learning rate. For delayst, where
rst, 0d fi 0, we assumevst, 0d ­ 1 without loss of
generality, and (2) and (3) imply thatvst, td ­ 1 for all t
if rst, td fi 0.

The distribution of spike times,Pst, td, of a neuron
depends on the input and its statistics. In gener
the input patterns appear irregularly and are obscur
by random nonsynchronous background activity. Th
spike generation of the neuron also depends on vario
parameters as its own firing history, the timing of input
and on the dynamics of the synapses. In the following, w
consider the firing times of an integrate-and-fire neuro
[10] which receives periodic input with periodT , tk ­
kT . In this case the adaptation dynamics can be evalua
by defining a periodic continuation ofrst, td, rst, td ­
rst 1 T , td.

For the distribution of spike times we assume a lin
ear neural response,Pst, td > bJst, td. Whereas an
integrate-and-fire neuron receiving periodic input can e
hibit phase locking, aperiodic firing, or quenching whe
firing eventually stops [14], it has been shown that addi
a small amount of noise to the input approximately lin
earizes the behavior [15]. Therefore, our approximatio
is valid if the input is sufficiently high and if there is some
random background activity. Linear neural behavior ma
also occur even without background noise. A numeric
example is shown in Fig. 2.

Equation (3) has two equilibrium solutions. The firs
is the homogeneous solutionrst, td ; r0 around which
a linear stability analysis yields eigenvaluesln with
Reslnd ­ s2pd3y2bgtr0n ImfW̃ts22pnyTdgyT , where
1595
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FIG. 2. Example of a firing distribution,Pst, td (histogram),
of an integrate-and-fire neuron which is proportional to th
input, Jst, td (solid line) for fixed t. In this case, the
periodicity of the input implies that the addition of input nois
is unnecessary. The histogram is rescaled by a constant fa
to facilitate comparison.Q ­ 1, T ­ 1.2.

W̃t is the Fourier transform of the window function
Wt . For an antisymmetric window function such as th
one in Fig. 1b at least one of the Reslnd exceeds zero,
and the solution is unstable. The second equilibriu
solution is given byrst, td ­ dst 2 t0d provided thatP`

n­2` Wtsntd ­ 0 which is the case for antisymmetric
window functions. The solutions form a one-dimension
manifold described by a parametert0 [ f0; T g which is a
delay offset common to all input neurons. The Liapuno
functional Lfrg ­

R
rst, td ssst 2

R
rst0, tdt0 dt0ddd2 dt

yields the result that the equilibrium solution
are marginally stable in the t0 direction and
stable in the other directions provided thatWtsxd . 0 for
x , 0 andWtsxd , 0 for x . 0.

We illustrate our results for the special case whe
the window function is given byWtsxd ­ 2x exps2x2y
c2dyc, wherec . 0. In this case, the real parts of the
eigenvalues are given by Reslnd ­ 2p5y2bgtr0n2c2 3

exps2n2p2c2yT2d . 0. Figure 3 shows the dynamics o
the change in the distribution of delays,rst, td, as the
network evolves in time. Starting from an initial uniform
distribution perturbed by random noiserst, 0d (Fig. 3a),
the delay distributionrst, td progressively contracts to a
single delta peak (Fig. 3d), as expected from the analys
During contraction, a bimodal distribution can transient
appear (Fig. 3c).

The above results also hold for the more general ca
of nonperiodic and unreliable input patterns which a
superimposed on background activity. Consider, e.g.,
situation where the presynaptic neurons fire according
a Poisson process with a constant background rate,rb. At
certain random times this rate is increased to valuerp for
a short time period of lengthD which, e.g., happens in
response to an external stimulus. Figure 4 illustrates t
also under these conditions, the delay shift dynamics m
yield narrow delay distributions.

Case 2: Delay selection.—For pure delay selection,
the drift velocity of the delays,yst, td, vanishes and the
1596
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FIG. 3. Numerical iteration of (3) withWt as used in Fig. 1b.
(a) Initial delay distributionrst, 0d ­ 1 1 jstd, where jstd
is Gaussian white noise. (b)–(d)rst, td for t ­ 12.0, 18.0,
and 20.0, respectively. Two peaks transiently emerge an
then merge into a single delta peak which corresponds to t
equilibrium solution of the distribution of delays.T ­ 1.0,
bgt ­ 0.1, c ­ 0.2.

total input of the postsynaptic neuron is not conserve
Equations (2) and (3) result in

rst, td
≠vst, td

≠t
­ Qst, td . (5)

From a straightforward generalization of the Hebb rule
we obtain the source density

1 1.1 1.2 1.3 1.4 1.50

0.02

0.04

p(
τ)

(b)

(a)

t

1.1 1.15 1.2 1.25 1.3
0
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0.1

τ

p(
τ) (c)

FIG. 4. Delay shift dynamics with Poissonian input. (a) Sche
matic drawing of the spiking behavior of three presynapti
neurons. Action potentials occur independently in all neuron
according to a Poisson point process with raterb . During
presentation of a stimulus (bar), this rate is increased torp .
(b) Randomized delay distribution,pstd, prior to learning and
(c) after 1700 learning steps.N ­ 400, Q ­ 1, v0 ­ 0.005,
gt ­ 0.001, rb ­ 0.04, rp ­ 12.0, andD ­ 0.03.
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Qst, td ­ gvvst, tdrst, td
Z `

2`

Wvst 2 t0dPst0, td dt0 ,

(6)
with gv denoting the corresponding learning rate. I
analogy to the previous case, a periodic continuatio
of vst, td is introduced: vst, td ­ vst 1 T , td, and
without loss of generality we assumerst, 0d ; 1, which
impliesrst, td ­ 1 for arbitraryt becauseyst, td ; 0.

Equation (5) has an equilibrium solutionvst, td ­
v0 provided that

R`

2` Wvsxd dx ­ 0. The real parts
of the eigenvalues are given by Reslnd ­

p
2p b 3

gvv0W̃vs2nvd, whereW̃v is the Fourier transform of
the window functionWv . For a symmetric window func-
tion such as the one shown in Fig. 1b, the homogeneo
solution is unstable. In contrast to case 1, there is no sta
solution: weight distributionsvst, td ­ Astddst 2 t0d
retain their shape, but explode in size, i.e.,Astd diverges
in finite time. This situation commonly arises in network
with Hebbian learning of synaptic weights [7].

Self-organized delay adaptation in sensory neural sy
tems requires that information carried along separa
axons be regulated such that these signals arrive at a p
synaptic neuron simultaneously. Our analysis places co
straints that ensure that stable solutions exist for arbitra
temporal inputs. A comparison of our results with rece
experimental estimations of Hebbian learning window
[16] indicates that the interactions in cortex, in fact, sel
organize the shortest possible set of delays which yield c
incident input [13]. However, in other applications, suc
as those which arise in industry, traffic flow, and paralle
computing, such a solution would clearly be disastrou
Here the goal is to have the separate inputs not arrive
the same time, but rather arrive in some staggered mann
We anticipate that it will be possible to incorporate thes
scenarios into our framework by an appropriate desig
of the window functions and the neural network architec
ture. By analogy with other parallel computing devices
the nervous system may also have, as yet undiscover
mechanisms to regulate temporally staggered informati
flow based on delay adaptation.
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