VOLUME 82, NUMBER 1 PHYSICAL REVIEW LETTERS 4 ANuARY 1999
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It is shown that the tail in the two-level spectral correlation functRis) for 2D disordered systems
depends on the system geometry and the boundary conditions. In particular, for closed surfaces (with
no boundary)R(s) = —x/(67>8s?), where8 = 1, 2 or4 for the orthogonal, unitary, and symplectic
ensembles, respectively, and= 2(1 — p) is the Euler characteristic of the surface wph'handles”
(holes). The result is valid fop < s < g2 for 8 =1, 4 and forg < s < g3 for 8 = 2, where
g > 1 is the dimensionless conductance. [S0031-9007(98)08123-X]

PACS numbers: 73.20.Fz, 72.15.Rn

Spectral correlations in complex and disordered sysall of the typical features of the critical system and allows
tems are closely related to the basic symmetries of #or a rigorous analysis. This is a 2D weakly disordered
system, the nature of its dynamics, and the structure of thelectron system. The small parameter which allows for
corresponding eigenstates. It is remarkable that there agerigorous treatment is the inverse dimensionless conduc-
few universal spectral statistics which all the generic comtanceg™! = A/E. < 1, wherei/E. = tp = L*/D is
plex and disordered systems obey in the thermodynamithe diffusion time and is the diffusion coefficient. For
(TD) limit. According to the well-known Bohigas- a nottoo large system side<< &, whereé = [ exdg]or
Giannoni-Schmidt conjecture [1], a generic chaoticé = I exgg?] is the localization radius in the orthogonal
system is described by the Wigner-Dyson (WD) spectrabr unitary ensemble, respectively, one can neglect the lo-
statistics which follows from one of the three universalcalization effects and consider the dimensionless conduc-
Gaussian ensembles of random matrices [2]. In contrastanceg as independent of the siZe At such conditions
all of the generic integrable systems obey the Poissothe behavior of the 2D system is similar to the one in the
spectral statistics. Depending on the strength of disordettue critical point.
spectral statistics of @-dimensional disordered system The two-level correlation functioR (s) in such 2D sys-
of noninteracting particles also flow to one of the abovetems has been considered in Ref. [7] for the case of the
universal statistics as the system sizeéends to infinity.  periodic boundary conditionanly. It has been shown that
For strong disorder and for low-dimensional systemshe two-level correlation functiomR(s) is exponentially
(d = 1,2) where all states are localized, the spectralsmall at s > g if one neglects the weak-localization ef-
statistics in the TD limit are Poissonian. For weakly fects. This means that the so-called Altshuler-Shklovskii
disordered 3D systems where all states are extendefB] tail R(s) = C,s 24/2 is absentin 2D systems. This
the spectral statistics are identical to the WD [3] in thestatement is true [5] for a generic critical system.

TD limit. In the present Letter we consid&(s) at s > g for

However, the disordered systems with> 2 are an arbitrary 2D surfacé of the areads. We will show
known to undergo the Anderson localization transition athat, in the case where the surface has a nontransparent
a certain critical disorder. At this point the localization boundary, the two-level correlation function has a power-
(correlation) length¢ diverges and the spectral statistics law tail R(s) ~ g~'/2s73/2. Moreover, we will show that
should be independent of the system dizerovided that even in the absence of boundaries (e.g., for the sphere)
the energy differences = sA is measured in units of the correlation functionR(s) still has a power-law tall
the mean level spacing « L~¢. Thus at the Anderson R(s) = Cs~2. This tail ats > g is of the same form
transition there exists a special fixed point, the criticalas the universal WD tail fot < s <« g. However, the
spectral statistics (CSS) [4,5]. coefficientC depends on theopologyof the surface and

An amazing property of some CSS found recently [6]is equal to zero only for the torus topology which is
is the sensitivity to boundary conditions and a shape oé&quivalent to the PBC.

a sample. It will follow from the analysis below that the  The two-level correlation function is defined as

basic properties of the CSS take their “canonical” form for 1 w w
the periodic boundary condition?BC). Other boundary  R(w) = — [<p<E + —>p<E — —>> — 1}, Q)
conditions induce some characteristic features in the CSS p 2 2
which depend on the properties of the boundary. where (- --) denote averaging over all realizations,=

In order to study the qualitative role of the system ge<p(E)) is the average one-electron density of states
ometry for the CSS we consider the system which show$DOS), andp(E) is the DOS for a particular realization
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of disorder:

p(E)=S"'Y 8(E - E,). (2)

In the diffusion region the main contribution to the re-
turn probability is given by the continuous approximation
in Eq. (7). In this approximatiom(z) is well known to
be proportional tal /¢ in 2D systems, thus giving rise to

whereE, are exact one-electron energy levels. Since W§ constantk (). It is the property of all of the critical

are interested in the energy scale= sA which vanishes
in the TD limit, the average DOS is consideredergy
independent

It is remarkable that in the limig > 1 and s > 1
the spectral correlation functio®(s) of the quantum

systems that the main contribution k4z) is independent

of ¢ for sufficiently small times [10,11]. This means that
the tail in R(s) for s > g is determined in critical sys-
tems entirely by theorrectionsto the return probability.
There are two types of such corrections. One source of

problem can be expressed [8] entirely in terms of the,grrections is thaveak-localizatioreffects considered in

eigenvaluese, A/ of the classical diffusion problem  Ref [7] or the finite-size corrections to scaling considered
with the Neumann boundary conditions which correspongy, ref. [10]. In 2D systems they lead to

to the nontransparent boundary:

R(s) = #Rez S 3
w

(4 — is)?’

whereB = 1, 2, or 4 for the orthogonal, unitary, and sym-
plectic ensembles, respectively [2]. Note that the dimen
sionless conductange= e; — gy is just the gap between

the lowest £y = 0) and the first nonzero eigenvalues.

This means that, independently of the details of the

g 2571,

_g—3s—1,
Another source of corrections which has not been consid-
ered so far is the corrections to the continuous approxima-
tion in Eq. (7) that is the difference between the sum and
the corresponding integral. This correction is sensitive to
the boundary conditionsindtopologyof the surface.
The sensitivity ofp(r) to the boundary conditions origi-

B =1,4.

RWL(S) -~ :8 =7 (8)

electron conduction band_structure and the short—rangﬁates from ther dependence of the return probability
correlated random potential, at > 1 there exists a

region of s where the electron level correlations de endP(t’r)' If the pointr is at a sufficiently small distance
9 5 . PENC, « L from a smooth boundary, the-dependent cor-
only on the spectrure,, of the Laplace-Beltrami operator

A on a curved surface: rection G(t,r,r) = 8P,(¢t,r) to the Green’s function

g ) of the diffusion equation with the Neumann boundary
conditions, is given by the “image sourceSP,(t,r) =
(47 DT) 'exd—x?/DT]. Then, assuming the smooth
boundary of the lengthl one obtains [12] for the cor-
responding correction to thaveragedreturn probability

p(1),

1 d 0
- - y_—

Ag \/G dxt (Eg axj>’ (4)
where G = [G~'];;, G = detG, and G is a metric
tensor on the surface.

Equation (3) can be rewritten in the following form [9]:

K0 = [ m RO = s (i), ©)

if one introduces the classical return probabilityr, r) to
the pointr,

P(1,r) = > exg—re, J[@, ()P, (6)
M
and the averaged return probability,

p(t) = /S drP(1,v) = > exd—te,], 7)
M

where ®,(r) is an eigenfunction of the diffusion

(Laplace-Beltrami) operator and= T /ty = TA/kK is
time in units of the Heisenberg timg.

3])1,(1‘) = /;) ‘BPb(l‘,I’)ﬁ dx = 8\/% (9)

The boundary-induced tail iR(s) is found immediately
from Egs. (5) and (9):

1
 8B(mgy) /22mws)3?”

where g, = D/L?A. Note that for £ ~ L we have
8b ~ 8-

Comparing Egs. (8) and (10), one can see that the
boundary-induced power-law tail iR(s) is larger than
the localization-induced tail if < s < g3 for g8 = 1,4
andg < s < g° for g = 2.

If the boundary is absent at allR,(s) = 0], there

Rb(s) = (10)

Equation (5) sets the relationship between the tail ins still a correction to the continuous approximation in
R(s) ats > 1 and the small-time behavior of the return Eq. (7). This correction isiniversaland depends only

probability p(r) at ¢+ < 1.
t with different behavior ofp(z): the diffusion region
t < 1/g and the ergodic region/g < t < 1. In the
ergodic regionre,, > 1 for all u # 0, so that only the

zero modesy = 0 contributes to Egs. (6) and (7). In this
region p(r) = 1 is independent of, and one obtains the

universal WD resulR(s) = — Wiﬁsfz.

158

There are two regions of

on thetopology of the surface. In order to understand
how such a topological correction may arise at tinfes
which are small compared with the diffusion time, let us
consider the return probabili#(z,r). For timesl < tp

(r < 1/g) the diffusing electron probes only the vicinity
of the starting pointr. Therefore, the correction to the
return probabilityP(z,r) may depend only on thiocal
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curvature. We will show below [see Eq. (18)] that it is the vicinity of the origin (pointr) takes the form:

proportional to the Gauss curvatuig. = k) in a G'=g*=1, G2 =G* = —K. &6, (16)

point r, wherek)) and k? are the principal curvatures. . . .
Information about the topology of a surface arises becau \ghere K is the Ga}uslszlan curvature at a pomnt and_
of the integration over all positions of the starting point igher order terms ig ©are omitted. ‘Then, we obtain
r in Eq. (7). Indeed, according to the Gauss-BonnefOr the Laplace-Beltrami operator [Eq. (4)],

theorem [13], the integral of . over a surfaces is related 02 _x igf LJFiff KB
to the Euler characteristig(S) of the surface: 0ET 9&3 "o "1%% g 08 7107 ag
=A+V.
f Kedo = 2w x(S). (11) A+V. (17)
N As was mentioned above, for small tim&s< tp, the

The quantityy(S) = V + F — E is related to the num- term proportional to the Gaussian curvatukg can
ber of verticesV, edgesE, and facesF of the surface be treated as a perturbation. The return probability
triangulation and depends on tkeennectivityof the sur-  P(z,r) is given by the Green’s functio(z,r,r) of the

face, i.e., on the number of “handles” (holes): diffusion operatoro/o7 — Ag, where7 = DT. Then,
all we should do in order to find the correction to the
x(8) =201 = p), (12) local return probability is to compute the correction to
wherep = 0 for a sphere ang = 1 for a torus. the Green's functionG!" = GOVG©, where G© =
In the simplest case of a sphere where each eigenvalud7?) ' exd—(¢ — &')?/47]. The resultis:
ey, = I(I + 1) of the Laplace-Beltrami operator Eq. (4) 1 K,
is (21 + 1) times degenerate, the topological correction P(t,r) = - + Dr (18)

to p(1) atrg <1 can be obtained by a straightforward ¢ first term in this expression corresponds to the con-
summation in Eq. (7) using the well known [14] formula yi,ous approximation. The second one is the correction

SofW) = [Zpf(D)dl + 5/ (=1/2): due to the local curvatur&,. This very term has been
= 1 1 used in deriving Eq. (14).
p() =D @ + Dexd—1gl(l + 1)] = = T3 In conclusion, we have considered the power-law
=0 & tail in the two-level correlation functiorR(s) for 2D

(1_3) disordered systems with the diffusion motion of electrons.
One can see that for a sphere = 0) the topological  |n the limit of large dimensionless conductanges 1,
correction top(r) at 1g < 1 is a universal constant.  there is an interval of > g, where the tail is entirely
Then using Eq. (12) andp(r) = x(S), we conclude that determined by the geometry of the sample. It consists of
for a generic surface the topological correction reads  the two contributions: a boundary contribution given by
1—p Eqg. (10) and a topqlogical contribuf[ion given by Eg. (15),
3 (14)  which are the main results of this Letter. For closed

Thi ion is time ind d d . di Isurfaces without a boundary, the tail ®(s) for s >
Is correction s time independent and one imme |ate){g is determined only by topology and is of the same
obtains from Eq. (5) a topological tail iR(s):

form as the universal Wigner-Dyson tail for< s < g.
However, the numerical topological prefactor depends on
the connectivity of the surface and is negative for single-
connected surfaces (spheres), zero for surfaces of the torus
%opology, andpositivefor surfaces of higher genus.

5Ptop (1) =

3m2Bs?’
Comparing this correction with the weak-localization

correction Eq. (8), we see that the latter is smaller a We are grateful to B. L. Altshuler, E. Bogomolny, 1V.
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