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It is shown that the tail in the two-level spectral correlation functionRssd for 2D disordered systems
depends on the system geometry and the boundary conditions. In particular, for closed surfaces (with
no boundary),Rssd  2xys6p2bs2d, whereb  1, 2 or 4 for the orthogonal, unitary, and symplectic
ensembles, respectively, andx  2s1 2 pd is the Euler characteristic of the surface withp “handles”
(holes). The result is valid forg ø s ø g2 for b  1, 4 and forg ø s ø g3 for b  2, where
g ¿ 1 is the dimensionless conductance. [S0031-9007(98)08123-X]
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Spectral correlations in complex and disordered sy
tems are closely related to the basic symmetries of
system, the nature of its dynamics, and the structure of
corresponding eigenstates. It is remarkable that there
few universal spectral statistics which all the generic com
plex and disordered systems obey in the thermodynam
(TD) limit. According to the well-known Bohigas-
Giannoni-Schmidt conjecture [1], a generic chaot
system is described by the Wigner-Dyson (WD) spectr
statistics which follows from one of the three universa
Gaussian ensembles of random matrices [2]. In contra
all of the generic integrable systems obey the Poiss
spectral statistics. Depending on the strength of disord
spectral statistics of ad-dimensional disordered system
of noninteracting particles also flow to one of the abov
universal statistics as the system sizeL tends to infinity.
For strong disorder and for low-dimensional system
sd  1, 2d where all states are localized, the spectr
statistics in the TD limit are Poissonian. For weakl
disordered 3D systems where all states are extend
the spectral statistics are identical to the WD [3] in th
TD limit.

However, the disordered systems withd . 2 are
known to undergo the Anderson localization transition
a certain critical disorder. At this point the localizatio
(correlation) lengthj diverges and the spectral statistic
should be independent of the system sizeL, provided that
the energy differencev  sD is measured in units of
the mean level spacingD ~ L2d . Thus at the Anderson
transition there exists a special fixed point, the critic
spectral statistics (CSS) [4,5].

An amazing property of some CSS found recently [6
is the sensitivity to boundary conditions and a shape
a sample. It will follow from the analysis below that the
basic properties of the CSS take their “canonical” form fo
theperiodic boundary conditions(PBC). Other boundary
conditions induce some characteristic features in the C
which depend on the properties of the boundary.

In order to study the qualitative role of the system g
ometry for the CSS we consider the system which sho
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all of the typical features of the critical system and allow
for a rigorous analysis. This is a 2D weakly disordere
electron system. The small parameter which allows f
a rigorous treatment is the inverse dimensionless cond
tanceg21  DyEc ø 1, where h̄yEc  tD  L2yD is
the diffusion time andD is the diffusion coefficient. For
a not too large system sizeL ø j, wherej  l expfgg or
j  l expfg2g is the localization radius in the orthogona
or unitary ensemble, respectively, one can neglect the
calization effects and consider the dimensionless cond
tanceg as independent of the sizeL. At such conditions
the behavior of the 2D system is similar to the one in t
true critical point.

The two-level correlation functionRssd in such 2D sys-
tems has been considered in Ref. [7] for the case of
periodic boundary conditionsonly. It has been shown that
the two-level correlation functionRssd is exponentially
small at s ¿ g if one neglects the weak-localization ef
fects. This means that the so-called Altshuler-Shklovs
[8] tail Rssd  Cds221dy2 is absentin 2D systems. This
statement is true [5] for a generic critical system.

In the present Letter we considerRssd at s ¿ g for
an arbitrary 2D surfaceS of the areaAS. We will show
that, in the case where the surface has a nontranspa
boundary, the two-level correlation function has a powe
law tail Rssd , g21y2s23y2. Moreover, we will show that
even in the absence of boundaries (e.g., for the sphe
the correlation functionRssd still has a power-law tail
Rssd  Cs22. This tail at s ¿ g is of the same form
as the universal WD tail for1 ø s ø g. However, the
coefficientC depends on thetopologyof the surface and
is equal to zero only for the torus topology which i
equivalent to the PBC.

The two-level correlation function is defined as

Rsvd 
1

r2

∑ø
r

µ
E 1

v

2

∂
r

µ
E 2

v

2

∂¿
2 1

∏
, (1)

where k· · ·l denote averaging over all realizations,r 
krsEdl is the average one-electron density of stat
(DOS), andrsEd is the DOS for a particular realization
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of disorder:

rsEd  S21
X
n

dsE 2 End , (2)

whereEn are exact one-electron energy levels. Since w
are interested in the energy scalev  sD which vanishes
in the TD limit, the average DOS is consideredenergy
independent.

It is remarkable that in the limitg ¿ 1 and s ¿ 1
the spectral correlation functionRssd of the quantum
problem can be expressed [8] entirely in terms of th
eigenvalueś mDyh̄ of the classical diffusion problem
with the Neumann boundary conditions which correspo
to the nontransparent boundary:

Rssd 
1

p2b
Re

X
m

1
s´m 2 isd2 , (3)

whereb  1, 2, or 4 for the orthogonal, unitary, and sym
plectic ensembles, respectively [2]. Note that the dime
sionless conductanceg  ´1 2 ´0 is just the gap between
the lowest (́ 0  0) and the first nonzero eigenvalues.

This means that, independently of the details of th
electron conduction band structure and the short-ran
correlated random potential, atg ¿ 1 there exists a
region of s where the electron level correlations depen
only on the spectruḿm of the Laplace-Beltrami operator
DG on a curved surface:

DG 
1p
G

≠

≠xi

µp
G G ij ≠

≠xj

∂
, (4)

where G ij  fĜ21gij, G  detĜ , and Ĝ is a metric
tensor on the surface.

Equation (3) can be rewritten in the following form [9]

Kstd 
Z 1`

2`

ds
2p

e2itsRssd 
1

2p2b
jtjpsjtjd , (5)

if one introduces the classical return probabilityPst, rd to
the pointr,

Pst, rd 
X
m

expf2t´mg fFmsrdg2, (6)

and the averaged return probability,

pstd 
Z

S
drPst, rd 

X
m

expf2t´mg , (7)

where Fmsrd is an eigenfunction of the diffusion
(Laplace-Beltrami) operator andt  TytH  TDyh̄ is
time in units of the Heisenberg timetH .

Equation (5) sets the relationship between the tail
Rssd at s ¿ 1 and the small-time behavior of the return
probability pstd at t ø 1. There are two regions of
t with different behavior ofpstd: the diffusion region
t ø 1yg and the ergodic region1yg ø t ø 1. In the
ergodic regiont´m ¿ 1 for all m fi 0, so that only the
zero modé 0  0 contributes to Eqs. (6) and (7). In this
regionpstd  1 is independent oft, and one obtains the
universal WD resultRssd  2

1
p2b s22.
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In the diffusion region the main contribution to the r
turn probability is given by the continuous approximati
in Eq. (7). In this approximationpstd is well known to
be proportional to1yt in 2D systems, thus giving rise t
a constantKstd. It is the property of all of the critical
systems that the main contribution toKstd is independent
of t for sufficiently small times [10,11]. This means th
the tail in Rssd for s ¿ g is determined in critical sys
tems entirely by thecorrectionsto the return probability.
There are two types of such corrections. One source
corrections is theweak-localizationeffects considered in
Ref. [7] or the finite-size corrections to scaling conside
in Ref. [10]. In 2D systems they lead to

RWLssd ,

(
7g22s21, b  1, 4 .
2g23s21, b  2 . (8)

Another source of corrections which has not been con
ered so far is the corrections to the continuous approxi
tion in Eq. (7) that is the difference between the sum a
the corresponding integral. This correction is sensitive
theboundary conditionsandtopologyof the surface.

The sensitivity ofpstd to the boundary conditions origi
nates from ther dependence of the return probabili
Pst, rd. If the point r is at a sufficiently small distanc
x ø L from a smooth boundary, ther-dependent cor-
rection dGst, r, rd  dPbst, rd to the Green’s function
of the diffusion equation with the Neumann bounda
conditions, is given by the “image source”:dPbst, rd 
s4pDT d21 expf2x2yDT g. Then, assuming the smoot
boundary of the lengthL one obtains [12] for the cor
responding correction to theaveragedreturn probability
pstd,

dpbstd 
Z `

0
dPbst, rdL dx 

L

8
p

pDT
. (9)

The boundary-induced tail inRssd is found immediately
from Eqs. (5) and (9):

Rbssd  2
1

8bspgbd1y2s2psd3y2 , (10)

where gb  DyL 2D. Note that forL , L we have
gb , g.

Comparing Eqs. (8) and (10), one can see that
boundary-induced power-law tail inRssd is larger than
the localization-induced tail ifg ø s ø g3 for b  1, 4
andg ø s ø g5 for b  2.

If the boundary is absent at allfRbssd ; 0g, there
is still a correction to the continuous approximation
Eq. (7). This correction isuniversal and depends only
on the topology of the surface. In order to understan
how such a topological correction may arise at timesT
which are small compared with the diffusion time, let
consider the return probabilityPst, rd. For timesT ø tD

(t ø 1yg) the diffusing electron probes only the vicinit
of the starting pointr. Therefore, the correction to th
return probabilityPst, rd may depend only on thelocal
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curvature. We will show below [see Eq. (18)] that it i
proportional to the Gauss curvatureKr  k

s1d
r k

s2d
r in a

point r, whereks1d and ks2d are the principal curvatures
Information about the topology of a surface arises beca
of the integration over all positions of the starting poin
r in Eq. (7). Indeed, according to the Gauss-Bonn
theorem [13], the integral ofKr over a surfaceS is related
to the Euler characteristicxsSd of the surface:Z

S
Krds  2pxsSd . (11)

The quantityxsSd  V 1 F 2 E is related to the num-
ber of verticesV , edgesE, and facesF of the surface
triangulation and depends on theconnectivityof the sur-
face, i.e., on the numberp of “handles” (holes):

xsSd  2s1 2 pd , (12)

wherep  0 for a sphere andp  1 for a torus.
In the simplest case of a sphere where each eigenva

´m  lsl 1 1d of the Laplace-Beltrami operator Eq. (4
is s2l 1 1d times degenerate, the topological correctio
to pstd at tg ø 1 can be obtained by a straightforwar
summation in Eq. (7) using the well known [14] formulP`

0 fsld ø
R`

21y2 fslddl 1
1

24 f 0s21y2d:

pstd 
X̀
l0

s2l 1 1d expf2tglsl 1 1dg ø
1
tg

1
1
3

.

(13)
One can see that for a spheres p  0d the topological

correction topstd at tg ø 1 is a universal constant
1
3 .

Then using Eq. (12) anddpstd ~ xsSd, we conclude that
for a generic surface the topological correction reads

dptopstd 
1 2 p

3
. (14)

This correction is time independent and one immediate
obtains from Eq. (5) a topological tail inRssd:

Rtopssd  2
1 2 p

3p2bs2 , ss ¿ gd . (15)

Comparing this correction with the weak-localizatio
correction Eq. (8), we see that the latter is smaller
g ø s ø g2 or g ø s ø g3 for b  1, 4 or b  2,
respectively. Note that the topological tail has the sam
form as the universal WD tail. However, the former
valid in thediffusionregions ¿ g while the latter is valid
in theergodicregions ø g.

The result [Eq. (14)] follows from the theory of the
Laplacian on Riemannian manifolds (TLRM) [15] an
has been used [12] to find corrections to the semiclass
density of states in quantum billiards and resonators [1
Here we present an elementary derivation of Eq. (1
which does not require the full power of the TLRM.

For an arbitrary nonsingular pointr on a surface, it is
always possible to choose the local system of coordina
sj1, j2d such that the inverse metric tensorG ijsj1, j2d in
s

.
use
t
et

lue
)
n

d
a

ly

n
at

e
is

d
ical
6].
4)

tes

the vicinity of the origin (pointr) takes the form:

G11  G22  1, G12  G21  2Krj1j2 , (16)

where Kr is the Gaussian curvature at a pointr, and
higher order terms inj1,2 are omitted. Then, we obtain
for the Laplace-Beltrami operator [Eq. (4)],

≠2

≠j
2
1

1
≠2

≠j
2
2

2 Kr

√
≠

≠j1
j1j2

≠

≠j2
1

≠

≠j2
j1j2

≠

≠j1

!
; D̂ 1 V̂ . (17)

As was mentioned above, for small timesT ø tD, the
term proportional to the Gaussian curvatureKr can
be treated as a perturbation. The return probabilit
Pst, rd is given by the Green’s functionGst, r, rd of the
diffusion operator≠y≠t̃ 2 DG , where t̃  DT . Then,
all we should do in order to find the correction to the
local return probability is to compute the correction to
the Green’s functionGs1d  Gs0dV̂Gs0d, where Gs0d 
s4p t̃d21 expf2sj 2 j0d2y4t̃g. The result is:

Pst, rd 
1

4p t̃
1

Kr

12p
. (18)

The first term in this expression corresponds to the co
tinuous approximation. The second one is the correctio
due to the local curvatureKr . This very term has been
used in deriving Eq. (14).

In conclusion, we have considered the power-law
tail in the two-level correlation functionRssd for 2D
disordered systems with the diffusion motion of electrons
In the limit of large dimensionless conductanceg ¿ 1,
there is an interval ofs ¿ g, where the tail is entirely
determined by the geometry of the sample. It consists
the two contributions: a boundary contribution given by
Eq. (10) and a topological contribution given by Eq. (15)
which are the main results of this Letter. For close
surfaces without a boundary, the tail inRssd for s ¿
g is determined only by topology and is of the sam
form as the universal Wigner-Dyson tail for1 ø s ø g.
However, the numerical topological prefactor depends o
the connectivity of the surface and is negative for single
connected surfaces (spheres), zero for surfaces of the to
topology, andpositivefor surfaces of higher genus.
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