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Evidence for Saturation of Channel Transmission from Conductance Fluctuations
in Atomic-Size Point Contacts
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The conductance of atomic-size contacts has a small, random, voltage dependent component
analogous to conductance fluctuations observed in diffusive wires. A new effect is observed in
gold contacts, consisting of a marked suppression of these fluctuations when the conductance of
the contact is close to integer multiples of the conductance quantum. Using a model based on the
Landauer-Bttiker formalism, we interpret this effect as evidence that the conductance tends to be
built up from fully transmitted (i.e., saturated) channels plus a single, which is partially transmitted.
[S0031-9007(99)08417-3]

PACS numbers: 73.23.Ad, 72.10.Fk, 72.15.Lh, 73.40.Jn

Metallic contacts consisting of only a few atoms can beare recorded continuously, while the contact is broken by
obtained using scanning tunneling microscopy or mechanincreasing the voltagéd/p, over the piezoelectric element,
cally controllable break junction [1] techniques. The elec-producing curves as shown in Fig. 2. We use a relatively
trical conductance through such contacts is described ilarge modulation amplitude of 20 mV over the contact (at
terms of electronic wave modes by the Landauer-Bittiken frequency of 46 kHz) in order to have sufficient sensi-
formalism [2]. Each of thev modes forms a channel for tivity and speed of measurement, thus allowing averaging
the conductance, with a transmission probabilify be-  over many different contacts. The integration time of the
tween 0 and 1. The total conductance is given by the surtock-in amplifiers was 10 ms and a reading was taken ev-
over these channets = ZQLI T,Go, whereGy = 2¢%/h ery 100 ms. Between curves, the contact was pushed to-
is the quantum of conductance. By recording histogramgether to a contact conductanz0G, to ensure that a
of conductance values [3] for contacts of simple metalsiew contact geometry was measured each time. All mea-
(Na, Au), a statistical preference was observed for conducssurements were performed on gold samples¥fpurity,
tances near integer values. This statistical preference was vacuum at 4.2 K.
interpreted as an indication that transmitted modes in the The conductance in Fig. 2 shows the typical behavior
most probable contacts are completely operiEd=€ 1,  when breaking gold contacts [5], which consists of plateaus
i.e., saturation of channel transmission), in analogy withwith steps of the ordeG, and a last plateau close to
the conductance quantization observed in 2D electron gas, before entering the tunneling regime. The steps and
devices [4]. Here, we test this interpretation by perform-plateaus inG correspond with atomic rearrangements and
ing a new type of measurement giving access to the secoralastic deformation, respectively, as the contact is pulled

moment of the distribution of th&,’s. apart and finally breaks [6]. At each stepdh we find
The atomic contacts are formed by breaking a gold wire

at low temperatures, and then finely adjusting the size of 1.70 0.94
the contact between the fresh fracture surfaces using a alioo b ¢
piezoelectric element [1]. Figure 1 shows the differential 1681 10.92
conductancej//dV measured as a function of bias voltage = - 1.07
for three atomic-size contacts with different conductance g 91 1090
values, using a modulation voltag® < kz6 (with 6 the g F L0

. 5 164t 40.88
temperature). For each contact, both of the curves for in- = 103
creasing and decreasing bias voltage are given. Measure-n ;¢,| PN loss
ments such as those of Fig. 1 suggest that the fluctuation = L 101
pattern changes randomly between contact configurations © 160} H0.84
and that the amplitude of the fluctuations is suppressed for - 0.99
conductance values ne@y. In order to establish such a 1o T Ts0 =0 o0 50 =0 o so 0%
relation, it is necessary to statistically average over a large Bias voltage (mV)

number of contacts. We do this by measuring the voltage

_ 2 2 FIG. 1. Differential conductancél /dV as a function of bias
dependence of the conductane€/oVv 9°1/9V~) and voltage, measured with a modulation amplitude.35 mV, for

the Cond,UCtance itsel&; = 61/8‘,/) by applying aVOItage, three different contacts withG ~ 1.65G, (a), ~1.02G, (b),
modulation and measuring the first and second harmonic @ind ~0.88G, (c). For all three curves the scale spans
the voltage over a resistor in series with the contact. These12G,.
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FIG. 3. (a) Standard deviation of the voltage dependence of
the conductance versus conductance for 3500 curves. The
FIG. 2. Typical example of the simultaneous measuremengircles are the averages for 300 points, and the squares for
of voltage dependence of the conductarii&@/aV and the 2500 points. The solid and dashed curves depict the calculated
conductances, as a function of piezo voltage,. The graph behavior for a single partially open channel and a random
includes vertical dotted lines that show that the steps in botilistribution over two channels, respectively. The vertical gray
quantities coincide. Two plateaus have been enlarged anknes are the corrected integer conductance values (see text).
offset to show the tiny steps in the conductance. The elongatiofb) Conductance histogram obtained from the same data set.
of the contact is linear witlV, and 10 V corresponds to about The peak in the conductance histogranGatextends to 53 000

1 nm. on they scale. Inset: Schematic diagram of the configuration
used in the analysis.
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corresponding steps inG/dV. Even tiny steps i@, such
as betweeWG, and8Gy, can produce dramatic jumps in in from left and right, respectively), with'|> = |¢|> = T,
9G/aV. and |r'|> = |r|> =1 — T. As illustrated in Fig. 3 (in-
dG/dV has a random sign and magnitude with a bell-set), electron waves transmitted by the contact with am-
shaped distribution. Figure 3a shows the standard deviglitude z, and backscattered to the contact by diffusing
tion ogy = {(9G/aV)?) — (aG/aV)?, as a function paths with amplitudez, have a probability amplitude
of G together with a histogram of conductance valuego be reflectedat the contact. This wave interferes with
(Fig. 3b) determined from 3500 individual curves similar the directly transmitted partial wave and modifies the to-
to the one shown in Fig. 2. One clearly observes a veryal conductance. A similar contribution comes from the
sharp minimum in Fig. 3a at a conductanGg and less trajectories on the other side of the contact. These inter-
pronounced minima near 2, 3, and evlf,. This new ference terms will be sensitive to changes in the phase ac-
observation forms the central result of this paper. Fig-cumulated along the trajectories, which is determined by
ure 3a shows the combined results for three gold samplethe electron energy and the path length. We can change
The global features reproduce in all three cases, but sonthe energy by the applied voltage, giving rise to the fluc-
sample dependence is observed in the shape and heighttions shown in Fig. 1. Changes in path length of the
of the maxima. The histogram of conductance value®rder of the Fermi wavelength, which is the atomic scale,
(Fig. 3b) is in accordance with previous measurements fooccur at the steps in the conductance in Fig. 2, explain-
gold at low temperature, e.g., [7]. ing the correlation with the steps inG/0V. Each time
The effect we observe has the same origin as that notesthen the contact is opened, and closed again to suffi-
by Maslovet al. [8] in numerical simulations on constric- ciently large conductance values, random atomic recon-
tions with defects. The principle can be understood byfigurations take place, leading to a completely new set
considering a contact with a single conducting mode havef scattering centers. Thus the result presented in Fig. 3
ing a finite transmission probabilitff, described by trans- can be interpreted as the ensemble average over defect
mission and reflection coefficientst’, r, andr’ (coming  configurations.
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In the following paragraphs, we derive an analytical ex-

pression forogy to lowest order iru. In our model, the
system is divided into a ballistic central constriction con-

nected to diffusive conductors on each side (Fig. 3, inset).

The central part is described by a transfer matriwith
elements,,, giving the amplitude for the mode on the
left to be transmitted into mode on the right of the con-
striction. After diagonalization only a few nonzero di-
agonal elements remain, corresponding to the number

v
conducting modes at the narrowest part of the conductﬂ‘

[9]. Thezt,,, are energy dependent, but only on a very larg

energy scale so that we can ignore this in first approxima=

tion. For the total transmission of the combined system, if ;
dng the small fluctuating part of the conductance, we can

terms of the return amplitudes on the left- and right-han
side of the contactd(E) anda, (E), respectively], we ob-
tain the expression,(E) = t;[t'"' — a,(E)tT'a;(E) —
a,(E)r't’”! — t'"'ra;(E)]"'t,, wherer, r’ andt, t’ (now

andt, are the transmission matrices through the left and
right diffusive regions, respectively. Faégf < eV, the
nonlinear conductance can be expresse@ as d1/9V,

eV
2h—€ fo Tt (E) (E)]dE

The fluctuations in the conductance are described by
8G = G — (G) (where(G) is the conductance averaged
er impurity configurations) of which we will consider

e voltage dependenc®5G/9V. When we take into

1

ccount that scattering processes in the left and right
anks are uncorrelated, product termsapfand a, dis-
ppear when we average. For the purpose of calculat-

assumet,t;r = t,t/ = 1, although their deviation from
unity will affect (G), which we will address briefly below.
Considering first a contact with only a single transmitted

in the general multimode case) are the matrices of refled'0de, we obtain an expression for the voltage dependence

tion and transmission coefficients of the constrictiot). |

5 908G

da;(eV) daj(eV)

of the conductance squared, averaged over impurity con-

da,(eV) da;(eV)

ggv Py

() -l

(1)

Vv oV A% A%

figurations:

Products of the form{a(E;)a*(E,)) can be expressed as
[o Pa(r)e i E1=E27/h 41 in terms of the classical proba-
bility, Pei(r) = ve/{{1 — cody)2v/37 ki:(D7)*?} to
return to the contact after a diffusion time We as-
sume the diffusion is into a cone of opening angle
(Fig. 3, inset),D = vrl,/3 is the diffusion constant, and
l, = vpT., Wherer, is the elastic scattering time [10].
The differentiation ofa(eV) in Eg. (1) affects only the

transmission values. Assuming these averages are inde-
pendent, we can compare the data with various choices for
the distribution of the transmissions. The dashed curve in
Fig. 3a shows the behavior ofsy for a random distribu-

tion of two T,’s in the interval{0, 1} under the constraint

T, + T, = G/Gy, where the amplitude has been adjusted
to fit the data. Alternatively, the full curve shows the be-
havior for a single partially open channel, i.e., in the in-

phase factors (to very good approximation), and produceterval G/G, = {0, 1} there is a single channel, ii,2}

a factor(er/h)? under the integral over the diffusion time,
7. Further, taking into account that the finite modulation
amplitudeV is the limiting energy scalekgf, /74 <
eV, wherer is the inelastic scattering time), we obtain

2 3/2
=( )(ﬁ/“) (1 - T).

eV
(2)

The T%(1 — T) dependence results in minima in the am-
plitude of the voltage dependent fluctuations in the con
ductance af’ = 0 or T = 1 and a maximum af = 2/3.

2.71(3G0
hkpvrp(1 — cosy)

2
Ogv

This result can be extended to multiple conducting moded!€l
when we assume that the probability to be scattered bac-[;he

there are two channels with one fully open, etc. The lat-
ter description works surprisingly well, in particular, for
the minimum neail Gy, and for the fact that the maxima
are all nearly equal.

Note that the minima in Fig. 3a are found slightly
below the integer values. A reduction of the conductance
with respect to the bare conductance of the contact,
Go > T,, results from total probability for back scattering
on the same defects which give rise to the fluctuations.
We can estimate the correction as the sum over incoming

channelsy, and their probability to return via any chan-
m, ZTn - G/GO = 2Zn,m TnTm<|anm(E = 0)|2>
total return probability(|a,,|*) we approximate

to the contact is independent of the mode index, i.e., tha®y the substitution [ P.(r)dr. Thus we expect a
defects scatter a wave equally into all available modescorrection termG = Go[>. T, — 2{|anm|*) & T,)*]. In

The termT?(1 — T)in Eq. (2) is replaced for th&-mode
problem by>™_, 72(1 — T,,).
When comparing the experimental data teg, with

Fig. 3, the vertical gray lines indicate the shift below
integer values foK|a,,|?) = 0.005, which is equivalent
to a classical series resistanceld0 (). From this value

our theoretical model, we need to be aware that théor (|a,.|?), we obtain an estimate fdg = 5nm, which
experimental data have been sorted according to theis of the same order of magnitude as the value obtained

conductance value. A given value f6r = Gy > T, can

from the fluctuation amplitudes discussed below.

be constructed in many ways from a choice of transmis- In our experiment, we measure the second derivative

sion values{T,}. The experimental values fargy are,
therefore, an average over impurity configuraticard
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with a modulation amplitude of 20 mV. This limits the
path lengths to which we are sensitive to those smaller
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than~100 nm (Ly = vrh/eV). From the amplitude of monovalent metals, the conductance @Gt= 1G, of
the full curve in Fig. 3a, we obtain an estimatelpf=  a single atom is carried by a single mode [16-18].
20 = 10 nm, assuming reasonable values for the openin@onversely, based on the analysis of the subgap structure
angley of 30°-50° [11]. This value is consistent with for superconducting aluminum by Scheetral.[17,19],
our assumption that <« I, << Ly, whered is the contact which showed that typically three channels contribute
diameter. The estimate fdy is sensitive to the functional to the conductance a& = 1Gy, we should expect that
form of the factors in front of ther>(1 — T) term in  aluminum does not show a pronounced suppression of
Eq. (2), which was not tested in detail. Measurementgonductance fluctuations near integer values. Indeed,
of the dependence on modulation amplitddeare under preliminary measurements of;y on thisp metal exhibit
way. However, the thermopower of atomic-size goldresults forG = G that are close to a random distribution
contacts was recently measured [12] and has been fouraVer three transmission channels, while the monovalent
to be determined by the same mechanism, but it wametals Ag and Cu show behavior similar to Au.
measured on an energy scale nearly 2 orders of magnitude This work is part of the research program of the “Sticht-
lower. It gives the same estimate {f= 20 = 10 nm, ing FOM,” which is financially supported by NWO. B. L.
consistent with the present value. and J.M.v.R. acknowledge the stimulating support of
Conductance fluctuations [13] have been observed prd-. J. de Jongh, and we thank E. Scheer and J. Caro for
viously in ballistic contacts with diameters an order ofhelpful discussions.
magnitude larger compared to our contacts, and were mea-
sured as a function of both magnetic field and bias voltage
[14]. In that work, the quantum suppression of the fluc-
tuations, which we report here, is not observable due to ) _ _ _
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; ' . s . [2] R. Landauer, IBM J. Res. De\, 223 (1957).
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trajectories, which are second orderr’. M. Brandbygeet al., Phys. Rev. B52, 8499 (1995).
The minimum observed &k, in Fig. 3a is very sharp, [4] B.J. Weeset al., Phys. Rev. Lett60, 848 (1988); D.A.
close to the full suppression of fluctuations predicted  Wharamet al.,J. Phys. C21, L209 (1998).
for the case of a single channel. To describe the small[5] N. Argait, J. G. Rodrigo, and S. Vieira, Phys. Rev.4B,
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