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Evidence for Saturation of Channel Transmission from Conductance Fluctuations
in Atomic-Size Point Contacts

B. Ludoph,1 M. H. Devoret,2 D. Esteve,2 C. Urbina,2 and J. M. van Ruitenbeek1

1Kamerlingh Onnes Laboratorium, Leiden University, Postbus 9504, 2300 RA Leiden, The Netherland
2Service de Physique de l’Etat Condense, CEA-Saclay, 91191 Gif-sur-Yvette, France

(Received 6 July 1998)

The conductance of atomic-size contacts has a small, random, voltage dependent compone
analogous to conductance fluctuations observed in diffusive wires. A new effect is observed in
gold contacts, consisting of a marked suppression of these fluctuations when the conductance
the contact is close to integer multiples of the conductance quantum. Using a model based on th
Landauer-Büttiker formalism, we interpret this effect as evidence that the conductance tends to b
built up from fully transmitted (i.e., saturated) channels plus a single, which is partially transmitted.
[S0031-9007(99)08417-3]
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Metallic contacts consisting of only a few atoms can b
obtained using scanning tunneling microscopy or mecha
cally controllable break junction [1] techniques. The elec
trical conductance through such contacts is described
terms of electronic wave modes by the Landauer-Büttik
formalism [2]. Each of theN modes forms a channel for
the conductance, with a transmission probabilityTn be-
tween 0 and 1. The total conductance is given by the su
over these channelsG ­

PN
n­1 TnG0, whereG0 ­ 2e2yh

is the quantum of conductance. By recording histogram
of conductance values [3] for contacts of simple meta
(Na, Au), a statistical preference was observed for condu
tances near integer values. This statistical preference w
interpreted as an indication that transmitted modes in t
most probable contacts are completely opened (Tn ­ 1,
i.e., saturation of channel transmission), in analogy wi
the conductance quantization observed in 2D electron g
devices [4]. Here, we test this interpretation by perform
ing a new type of measurement giving access to the seco
moment of the distribution of theTn’s.

The atomic contacts are formed by breaking a gold wi
at low temperatures, and then finely adjusting the size
the contact between the fresh fracture surfaces using
piezoelectric element [1]. Figure 1 shows the differenti
conductance,≠Iy≠V measured as a function of bias voltag
for three atomic-size contacts with different conductanc
values, using a modulation voltageeV ø kBu (with u the
temperature). For each contact, both of the curves for
creasing and decreasing bias voltage are given. Measu
ments such as those of Fig. 1 suggest that the fluctuat
pattern changes randomly between contact configuratio
and that the amplitude of the fluctuations is suppressed
conductance values nearG0. In order to establish such a
relation, it is necessary to statistically average over a lar
number of contacts. We do this by measuring the volta
dependence of the conductances≠Gy≠V ­ ≠2Iy≠V 2d and
the conductance itselfsG ­ ≠Iy≠V d by applying a voltage
modulation and measuring the first and second harmonic
the voltage over a resistor in series with the contact. The
0031-9007y99y82(7)y1530(4)$15.00
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are recorded continuously, while the contact is broken
increasing the voltage,VP , over the piezoelectric element
producing curves as shown in Fig. 2. We use a relative
large modulation amplitude of 20 mV over the contact (
a frequency of 46 kHz) in order to have sufficient sens
tivity and speed of measurement, thus allowing averagi
over many different contacts. The integration time of th
lock-in amplifiers was 10 ms and a reading was taken e
ery 100 ms. Between curves, the contact was pushed
gether to a contact conductance.20G0, to ensure that a
new contact geometry was measured each time. All m
surements were performed on gold samples of6N purity,
in vacuum at 4.2 K.

The conductance in Fig. 2 shows the typical behavi
when breaking gold contacts [5], which consists of platea
with steps of the orderG0 and a last plateau close to
G0 before entering the tunneling regime. The steps a
plateaus inG correspond with atomic rearrangements an
elastic deformation, respectively, as the contact is pull
apart and finally breaks [6]. At each step inG, we find
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FIG. 1. Differential conductancedIydV as a function of bias
voltage, measured with a modulation amplitude,0.35 mV, for
three different contacts withG , 1.65G0 (a), ,1.02G0 (b),
and ,0.88G0 (c). For all three curves they scale spans
0.12G0.
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FIG. 2. Typical example of the simultaneous measureme
of voltage dependence of the conductance≠Gy≠V and the
conductanceG, as a function of piezo voltageVP . The graph
includes vertical dotted lines that show that the steps in bo
quantities coincide. Two plateaus have been enlarged
offset to show the tiny steps in the conductance. The elongat
of the contact is linear withVP and 10 V corresponds to abou
1 nm.

corresponding steps in≠Gy≠V . Even tiny steps inG, such
as between7G0 and8G0, can produce dramatic jumps in
≠Gy≠V .

≠Gy≠V has a random sign and magnitude with a be
shaped distribution. Figure 3a shows the standard dev
tion sGV ­

p
ks≠Gy≠V d2l 2 k≠Gy≠V l2, as a function

of G together with a histogram of conductance valu
(Fig. 3b) determined from 3500 individual curves simila
to the one shown in Fig. 2. One clearly observes a ve
sharp minimum in Fig. 3a at a conductanceG0 and less
pronounced minima near 2, 3, and even4G0. This new
observation forms the central result of this paper. Fi
ure 3a shows the combined results for three gold samp
The global features reproduce in all three cases, but so
sample dependence is observed in the shape and he
of the maxima. The histogram of conductance valu
(Fig. 3b) is in accordance with previous measurements
gold at low temperature, e.g., [7].

The effect we observe has the same origin as that no
by Maslovet al. [8] in numerical simulations on constric-
tions with defects. The principle can be understood
considering a contact with a single conducting mode ha
ing a finite transmission probabilityT , described by trans-
mission and reflection coefficientst, t0, r, andr 0 (coming
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FIG. 3. (a) Standard deviation of the voltage dependence
the conductance versus conductance for 3500 curves.
circles are the averages for 300 points, and the squares
2500 points. The solid and dashed curves depict the calcula
behavior for a single partially open channel and a rando
distribution over two channels, respectively. The vertical gr
lines are the corrected integer conductance values (see te
(b) Conductance histogram obtained from the same data
The peak in the conductance histogram atG0 extends to 53 000
on they scale. Inset: Schematic diagram of the configurati
used in the analysis.

in from left and right, respectively), withjt0j2 ­ jtj2 ­ T ,
and jr 0j2 ­ jrj2 ­ 1 2 T . As illustrated in Fig. 3 (in-
set), electron waves transmitted by the contact with a
plitude t, and backscattered to the contact by diffusin
paths with amplitudea, have a probability amplituder
to be reflectedat the contact. This wave interferes wit
the directly transmitted partial wave and modifies the t
tal conductance. A similar contribution comes from th
trajectories on the other side of the contact. These int
ference terms will be sensitive to changes in the phase
cumulated along the trajectories, which is determined
the electron energy and the path length. We can cha
the energy by the applied voltage, giving rise to the flu
tuations shown in Fig. 1. Changes in path length of t
order of the Fermi wavelength, which is the atomic sca
occur at the steps in the conductance in Fig. 2, expla
ing the correlation with the steps in≠Gy≠V . Each time
when the contact is opened, and closed again to su
ciently large conductance values, random atomic reco
figurations take place, leading to a completely new s
of scattering centers. Thus the result presented in Fig
can be interpreted as the ensemble average over de
configurations.
1531
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In the following paragraphs, we derive an analytical e
pression forsGV to lowest order ina. In our model, the
system is divided into a ballistic central constriction con
nected to diffusive conductors on each side (Fig. 3, inse
The central part is described by a transfer matrixt, with
elementstnm giving the amplitude for the moden on the
left to be transmitted into modem on the right of the con-
striction. After diagonalization only a few nonzero di
agonal elements remain, corresponding to the number
conducting modes at the narrowest part of the conduc
[9]. Thetnm are energy dependent, but only on a very larg
energy scale so that we can ignore this in first approxim
tion. For the total transmission of the combined system,
terms of the return amplitudes on the left- and right-han
side of the contact [alsEd andarsEd, respectively], we ob-
tain the expressionttsEd ­ tlft021 2 ar sEdty21alsEd 2

ar sEdr0t021
2 t021ralsEdg21tr , wherer, r0 andt, t0 (now

in the general multimode case) are the matrices of refle
tion and transmission coefficients of the constriction.tl
1532
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and tr are the transmission matrices through the left a
right diffusive regions, respectively. ForkBu ø eV , the
nonlinear conductance can be expressed asG ­ ≠Iy≠V ,

I ­
2e
h

Z eV

0
TrfttsEdty

t sEdgdE .

The fluctuations in the conductance are described
dG ­ G 2 kGl (wherekGl is the conductance average
over impurity configurations) of which we will conside
the voltage dependence≠dGy≠V . When we take into
account that scattering processes in the left and ri
banks are uncorrelated, product terms ofal and ar dis-
appear when we average. For the purpose of calcu
ing the small fluctuating part of the conductance, we c
assumetlt

y
l ­ trty

r . 1, although their deviation from
unity will affect kGl, which we will address briefly below.
Considering first a contact with only a single transmitt
mode, we obtain an expression for the voltage depende
of the conductance squared, averaged over impurity c
figurations:
s2
GV ­

*√
≠dG
≠V

!2+
­ G2

0T2s1 2 T d2

*
Re

√
≠alseV d

≠V
≠ap

l seV d
≠V

1
≠arseV d

≠V

≠ap
r seV d
≠V

!+
. (1)
de-
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Products of the formkasE1dapsE2dl can be expressed asR`

0 Pclstde2isE12E2dty h̄dt in terms of the classical proba-
bility, Pclstd ­ yFyhf1 2 cossgdg2

p
3p k2

FsDtd3y2j to
return to the contact after a diffusion timet. We as-
sume the diffusion is into a cone of opening angleg

(Fig. 3, inset),D ­ yFley3 is the diffusion constant, and
le ­ yFte, wherete is the elastic scattering time [10].
The differentiation ofaseV d in Eq. (1) affects only the
phase factors (to very good approximation), and produc
a factorsetyh̄d2 under the integral over the diffusion time
t. Further, taking into account that the finite modulatio
amplitudeV is the limiting energy scale (kBu, h̄ytf ø
eV , wheretf is the inelastic scattering time), we obtain

s2
GV ­

√
2.71eG0

h̄kFyFs1 2 cosgd

!2√
h̄yte

eV

!3y2

T2s1 2 T d .

(2)

The T2s1 2 T d dependence results in minima in the am
plitude of the voltage dependent fluctuations in the co
ductance atT ­ 0 or T ­ 1 and a maximum atT ­ 2y3.
This result can be extended to multiple conducting mode
when we assume that the probability to be scattered ba
to the contact is independent of the mode index, i.e., th
defects scatter a wave equally into all available mode
The termT 2s1 2 T d in Eq. (2) is replaced for theN-mode
problem by

PN
n­1 T2

n s1 2 Tnd.
When comparing the experimental data forsGV with

our theoretical model, we need to be aware that t
experimental data have been sorted according to th
conductance value. A given value forG ­ G0

P
Tn can

be constructed in many ways from a choice of transmi
sion valueshTnj. The experimental values forsGV are,
therefore, an average over impurity configurationsand
es
,
n

-
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transmission values. Assuming these averages are in
pendent, we can compare the data with various choices
the distribution of the transmissions. The dashed curve
Fig. 3a shows the behavior ofsGV for a random distribu-
tion of two Tn’s in the intervalh0, 1j under the constraint
T1 1 T2 ­ GyG0, where the amplitude has been adjuste
to fit the data. Alternatively, the full curve shows the be
havior for a single partially open channel, i.e., in the in
terval GyG0 ­ h0, 1j there is a single channel, inh1, 2j
there are two channels with one fully open, etc. The la
ter description works surprisingly well, in particular, fo
the minimum near1G0, and for the fact that the maxima
are all nearly equal.

Note that the minima in Fig. 3a are found slightl
below the integer values. A reduction of the conductan
with respect to the bare conductance of the conta
G0

P
Tn, results from total probability for back scattering

on the same defects which give rise to the fluctuation
We can estimate the correction as the sum over incom
channels,n, and their probability to return via any chan
nel, m,

P
Tn 2 GyG0 ­ 2

P
n,m TnTmkjanmsE ­ 0dj2l.

The total return probabilitykjanmj2l we approximate
by the substitution

R`

te
Pclstddt. Thus we expect a

correction termG ­ G0f
P

Tn 2 2kjanmj2l s
P

Tnd2g. In
Fig. 3, the vertical gray lines indicate the shift below
integer values forkjanmj2l ­ 0.005, which is equivalent
to a classical series resistance of130 V. From this value
for kjanmj2l, we obtain an estimate forle ­ 5 nm, which
is of the same order of magnitude as the value obtain
from the fluctuation amplitudes discussed below.

In our experiment, we measure the second derivat
with a modulation amplitude of 20 mV. This limits the
path lengths to which we are sensitive to those smal
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than,100 nm sLV ­ yF h̄yeV d. From the amplitude of
the full curve in Fig. 3a, we obtain an estimate ofle ­
20 6 10 nm, assuming reasonable values for the openi
angleg of 30± 50± [11]. This value is consistent with
our assumption thatd ø le ø LV , whered is the contact
diameter. The estimate forle is sensitive to the functional
form of the factors in front of theT2s1 2 T d term in
Eq. (2), which was not tested in detail. Measuremen
of the dependence on modulation amplitudeV are under
way. However, the thermopower of atomic-size go
contacts was recently measured [12] and has been fo
to be determined by the same mechanism, but it w
measured on an energy scale nearly 2 orders of magnit
lower. It gives the same estimate ofle ­ 20 6 10 nm,
consistent with the present value.

Conductance fluctuations [13] have been observed p
viously in ballistic contacts with diameters an order o
magnitude larger compared to our contacts, and were m
sured as a function of both magnetic field and bias volta
[14]. In that work, the quantum suppression of the flu
tuations, which we report here, is not observable due
the fact that many nearly open channels contribute to t
conductance for large contacts. The model introduced
Kozub et al. [15] to describe the results of Ref. [14] con
tains only terms due to the interference of two diffusin
trajectories, which are second order injaj2.

The minimum observed atG0 in Fig. 3a is very sharp,
close to the full suppression of fluctuations predicte
for the case of a single channel. To describe the sm
deviation from zero, it is sufficient to assume that there
a second channel which is weakly transmitted,T2 ø 1,
and T1 . 1 such thatT1 1 T2 ­ 1. For this case, it
is easy to show that the value ofs

2
GV at the minimum

is proportional to the average value ofT2. We obtain
kT2l ­ 0.005, implying that, on average, only 0.5% of the
current is carried by the second channel. For the minim
near 2, 3, and4G0, we obtain higher values: 6%, 10%
and 15%, respectively.

The well-developed structure observed insGV , with a

dependence which closely follows the
qP

T2
n s1 2 Tnd be-

havior of Eq. (2), demonstrates a property of the conta
which we refer to as the saturation of transmission cha
nels: There is a strong tendency for the channels co
tributing to the conductance of atomic-size gold contac
to be fully transmitting, with the exception of one, which
then carries the remaining fractional conductance. F
ure 3 shows that the positions of the minima insGV do
not all coincide with those of the maxima in the histogram
This is most pronounced for the feature belowG ­ 2G0.
We conclude that the statistically preferred values of t
histograms do not necessarily correspond with perfe
transmission of the bare contact. We propose that
appearance of peaks in the histograms, such as the on
1.75G0, arises from preferred atomic configurations.

The concept of the saturation of transmission chann
is consistent with recent work, which shows that, fo
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monovalent metals, the conductance atG ­ 1G0 of
a single atom is carried by a single mode [16–18]
Conversely, based on the analysis of the subgap structu
for superconducting aluminum by Scheeret al. [17,19],
which showed that typically three channels contribute
to the conductance atG ­ 1G0, we should expect that
aluminum does not show a pronounced suppression
conductance fluctuations near integer values. Indee
preliminary measurements ofsGV on thisp metal exhibit
results forG # G0 that are close to a random distribution
over three transmission channels, while the monovale
metals Ag and Cu show behavior similar to Au.
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