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Exact Solution of the One-Dimensional Ballistic Aggregation
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An exact expression for the mass distributionrsM; td of the ballistic aggregation model in
one dimension is derived in the long time regime. It is shown that it obeys scalingrsM; td ­
t24y3FsMyt2y3d with a scaling functionFszd , z21y2 for z ø 1 and Fszd , exps2z3y12d for z ¿ 1.
Applications of these results to Burgers turbulence are discussed. [S0031-9007(99)08466-5]

PACS numbers: 68.70.+w, 05.20.Dd, 45.05.+x, 47.70.Nd
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Ballistic aggregation is a simple version of a dissipativ
gas. It provides a dynamical model of nonequilibrium
statistical physics in which particles follow the basic law
of mechanics. I thus consider a one-dimensional gas
pointlike massive particles which move freely until the
collide. The perfectly inelastic collision of two masse
conserves the total mass and momentum, while dissipat
occurs as kinetic energy is lost in each collision. One c
anticipate the formation of more and more massive wh
slower and slower aggregates.

This model was introduced by Carnevale, Pomeau, a
Young [1] where they conjectured, based on scaling a
guments and numerical simulations, an asymptotic scal
regime for the mass distributionrsM; td ­ FsMykMltdy
kMl2

t . The average mass per aggregate was suppo
to grow algebraically with time askMlt , t2y3, and the
scaling function had a simple universal exponential for
Fszd ­ exps2zd independent of the initial conditions.
Later, this conjecture was reinforced by Piasecki [2] whe
he solved the hierarchy of dynamical equations governi
the system inside a mean-field approximation scheme.

This system, in its continuous limit, was also studied
a simplified astronomical model for the agglomeration
cosmic dust into macroscopic objects [3]. The ballist
aggregation model, where the aggregates interact o
through their collisions, describes the early time behav
of an aggregation model where gravitational interactio
are present [4].

It is important to mention the connection between th
model and solutions of the Burgers equation. At a ve
high Reynolds number, the asymptotic solution of th
Burgers equation consists of a train of shock waves. T
laws of motion which govern the dynamics of these sho
waves are found to be equivalent to a ballistic aggregati
system (see [5]).

In this Letter, I verify the scaling hypothesis for the mas
distribution and find by an exact calculation an explic
form for the scaling function. It happens to be differen
from the conjectured simple exponential. I remark th
such an exact solution is scarce in nonequilibrium system

Rather than solving the set of partial differential equ
tions governing the evolution of the system, I exploit th
fact that, once the initial state of the system is given, the d
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namics is completely deterministic. My approach is thus
based on a statistical study of the initial conditions and is
largely inspired by the work of Martin and Piasecki [6].

Initially, particles having all the same massm are
regularly placed on a line with the same interparticle
distance a. Initial mass density is thusr0 ­ mya.
The initial momenta of the thermalized particles are
not correlated and are distributed according to the sam
Gaussian distributionfmspd ­

p
bys2pmd expf2bp2y

s2mdg. I now chooseb ­ 1y2 andr0 ­ 1y2 to simplify
notations without loss of generality.

I now compute the density distributionrmsX, M, P, td,
wherermsX, M, P, td dM dP dX is the number of aggre-
gates located insX, X 1 dXd with momentum insP, P 1

dPd and mass insM, M 1 dMd at timet.
When the coordinatessX, M, P, td of an aggregate are

given, they uniquely define the numbern ­ Mym as well
as the initial positionsxi ­ X 2 PtyM 1 ms2i 1 1 2

nd, 1 # i # n of its constituents. A crucial point is that
an aggregate, once formed, follows the movement of th
center of mass (c.m.) of its constituents, which can be
determined from the initial state. I label the location of
the c.m. at timet of the r particles located initially at
s j 1 1da, s j 1 2da, . . . , s j 1 rda by

Xr
j11std ;

1
rm

rX
i­1

smxj1i 1 tpj1id

­ s2j 1 r 1 1d
a
2

1
t

rm

rX
i­1

pj1i . (1)

The mass distribution can be determined from the
initial conditions and an aggregate of massM ­ mn is
present at positionX and at timet if and only if (i) the
aggregate has formed: the c.m. of its leftmosts particles
has crossed the c.m. of its rightmostn 2 s particles for
all s ­ 1, . . . , n 2 1 up to time t, leading toXs

j11std .

Xn2s
j1s11std for 1 $ s $ n 2 1 and Xn

j11std ­ X with j,
an integer; (ii) the aggregate has not been disturbe
by other particles: the c.m. of the successive groups o
particles not constituting the aggregate has not crossed th
c.m. of the aggregate up to timet, thusXr

j2r11std , X ,

Xr
j1n11std for r $ 1.
© 1999 The American Physical Society
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s in a
One has (see [6] for details)

rmsX, M, P, td ­

*Ỳ
r­1

QhX 2 Xr
j2r11stdj

n21Y
s­1

QhXs
j11std 2 Xn2s

j1s11stdjd

√
P 2

nX
r­1

pj1r

! Ỳ
r­1

QhXr
j1n11std 2 Xj

+
,

(2)

with Q being the Heaviside step function,M ­ nm, and wherej ­ sX 2 tPyMdya 2 sn 1 1dy2 is an integer. The
brackets denote the average over the initial distribution of the momenta.

Owing to the uncorrelated initial Gaussian distribution of the momenta, the density distribution (2) factorize
product of three functions, one corresponding to the condition (i) above,*

n21Y
s­1

QhXs
j11std 2 Xn2s

j1s11stdjd

√
P 2

nX
r­1

pj1r

!+
­

Z n21Y
s­1

dPs fmsPs 2 Ps21dQ

(
Ps 2

sm
t

√
t

P
M

1 M 2 sm

!)
3 fmsP 2 Pn21d

­
1

t1y3

Z n21Y
s­1

dP0
s fm0sP0

s 2 P0
s21dQ

(
P0

s 2 sm0

√
P0

M 0
1 M 0 2 sm0

!)
fm0sP0 2 P0

n21d ­
1

t1y3 Im0sM 0, P0d , (3)
s

e
n

where we used new variables defined asPs ­
Ps

i­1 pj1i ,
1 # s # n 2 1 with P0 ­ 0, and the integration range
extends from minus infinity to plus infinity for eachPs.
Moreover, we introduced the rescaled variablesM 0 ­
Myt2y3, P0 ­ Pyt1y3, m0 ­ myt2y3, and P0

i ­ Piyt1y3.
On the other end, Eq. (3) reveals that the functio
Im0sM 0, P0d is the probability for a Brownian motion
n

in momentum spacePstd starting atPs0d ­ 0 to end
at Psnm0d ­ P while staying above the discrete point
Pssm0d . fssm0d for 1 # s # n 2 1, with the parabola
fsxd ­ 2xsP0yM 0 1 M 0 1 xd.

Along the same line, one can easily show that th
conditions (ii) above lead to the two contributions i
Eq. (2),
*Ỳ
s­1

QhX 2 Xs
j2s11stdj

+
­

Z Ỳ
s­1

dP0
s fm0sP0

s 2 P0
s21dQ

(
P0

s 1 sm0

√
P0

M 0
1 M 0 1 sm0

!)
­ Jm0

µ
M 0 1

P0

M 0

∂
(4)
t

i

-

u-
ti-

t

-

e

e

and*Ỳ
s­1

QhXs
j1n11std 2 Xj

+
­ Jm0

√
M 0 2

P0

M 0

!
, (5)

where the functionJm0sY d is the probability for a
Brownian motion starting atPs0d ­ 0 to pass over
the discrete pointsPssm0d . fY ssm0d for s $ 1, with
fY sxd ­ 2xsY 1 xd. The constraints on the Brownian
motion are illustrated in Fig. 1.

Using Eqs. (3)–(5), we find the exact scaling form fo
the distribution (2),

rmsX, M, P; td ­
1

t1y3 rm0sM 0, P0; 1d

­
1

t1y3 Jm0sM 0 1 P0yM 0dIm0sM 0, P0d

3 Jm0sM 0 2 P0yM 0 d . (6)

Note that, due to translational invariance, the mass dis
bution does not depend onX.

One of the main difficulties of this problem is the dis
crete nature of the constraints on the Brownian motion
I will derive below an expression for the mass distr
bution in the limit m0 ­ myt2y3 ! 0 (with M 0 and P0

fixed) which is reached either whent ! ` for a fixedm
(asymptotic long time limit) or for any fixed timet when
m ! 0 (continuous limit). In terms of the Brownian mo
r

ri-

-
s.
-

tion introduced above, the spacem0 between the discrete
point barrier shrinks to zero and approaches a contin
ous barrier which makes the problem tractable analy
cally. Nevertheless, the functionsI andJ are identically
null for m0 ­ 0, which means that the distributionr is
null for an infinite time. One thus keeps track of the firs
k points (M0 ­ km0) of the discrete constraints on the
Brownian motion. The double limitm0 ! 0, and then
M0 ! 0 gives an expansion for the functionsI and J in
power ofm0, which is equivalent to an asymptotic expan
sion in t (see [7] for justification and details).

The detailed analytical calculations leading to th
explicit forms of the functionsI and J are outside the

f(sm')=(P'/M'+M'-sm')sm'

I(P',M')

P'

M'=nm'

P(sm')

J(M'+P'/M')

J(M'-P'/M')

sm'

FIG. 1. Constraints on the Brownian motion used in th
construction of our solution.
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scope of this Letter and will be given elsewhere [7]. On
finds the dominant contribution inm0

Im0sM 0, P0d ­ m0e2M 03y122P02y2M 0

I sM 0 d 1 O sm03y2d ,
(7)

with

I sM0d ­
X
k$1

e2vkM 0

, (8)

where 2vk (k $ 1) are the zeros of the Airy func-
tion [8], which form an infinite and countable se
and are located on the negative real axiss2v1 .
22.33811, 2v2 . 24.08795, . . .d. This function had to
be expected in this problem as it is known that it aris
in the description of a Brownian motion with a paraboli
drift [9].

On the other end, one gets

Jm0sY d ­
p

m0 esYy2d3y3J sY d 1 O sm0d , (9)

with

J sY d ­
1

2pi

Z c1i`

c2i`

dz
e2zYy2

Ai szd
, (10)

wherec . 2v1.
Now, inserting the expression forI and J in Eq. (6),

one has

rsM, P; td ­
m2

t5y3 I

µ
M

t2y3

∂
J

√
M

t2y3 1
Pt1y3

M

!

3 J

√
M

t2y3 2
Pt1y3

M

!
1 O

√
m5y2

t2

!
. (11)

From this equation one sees that the concentrat
cstd of aggregates, the aggregates average mass
momentum, and the mean energy per unit of lengthEstd
behave, for timet ¿ 1, as

cstd , t22y3, kMlt , t2y3, kPlt ­ 0 ,p
kP2lt , t1y3, Estd , t22y3. (12)

The integration of Eq. (11) overP [7] leads to the mass
distribution, which is the main result of this Letter,

rsM; td ­
m2

t4y3 F

µ
M

t2y3

∂
1 O

√
m5y2

t5y3

!
, (13)

where one sees that it obeys the expected scaling fo
with a scaling function,

FsM 0d ­ 2M 0I sM 0dH sM 0d , (14)

where

I sM 0 d ­
X
k$1

e2vkM 0

,

H sM 0d ­
1

2pi

Z c1i`

c2i`

dz
e2M 0z

Ai 2szd
, (15)

with c . 2v1.
The scaling functionFsM 0d is plotted in Fig. 2.
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One can compare the obtained scaling function wi
the conjectured one [Fconj.sM 0d ­ exps2M 0d] [1]. In par-
ticular, small and large arguments present strong d
ferences. Indeed, forM 0 ø 1, one gets H sM 0d ­
1 1 O sM 0d, while one can estimateI sM 0d using the
asymptotic properties of the zeros of the Airy func
tion vk ­ fs3pkdy2g2y3 1 O sk21y3d and find I sM 0d ,
s2

p
p M 03y2d21. One thus has

FsM 0d ­
1

p
p

1
p

M 0
1 O s

p
M 0 d, sM 0 ø 1d . (16)

One can conclude, for example, that the numb
NsM0, td ­

RM0

0 rsM; td dM of aggregates of small
massesM , M0 ø t2y3 at time t is well underestimated
by the conjectured form which leads toNsM0, td , M0yt,
while the exact solution givesNsM0, td ,

p
M0yt.

For M 0 ¿ 1, one can estimate the functionH sM 0d
by the steepest descent method and findH sM 0d ,p

p M 03y2 exps2M 03y12d. On the other end, one has
I sM 0d , exps2v1zd leading to

FsM0d ­ 2
p

p M 05y2e2M 0v12M 03y12, sM 0 ¿ 1d .
(17)

This is again different from the conjectured function a
large massesM ¿ t2y3 have a much smaller chance to be
present in the system than conjectured.

One can compute the collision frequency between tw
massesM1 andM2,

n2sM1, M2, td , t21m03sM 0
1 1 M 0

2dM 0
1M 0

2I sM 0
1dI sM 0

2d
3 H sM 0

1 1 M 0
2d , (18)

with I ,H as above, and whereM 0
1, M 0

2, and m0 are
properly rescaled variables. It does not factorize in

0.0 1.0 2.0 3.0 4.0
M/t

2/3

0.0

0.5

1.0

1.5

2.0

t4
/3
ρ(

M
;t
)

FIG. 2. The exact rescaled mass distributiont4y3rsM; td as a
function of Myt2y3 for large t (solid line). As an illustration,
the results of a numerical simulation of the ballistic aggregatio
are plotted for different times [t ­ 100 (diamonds) andt ­
1000 (circles)].
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product of functions ofM1 andM2, respectively, and thus
invalidates the assumption on which the mass distributio
was computed in [2].

One can inquire about the universality of these resu
with respect to other initial conditions. Let us first
consider a Poissonian distribution of the particle initia
positions with an average interparticle distancea. The
discrete points over which the Brownian motion shoul
pass in the construction of our solution are still distribute
on the same parabola but with irregular spacing. I
the long time limit and after rescaling, the spacin
between points of averagea0 ­ ayt2y3 becomes smaller
and smaller to be, in first order inm0, a continuum. The
difference between irregular and regular spacing is th
asymptotically erased and the result, Eq. (13), should
recovered in this case.

A bimodal momentum distributionfspd ­ fdsp 2

p0d 1 dsp 1 p0dgy2 is used as an initial state in [1]. I
believe that this should not affect the form of the mas
distribution (13) as the random walk initiated by this
distribution is well approximated, in the long time limit,
by the considered Brownian motion.

One can define a distribution where momenta a
initially correlated. In this case, one expects the scalin
function to be different, at least for smallM 0 [10].

The Burgers equation,≠tu 1 u≠xu ­ n≠2
xu, is a sim-

plified form of the Navier-Stokes equation originally in-
troduced as a toy model of hydrodynamic turbulence.
the inviscid limit (n ! 0), Burgers [5] has shown that,
for rough initial conditions and in the long time limit,
the solutionusx, td approaches a sawtooth profile (shoc
waves). At a given timet, each shock is characterized by
its strengthjyt and its advance velocityh. The law of
motion of the shocks is then mapped exactly on the balli
tic aggregation model withj ­ M and h ­ PyM [11].
Up to numerical factors coming from the discrete natur
of the initial condition of the ballistic aggregation, the
exact solutions, Eqs. (11) and (13), solved the distrib
tion psj, h; td and psj; td of the asymptotic Burgers so-
lutions introduced in [5]. In particular, the behavior o
the mass distribution function for small masses, Eq. (16
is compatible with previous numerical results [11]. Not
that, in the case of a white noise initial distribution
usx, 0d, this mapping is valid at all timet and that the
asymptotic behaviors of the scaling function Eq. (13) ar
compatible with the exact bounds found for the Burge
problem [12]. The noisy Burgers equation has attracte
n
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many recent studies [13]. In this respect, it would be i
teresting to clarify in which way a noise can be added
the ballistic aggregation problem. The method exposed
this Letter is, however, based on the deterministic natu
of the aggregates dynamics and is of little use if the d
namics is stochastic.

In summary, I found an exact asymptotic solution fo
the mass distribution of the ballistic aggregation in on
dimension. Such an exact solution is not frequent in
nonequilibrium system and has permitted me to veri
a scaling hypothesis for this system. While the avera
mass per aggregate was proved to behave with ti
as kMlt , t2y3 for t ¿ 1, as expected from previous
studies, the scaling function is shown here to be differe
from the conjectured one. This distribution also solve
the shock strength distribution of the one-dimension
Burgers equation in the inviscid limit with a white noise
initial condition.
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