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Exact Solution of the One-Dimensional Ballistic Aggregation
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An exact expression for the mass distributigriM;¢) of the ballistic aggregation model in
one dimension is derived in the long time regime. It is shown that it obeys scalinf ) =
t~*3F(M /1*?) with a scaling functionF(z) ~ z"/2 for z < 1 and F(z) ~ exp(—z/12) for z > 1.
Applications of these results to Burgers turbulence are discussed. [S0031-9007(99)08466-5]

PACS numbers: 68.70.+w, 05.20.Dd, 45.05.+Xx, 47.70.Nd

Ballistic aggregation is a simple version of a dissipativenamics is completely deterministic. My approach is thus
gas. It provides a dynamical model of nonequilibriumbased on a statistical study of the initial conditions and is
statistical physics in which particles follow the basic lawslargely inspired by the work of Martin and Piasecki [6].
of mechanics. | thus consider a one-dimensional gas of Initially, particles having all the same mass are
pointlike massive particles which move freely until they regularly placed on a line with the same interparticle
collide. The perfectly inelastic collision of two massesdistance a. Initial mass density is thuspy = m/a.
conserves the total mass and momentum, while dissipatiofhe initial momenta of the thermalized particles are
occurs as kinetic energy is lost in each collision. One camot correlated and are distributed according to the same
anticipate the formation of more and more massive whileGaussian distributionp,,(p) = «/B8/Q2mm)exd —Bp?/
slower and slower aggregates. (2m)]. | now chooseB = 1/2 andpy = 1/2 to simplify

This model was introduced by Carnevale, Pomeau, andotations without loss of generality.

Young [1] where they conjectured, based on scaling ar- | now compute the density distributign,, (X, M, P, t),
guments and numerical simulations, an asymptotic scalingthere p,,(X, M, P,t) dM dP dX is the number of aggre-
regime for the mass distribution(M ;) = F(M/{M),)/  gates located ifX,X + dX) with momentum in(P, P +
(M)>. The average mass per aggregate was suppose®) and mass iffM, M + dM) at timet.

to grow algebraically with time ag\), ~ ¥, and the When the coordinate€X, M, P, r) of an aggregate are
scaling function had a simple universal exponential formgiven, they uniquely define the number= M /m as well
F(z) = exp(—z) independent of the initial conditions. as the initial positionst; = X — Pt/M + m(Q2i + 1 —
Later, this conjecture was reinforced by Piasecki [2] where:), 1 = i = n of its constituents. A crucial point is that
he solved the hierarchy of dynamical equations governingn aggregate, once formed, follows the movement of the
the system inside a mean-field approximation scheme. center of mass (c.m.) of its constituents, which can be

This system, in its continuous limit, was also studied agdetermined from the initial state. | label the location of
a simplified astronomical model for the agglomeration ofthe c.m. at timer of the r particles located initially at
cosmic dust into macroscopic objects [3]. The ballistic(j + 1)a,(j + 2)a,...,(j + r)a by
aggregation model, where the aggregates interact only
through their collisions, describes the early time behavior . 1 <
of an aggregation model where gravitational interactions Xjnln) = o Z(mxﬂi +1pj+i)
are present [4]. =l .

It is important to mention the connection between this —Qj+r+1) a 4 xr ijﬂ_‘ 1)
model and solutions of the Burgers equation. At a very 2 rm
high Reynolds number, the asymptotic solution of the
Burgers equation consists of a train of shock waves. The The mass distribution can be determined from the
laws of motion which govern the dynamics of these shocknitial conditions and an aggregate of ma"s= mn is
waves are found to be equivalent to a ballistic aggregatiopresent at positioX and at timer if and only if (i) the
system (see [5]). aggregate has formed: the c.m. of its leftmogiarticles

In this Letter, | verify the scaling hypothesis for the masshas crossed the c.m. of its rightmost— s particles for
distribution and find by an exact calculation an explicitall s = 1,...,n — 1 up to time¢, leading toX;(r) >
form for the scaling function. It happens to be differentX}’;SH(z) forl=s=n—1 and XJ’-'H(t) = X with j,
from the conjectured simple exponential. | remark thatan integer; (ii) the aggregate has not been disturbed
such an exact solution is scarce in nonequilibrium systemday other particles: the c.m. of the successive groups of

Rather than solving the set of partial differential equa-particles not constituting the aggregate has not crossed the
tions governing the evolution of the system, | exploit thec.m. of the aggregate up to timethusX;_, (1) < X <
fact that, once the initial state of the systemis given, the dyX;+n+1(t) forr = 1.
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One has (see [6] for details)

o n—1 n o
pulX, M, P,1) = <1‘[ O — X7, (0} [] O, () — x7+;+1<r>}a<P -y pm) [Tex:,. ) - x}>,
r=1 s=1 r=1 r=1

)
with ® being the Heaviside step functio®, = nm, and wherej = (X — tP/M)/a — (n + 1)/2 is an integer. The
brackets denote the average over the initial distribution of the momenta.
Owing to the uncorrelated initial Gaussian distribution of the momenta, the density distribution (2) factorizes in a
product of three functions, one corresponding to the condition (i) above,

n—1 n n—1
<l_[ ®{X;+l(t) - X}lﬁ—ss+1(t)}5(P - Z pj+r>> = f l_[ dPS ¢m(Ps - Ps—1)®‘Ps - & (t 5 +M — Sm)]
s=1 r=1 s=1 t M

X (P — Pn-i)

1 [ o 1
= ﬂ7f Q dP! ¢ (P — Pj,l)@[P; - sm’(ﬁ +M' - sm')]g{)m/(P’ - P, )= AYE Ly(M',P), (3)
where we used new variables definedPas= > ;_, p;+:, | in momentum space’(r) starting atP(0) = 0 to end

1 =s=n—1 with Py = 0, and the integration range at P(nm’) = P while staying above the discrete points
extends from minus infinity to plus infinity for ead®,.  P(sm') > f(sm') for 1 = s = n — 1, with the parabola
Moreover, we introduced the rescaled variabl$ =  f(x) = —x(P'/M’' + M' + x).

M/*3, P =P/i\3, m' = m/i*3, and P! = P;/1'/3. Along the same line, one can easily show that the
On the other end, Eq. (3) reveals that the functionconditions (ii) above lead to the two contributions in
Lw(M',P') is the probability for a Brownian motion| Eq. (2),

= 3 = / ! / / ! P/ / ! ! Pl
<!_[1 0{x — X;_Sﬂ(t)}> = fl_[l dP; (P — PS_1)®[PS + sm (M + M + sm )] = er<M + M) 4)

| tion introduced above, the spagg between the discrete
) point barrier shrinks to zero and approaches a continu-
. (9

and
* I
<l_[ O{Xi 41 (t) — X}> = m/(M’ — i/ ous barrier which makes the problem tractable analyti-
s=1 M cally. Nevertheless, the functiodsandJ are identically
where the functionJ,,(Y) is the probability for a null for m" = 0, which means that the distributign is
Brownian motion starting atP(0) = 0 to pass over null for an infinite time. One thus keeps track of the first
the discrete pointsP(sm') > fy(sm') for s = 1, with & points (M, = km') of the discrete constraints on the

fy(x) = —x(¥ + x). The constraints on the Brownian Brownian motion. The double limitn’ — 0, and then
motion are illustrated in Fig. 1. My — 0 gives an expansion for the functioisand J in

Using Egs. (3)—(5), we find the exact scaling form for power ofm’, which is equivalent to an asymptotic expan-
the distribution (2), sion int (see [7] for justification and details).

] The detailed analytical calculations leading to the
pom(X,M,P;1t) = mpm,(M',p/; 1) explicit forms of the functiond andJ are outside the
= #er(M’ + P'/M")L(M', P') Pem
I(P"M) J(M™-P'IM")
X Ju(M' = P'/M). ®) RIAV A S

Note that, due to translational invariance, the mass distri- *™*"™ a ..
bution does not depend on ,

One of the main difficulties of this problem is the dis- . M=nm . o
crete nature of the constraints on the Brownian motions. . .
| will derive below an expression for the mass distri- . .
bution in the limitm’ = m/1*?* — 0 (with M’ and P’ f(sm)=(PIM+M™-sm)sm
fixed) which is reached either when— « for a fixedm * ’

(asymptotic !ong tim'e I'imit) or for any fixed timeyvhen FIG. 1. Constraints on the Brownian motion used in the
m — 0 (continuous limit). In terms of the Brownian mo- construction of our solution.
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scope of this Letter and will be given elsewhere [7]. One One can compare the obtained scaling function with
finds the dominant contribution im’ the conjectured onef,ni.(M') = exp(—M’)] [1]. In par-
1,(M'.P) = ~MB/12=PR2M' T (Y + © (32 ticular, small and large arguments present strong dif-
(M, P') = m'e () (m )’7 ferences. Indeed, foM’' < 1, one gets H (M') =
@) 1+ O@(M'), while one can estimatd (M') using the

with asymptotic properties of the zeros of the Airy func-
ot tion w; = [B7k)/2]*? + O (k~'/3) and find I(M') ~
I(m') = k;e ", (8) (2/7 M"*?)~', One thus has
where —w; (k = 1) are the zeros of the Airy func- p(p) = 11 + OWM), M' < 1). (16)
tion [8], which form an infinite and countable set T M
and are located on the negative real aXisw; = (Ope can conclude, for example, that the number

—2.33811, —w, = —4.08795,...). This function had to N(Mo, 1) =
be expected in this problem as it is known that it arisesmasgésM
in the description of a Brownian motion with a parabolic

drift [9]. while the exact solution giveS (M, t) ~ /My/t.
On the other end, one gets For M’ > 1, one cangestimate the functiof{ (M)
I (¥) = Vm! Y25 J(v) + O(m"), (9) by the steepest descent method and fiffi(M’') ~
JTMP2exf(—M"/12). On the other end, one has
v I(M') ~ exp(—w,z) leading to
e

1 ctiw
Y) = — dz ———, 10 N — 15/2 ,—M'w,—M"/12 /
J) 27 fc,-oo “TAIR) (10) F(M') =27 M"?e , M > 1).

17
wherec > —w;. L L . (. :
Now, inserting the expression fdrandJ in Eq. (6), This is again different from the conjectured function as

fg“ p(M;t)dM of aggregates of small
< M, < 1?3 at timet is well underestimated
by the conjectured form which leads MMy, 1) ~ My/1t,

with

one has large massesf > >/3 have a much smaller chance to be
) Iy Iy Pyl present in the system than cpnjectured.
p(M,P;t) = ’1_1_ I(—)J(— + _> One can compute the collision frequency between two
BB IN2B)T\ B M masses/; andM,,

J<£ _ Pf_m) @< 5/2) ) MM~ £\ mB (M| + MYMIMLI(M))I(M))
oM ' X H(M] + M), (18)
From this equation one sees that the concentratiof;in 1,74 as above, and wher#!, M}, and m’' are

c(r) of aggregates, the aggregates average mass apfhperly rescaled variables. It does not factorize in a
momentum, and the mean energy per unit of length

behave, for time > 1, as

m
12

c(t) ~ 1723, My, ~ B, (P), =0, 207
VP, ~ '3 E(@) ~ 7. (12)
The integration of Eqg. (11) ove? [7] leads to the mass 15 ]

distribution, which is the main result of this Letter,
m2 M m3/2 =
p(M;t) = WF<I27> 0 1‘57 s (13) Ei 1.0

where one sees that it obeys the expected scaling form
with a scaling function,

0.5 :
FM') =2M'I(M"H (M), (14)
where
I(M) = Z e oM %% 1.0 20 30 4.0
k=1 Mt
1 cHie e Mz FIG. 2. The exact rescaled mass distributiéﬁp(M;t) as a
HM') = 2 /,7.00 dz Ai2(z)’ (15)  function of M /1*/? for large t (solid line). As an illustration,
) o the results of a numerical simulation of the ballistic aggregation
with ¢ > —w;. are plotted for different timesz[= 100 (diamonds) and =
The scaling function”(M’) is plotted in Fig. 2. 1000 (circles)].
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product of functions oM, andM,, respectively, and thus many recent studies [13]. In this respect, it would be in-
invalidates the assumption on which the mass distributioteresting to clarify in which way a noise can be added to
was computed in [2]. the ballistic aggregation problem. The method exposed in
One can inquire about the universality of these resultshis Letter is, however, based on the deterministic nature
with respect to other initial conditions. Let us first of the aggregates dynamics and is of little use if the dy-
consider a Poissonian distribution of the particle initialnamics is stochastic.
positions with an average interparticle distance The In summary, | found an exact asymptotic solution for
discrete points over which the Brownian motion shouldthe mass distribution of the ballistic aggregation in one
pass in the construction of our solution are still distributeddimension. Such an exact solution is not frequent in a
on the same parabola but with irregular spacing. Imonequilibrium system and has permitted me to verify
the long time limit and after rescaling, the spacinga scaling hypothesis for this system. While the average
between points of averagé = a/r*> becomes smaller mass per aggregate was proved to behave with time
and smaller to be, in first order im’, a continuum. The as (M), ~ t*/3 for + > 1, as expected from previous
difference between irregular and regular spacing is thustudies, the scaling function is shown here to be different
asymptotically erased and the result, Eq. (13), should b&om the conjectured one. This distribution also solves
recovered in this case. the shock strength distribution of the one-dimensional
A bimodal momentum distributionp(p) = [6(p — Burgers equation in the inviscid limit with a white noise
po) + 8(p + po)]/2 is used as an initial state in [1]. | initial condition.
believe that this should not affect the form of the mass | gratefully acknowledge numerous useful discussions
distribution (13) as the random walk initiated by this with P. Martin and J. Piasecki and financial support from
distribution is well approximated, in the long time limit, the Swiss National Foundation.
by the considered Brownian motion.
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