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Theory of Sound Attenuation in Glasses: The Role of Thermal Vibrations
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Sound attenuation and internal friction coefficients are calculated for a realistic model of amorphous
silicon. It is found that, contrary to previous views, thermal vibrations can induce sound attenuation at
ultrasonic and hypersonic frequencies that is of the same order or even larger than in crystals. The rea-
son is the internal strain induced anomalously large Grüneisen parameters of the low-frequency resonant
modes. [S0031-9007(99)08429-X]
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Sound attenuation in glasses is poorly understood. T
is because many competing factors lead to sound-wa
damping. Most important are thermally activated stru
tural relaxation, hypothetical tunneling states, topologic
defects, and thermal vibrations. Sorting out different co
tributions for a given temperatureT and sound wave fre-
quencyn ­ Vy2p is a difficult task.

Experiments show the following features: (i) At tem
peraturesT & 10 K and ultrasonic frequencies (10 MHz
to 1 GHz) the sound attenuation coefficientGsT d exhibits
a small, frequency-dependent peak [1]. (ii) At higher tem
peratures, between 10 and 200 K, another peak inGsT d
develops whose center increases only moderately when

increases. The peak broadens at hypersonic frequen
[2] and is not seen above 100 GHz [3,4]. As a func
tion of frequency,Gsnd , n at the peak temperatures [2]
(iii) At hypersonic frequencies,GsT d appears to be almost
independent of (or slightly increasing with)T above the
peak (ii) to at least 300 K [3,4]. (iv) Room temperatur
Gsnd , n2 from at least 200 MHz [2]; this dependenc
continues for up to about 300 GHz [3,4] and seems va
for any temperature above the peak (ii). Finally, (v) th
attenuation coefficients for longitudinal (GL) and trans-
verse (GT ) waves are similar [2].

While the low-temperature behavior (i) ofG is un-
derstood based on the interaction of sound waves w
tunneling states [1], features (ii) through (v) lack con
sistent theoretical justification. The higher-temperatu
peak (ii) shows many attributes of a thermally activate
relaxational process [5], but a calculation shows that
fit experiment, different sets of relaxational processes a
needed for differentn [2]. Also the plateau region (iii)
is difficult to explain by a thermally activated relaxation
process since numerical fits require unphysically large
tempt frequencies [4]. Further, thermal relaxation pr
cesses give attenuation that increases more slowly th
quadratic with increasingn, contradicting (iv). Thermal
vibrations have been overlooked as a sound-wave dam
ing factor on grounds that vibrational modes would nee
unreasonably large Grüneisen parameters (g ø 200 for
vitreous silica [2]) to account for the measuredG. Un-
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til now, however, there has been no numerical study
test this argument.

In this paper we examine the role that thermal vibratio
play in the sound attenuation in glasses. We will u
the term “vibron” to refer to any quantized vibrationa
mode in a glass [6]. Our analysis is restricted to th
region Vtin & 1 (the so-called Akhiezer regime [7]),
wheretin is the inelastic lifetime or thermal equilibration
time of a thermal vibron. We show that the unusual
strong coupling (measured by Grüneisen parametersg)
between sound waves and the low-frequency reson
modes explains the features (iii) through (v). As for th
interpretation of (ii), our calculation shows that confusio
arises because there actually are two different pea
One is caused by relaxational processes (not addres
here) and dominates below 1 GHz and another is due
thermal vibrations and dominates at the lowest hyperso
frequencies. A double peak structure should be expec
at intermediate frequencies. There is some indication
such structure in measurements on vitreous silica [2]. O
calculation is also a prediction: The existing measureme
on amorphous Si [8] reportG at too low frequencies
(300 MHz) to see contributions of thermal vibrations. Bu
even at higher frequencies (say, 30 GHz) one may exp
traces of thermally activated peaks due to various defe
Recently discovered amorphous Si with 1 at. % H [9]
which tunneling (and perhaps also relaxational) proces
are inhibited would be excellent to test our results.

In the Akhiezer regime a sound wave passing throug
solid can be attenuated by two processes [10]. First, if
wave is longitudinal, periodic contractions and dilation
in the solid induce a temperature wave via thermal expa
sion. Energy is dissipated by heat conduction betwe
regions of different temperatures. Second, dissipat
occurs as the gas of vibrons tries to reach an equilibriu
characterized by a local (sound-wave-induced) stra
This is the internal friction mechanism. To establish th
relative importance of the two processes, consider ord
of-magnitude formulasGh ø sV2yry3d skTa2r2y2yC2d
andGi ø sV2yry3d sCTting2d for the heat conductivity
and internal friction processes, respectively [10]. He
© 1999 The American Physical Society
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r is density,C is specific heat per unit volume,y is
sound velocity,k is thermal conductivity, anda is the
coefficient of thermal expansion. The ratioGhyGi ø
ska2r2y2dysC3ting2d becomes more intuitive when
putting a ø CgyB (B ø ry2 is the bulk modulus)
and k ø CD, where D is diffusivity. Then GhyGi ø
Dysy2tind. The factor y2tin measures the ability of
vibrons to absorb energy from a sound wave of veloci
y. The difference between a glass and a crystal lies in
values ofD andtin. In crystalsD ø y2tin, that is, energy
is carried by phonon wave packets with group velocityy.
The ratioGhyGi is then of order unity. In glasses energ
is transferred by diffusion (spreading rather than ballist
propagation of wave packets [11]) andD is not related
to tin [12]. One of the reasons the contribution toGi of
thermal vibrons was previously underestimated is thattin
was guessed from thermal conductivity [2]; this gave to
small tin. For amorphous Si,D ø 1026 m2ys [12], y ø
8 3 103 mys, andtin ø 10212 s [6] give GhyGi ø 0.02.
Since these are typical values,Gh can be neglected. This
is consistent with experiment: Compared with crystal
glasses have smallerk and yetG can be larger [2].

Internal friction leads to sound-wave energy attenuati
[10] G ­ sV2yry3q2dhabgdqaebqged, where habgd

is the internal friction tensor with cartesian coordinate
a, . . . , d and q (e) is the wave vector (polarization)
of the sound wave. Summation over repeated indic
is assumed. We will evaluateG for both longitudinal
(L) and transverse (T ) sound waves with wave vectors
averaged over all directions:

GL ­
V2

15ry
3
L

shaabb 1 2hababd , (1)

GT ­
V2

30ry
3
T

s3habab 2 haabbd . (2)

The coefficientshabgd are the real part of a complex
tensorh̄abgd which can be obtained by solving a kinetic
equation in relaxation time approximation [7],

h̄abgd ­
X

j

Tcjtj
g

j
abg

j
gd 2 sḡabg

j
gd 1 g

j
abḡgddy2

1 2 iVtj
.

(3)

The summation is over all vibrational modesj; cj and
tj denote mode specific heat and relaxation time. T

Grüneisen tensor2g
j
ab is the relative shift of mode

frequencyvj per unit straineab; ḡ is the mode average
of gj weighted withcjys1 2 iVtjd. The applicability
of kinetic theory to the problem of internal friction was
justified by DeVault and co-workers [13] who obtainedh

from a microscopic theory as an autocorrelation functio
of the momentum current density operator. Remarkab
the microscopic theory shows that the momentum curre
in a solid is not monopolized by ballistically propagatin
vibrational modes as in the case of the energy curre
Nonpropagating (even localized) modes can contribu
ty
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as much as propagating ones to the momentum curre
One consequence is that the concept of “minimum kinet
coefficient,” as introduced for electrical [14] or heat [15
conductivity of disordered systems, is not realized fo
internal friction. We generalized [16] DeVault’s theory
to include internal strain, the atomic rearrangements
a strained solid. We found that internal strain affect
internal friction only by modifyinggj, as in the case
of thermal expansion [17]:gj now reflects the change
between the initial mode frequency and the frequency
the mode after the rescaling (scaling parameter1 1 e)
plus the rearranging of atomic positions (to achieve a ne
equilibrium at straine). Internal strain is very important
for thermal expansion of glasses [17]; we will show that
is important forh (andG) as well.

We calculateh and G for the model of amorphous Si
based on the Wooten-Winer-Weaire atomic coordinat
[18] and Stillinger-Weber interatomic forces [19], with
1000 atoms arranged in a cube of side 27.549 Å wi
periodic boundary conditions. Diagonal Grüneisen pa
rametersg

j
aay3 ; sgj

11 1 g
j
22 1 g

j
33dy3 for this model

[20] were given in Ref. [17]; transversegab are calcu-
lated here. Vibrational lifetimestj are extracted from
their 216-atom version values [6] (see also Ref. [21]). Th
model has sound velocitiesyL ­ 7640 mys and yT ­
3670 mys [22].

Figure 1 shows the calculatedGsnd for longitudinal and
transverse sound waves in amorphous Si from 10 MHz
1 THz at 300 K. The attenuationG , n2 up to about
100 GHz, where the condition for the applicability of ki-
netic theoryVtin & 1 reaches its limit (tin ø 1 ps). Our
calculation is not valid beyond this point. In comparison
the measured attenuation of longitudinal waves in vitreo
silica grows quadratically withn up to at least 400 GHz

a-SiO 2 (L) Vacher et al.
a-SiO 2 (L) Zhu et al.
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FIG. 1. Log-log plot of the sound attenuationG scm21d at 300
K, as a function of sound-wave frequencyn (Hz). CalculatedG
are represented by lines (IS: internal strain), experimental da
by symbols. L (T) stands for longitudinal (transverse) soun
waves.
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[4], suggesting thattin in vitreous silica is several times
smaller than in amorphous Si. This is not surprising sinc
Si is remarkably harmonic: Room temperature heat co
ductivity of crystalline Si is larger by an order of magnitude
than that of quartz [23], and a similar relation may hold fo
the correspondingtin of the glassy phases.

More surprising is the comparison with crystalline Si
Figure 1 shows thatGL is similar for the amorphous
and crystalline cases (measuredG for vitreous silica is
several times larger than for quartz [2]). One woul
naively expect the sound attenuation in a glass to
much smaller than in the corresponding crystal sinc
owing to a distribution of bond lengths and bond angle
anharmonicity of the glass is higher (andtin smaller).
The same interatomic potential, for example, yieldstin for
high-frequency phonons in crystalline Si at 300 K abou
5 times larger than in amorphous Si [6]. The reason wh
G in glasses can be of the same order or even higher th
in crystals is the internal-strain-induced anomalously larg
Grüneisen parameters of the resonant modes [17] (s
also Fig. 3 below). (Resonant modes are low-frequen
extended modes whose amplitudes are unusually large a
small, typically undercoordinated region [17,24].) Atomic
rearrangements caused by internal strain are largest
the same regions of undercoordination where the reson
modes have largest amplitude [17]. This leads to hig
sensitivity (measured byg) of the frequencies of these
modes to strain. If the internal strain is neglected, th
sound attenuation is an order of magnitude smaller,
seen in Fig. 1. (Since the resonant modes have lo
frequencies, theirtj is longer than an averagetin; this
adds even more weight to these modes.) Fewer than 1
of the modes are capable of increasingG by a decade. We
believe the measuredG for vitreous silica is also caused
by the strong coupling of sound waves and resona
modes. Vitreous silica is a much more open structure th
amorphous Si so the number of resonant modes should
higher, bringingG above the crystalline value.

Another interesting feature in Fig. 1 is the relative
attenuation strength for longitudinal and transverse sou
waves. While our model of amorphous Si givesGLyGT ø
1y3 at 300 K, the measured ratio for crystalline Si is
reversed:GLyGT ø 3 [23]. This again shows how differ-
ently is sound attenuated in glasses and in crystals. T
ratio GLyGT can be written assyT yyLd3sg2

Lyg
2
T d, where

gL and gT are effective Grüneisen parameters. A crud
way to estimateg2

L andg
2
T , suggested by Eqs. (1) and (2)

is to take mode averages ofsgj
aag

j
bb 1 2g

j
abg

j
abdy15

and s3g
j
abg

j
ab 2 g

j
aag

j
bbdy30. Our model givesg2

L ø
3 and g

2
T ø 1. The ratio GLyGT is then about 1:3, in

accord with the full calculation. Assuming the same ra
tio g

2
Lyg

2
T ø 3 for vitreous silica (yL ­ 5800 mys and

yT ­ 3800 mys), transverse and longitudinal waves ar
attenuated about equally. This is observed in experime
[2]. The explanation of the measuredGLyGT in crys-
talline Si can be found in Ref. [23].
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In Fig. 2 we plotGsT d for different n. A remarkable
feature is a peak at about 20 K at 1 MHz and below. Asn

increases, the peak shifts towards higherT and vanishes
above 4–5 GHz. Two factors cause the peak. (a) T
sum

P
j cjsgjd2 saturates at much lower temperature

(about 50 K) than the model Debye temperatureTD ø
450 K [22]. This is because the relevantj are resonant
modes with small frequencies. (b) For low-frequenc
modes,Ttj (after increasing linearly) develops a pea
before going constant [much likeGsT d itself]. As the
temperature dependence ofG follows

P
j cjsgjd2Ttj, the

peak appears. At largen the peak vanishes because of th
factor1ys1 1 V2t2d in Eq. (3). AtT above 100 K,GsT d
is nearly constant, as observed in experiment as a plat
(iii). This again follows from (a) and (b).

We are not aware of any experiment with which w
could compare our calculations. The measurement ofGsT d
of sputtered amorphous Si films reported in Ref. [8], f
example, was performed at 300 MHz. This is too lo
to see any contributions from thermal vibrations. Th
whole temperature spectrum is dominated by a single p
of the type (ii), except at very low temperatures. Th
peak is expected to increase linearly withn, until thermal
vibrations become relevant (roughly at 10 GHz), causi
a plateau (iv) that increases asn2 at higher frequencies.
Even at smaller frequencies one may see some vibratio
contribution toGsT d at large enoughT , since the thermally
activated peak decreases as1yT at largeT .

Anomalous lowT thermal expansion already suggeste
[25] very largeg values for lowv modes. Our largeg
values [17] agree nicely with trends inasT d. Like thermal
expansion,G should be strongly sample and model depe
dent. There is evidence [26] that our highly homogeneo
model of amorphous Si becomes free of resonant mo
when the number of atoms grows to infinity. That mea
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FIG. 2. Calculated sound attenuationGsTd for amorphous
Si at different frequencies. The thin dashed lines are
longitudinal waves with the labeledn in GHz. Plotted are
rescaled valuesGyn2 for n measured in GHz.
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FIG. 3. Calculated transverse Grüneisen parametersg12 for
amorphous Si as a function of vibron frequency. Above th
vertical line (ø71 meV) the modes are localized.

an infinite model would predictG about a decade smaller
than calculated here. Amorphous silicon, however, can
prepared only in thin films, where voids and other inho
mogeneities are unavoidable. Voids loosen the strict r
quirements of a tetrahedral random network (for examp
by introducing free boundary conditions). Then, as in ou
finite models, regions of undercoordinated atoms will a
low the formation of resonant modes. While this issue fo
amorphous silicon will be ultimately settled by experimen
our calculation combined with the existing data on vitre
ous silica strongly suggests the reality of resonant mode

Our final note concerns the mode dependence of tra
verse Grüneisen parameters such asg12. Similar to volu-
metric gaay3 [17], transverseg12 in Fig. 3 (g13 andg23
look the same) is unusually large for resonant modes a
has scattered values for high-frequency localized mod
(More resonant modes haveg12 negative than positive,
which suggests that resonant modes are trapped at hig
anisotropic undercoordinated regions whose sizes chan
under shear [17].) The 15–70 meV vibrons (diffuson
[6]) have g12 ø 0 (average magnitude 0.02), while the
correspondinggaay3 are of order unity [17]. Such small
values (zeros in an infinite model) are characteristic f
diffusons, which are extended modes whose polariz
tion directions (atomic displacements) point, in genera
at random. There remains only a short-range corre
tion between polarization directions which determines th
diffuson’s frequencyvd. If a shear, say,e12, is applied,
vd changes tov

0
dse12d. Since long-range order in the

diffuson polarization is absent,v
0
dse12d ø v

0
ds2e12d, and

g12 which is a linear coefficient in the expansion ofv
0
d in

e12 must vanish.
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