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It is shown that recent experiments indicating a metal-insulator transition in 2D electron systems
be interpreted in terms of a simple model, in which the resistivity is controlled by scattering at cha
hole traps located in the oxide layer. The gate voltage changes the number of charged traps
results in a sharp change in the resistivity. The observed exponential temperature dependence
resistivity in the metallic phase of the transition follows from the temperature dependence of the
occupation number. The model naturally describes the experimentally observed scaling propert
the transition and the effects of magnetic and electric fields. [S0031-9007(98)08103-4]
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Recently, a metal-insulator transition has been o
served in low-density two-dimensional (2D) electron
systems—first in Si metal-oxide-semiconductor (MOS
structures [1–4] and later in other heterostructures [
9]. It has been found that, when the density of 2D ele
trons ns is below some critical valuenc

s , cooling causes
an increase of the resistivityr, while at ns . nc

s the re-
sistivity decreaseswith temperatureT , i.e., the system
exhibits an unexpected metallic behavior. The insula
ing phase has been found to be rather usual and eas
describe in terms of variable range hopping [10]. How
ever, the metallic phase is anomalous in at least th
respects. (i)rsT d dependence follows the exponentia
i.e.,rsT d  r0 1 r1 exps2T0yTd, rather than power-law
form; (ii) r drops by about an order of magnitude whenT
changes in the range comparable to the Fermi energy´F

of 2D electrons; (iii) the metallic state is quenched by th
magnetic field.

Here, we are not going to discuss existing attemp
[11–18] to interpret these experiments. (We found
Refs. [11–18] no satisfactory physical explanation of th
substantial drop in the resistivity in a narrow temperatu
interval in an obviously nonsuperconducting system
Instead, we propose a simple mechanism which seem
naturally explain all of the peculiarities mentioned abov
We believe that our general idea can be applied to
gated semiconductors. However, here we concentrate
Si MOS structures, where the important characteristics
a two–dimensional electron gas (2DEG) and of defects
much better known than in other systems.

A typical n-Si MOS structure consists of a metalli
gate, SiO2 layer, and p-type Si substrate. A strong
enough, positive gate potential attracts electrons wh
form an inversion layer at the SiO2ySi interface. It is
known [19] that, due to the oxygen deficit in the oxide
there is a substantial concentration of defects close
the interface, which are capable of trapping charg
Even in state-of-the-art devices, there are more than1012

hole traps per cm2, such as Si-Si weak bonds [19]. To
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introduce the idea of our mechanism, we assume all of
hole traps to be (I) characterized by the same energy
the electron leveĺ t and (II) located at the same distanc
z from the interface. We shall abandon assumption
later on. The effects of a finite width of the trap band w
be discussed elsewhere [20].

At T  0, the trap charge (and spin) state is determin
by the chemical potentialm of the 2DEG. Foŕ t . m,
the electron level is empty, i.e., a hole is trapped. The t
has a charge1e and thuscauses strong scattering of 2D
electrons. It is crucial for our theory that the charge sta
of a trap can be changed by varying the gate voltageVg.
Indeed, the biggerVg, the smalleŕ t  ´tsVgd. At Vg 
V p

g szd determined froḿ tsV p
g d  m, the trap captures an

electron (i.e., emits a hole) and is neutralized. Bei
neutral and remote from 2D electrons, the defect can
longer scatter them. Neutralization of the oxide charg
reduces resistivityr and thus causes an insulator-t
metal transition. WhenT is high (¿j´t 2 mj), roughly
half of the traps are charged. As a result,r is rather
high and depends weakly on bothT and Vg. However,
for jm 2 ´tj # T the density of charged traps behav
as expfs´t 2 mdyT g, resulting in the exponentialrsT d
dependence [feature (i)]. The transition takes place
both degenerate and nondegenerate 2DEGs [feature
Finally, the magnetic field effect (iii) can be attributed
the spin freeze-out of holes [21]: Zeeman splitting favo
a spin-1y2 (charged) state with respect to the sing
(neutral) state of the defect.

It should be noted that here we neglect quantu
interference of 2D electrons and thus do not attempt
describe the insulating phase. However, we see that, e
in the classical case,drydT can change sign due to th
msT d-dependence.

Let us now abandon assumption (II), i.e., take in
account a broad distribution of distancesz. In order
to understand why such a distribution does not sm
the transition, we consider the electrostatic energy of
electron in the oxidéeszd. Given the total oxide thicknes
© 1998 The American Physical Society 145
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d and its dielectric constanteox , ´e can be written as

2´eszd  eVgzyd 1 e2ys2eoxzd . (1)

Here the two terms represent the external electric fie
and the image force from the 2DEG, respectively (charg
induced in the gate can be neglected provided thatz ø d).
´eszd reaches its maximuḿm at z  zm, where

´m  22
q

eVg´d , zm  d
q

´dyeVg ,

´d ; e2ys2eoxdd .
(2)

zm can also be expressed through the mean distancr̄
between 2D electrons:

zm  r̄y
p

8  aBrsy
p

8 , (3)

where aB ; r̄yrs is the effective Bohr radius. Equa-
tion (3) follows from the relation between the 2DEG
concentrationns  1yp r̄2 and the gate voltage:ens 
eoxVgy4pd [22]. In order to have a meaning in a macro
scopic theory,zm has to exceed the screening radius
2DEG (equal toaBy4 for a Si(001) surface [23]). There-
fore, in low-density devicessrs ¿ 1y

p
2d, this length scale

is quite legitimate.
Assuming that the double (hole) occupancy of a trap

impossible, the probability of a trap to be charged is

P1szd 

"
1

2C
exp

√
m 2 ´eszd 2 ´t

T

!
1 1

#21

, (4)

where C  1. According to Eqs. (1) and (4), a homo
geneous distribution of traps leads to a distribution
charges which is peaked atz  zm, the width of the peak
being

dz  dfT2´dseVgd23g1y4  zmfT 2seVg´dd21g1y4. (5)

For d  2000 Å and eVg  1 eV, we get ´d 
1 meV and´m  63 meV, respectively, so thatdzyzm .p

T sKdy18 ø 1, since T # 5 K. At T  5 K, zm ø
63 Å and dz ø 8 Å. This sharpness of the distribution
peak in Eq. (4) manifests itself in a sharp metal-insulat
transition, asVg is varied.

How does a positive charge, separated by a distan
z ¿ aB from the 2DEG, affect the resistivity? It turns
out that a bound localized state is formed withj 
z3y4a

1y4
B , z and´b  2e2ysepzd being the localization

length and energy of this state, respectively (ep is the
effective dielectric constant of the 2DEG). The tra
and bound electron form a dipole, which is oriente
perpendicular to the 2DEG plane. Forz . aBrs and
rs ¿ 1, the (transport) scattering cross sectionSs´, zd of
such a dipole for electrons with energy´ can be evaluated
classically:

Ss´, zd  2.74se2z2y2ep´d1y3. (6)

The Drude formula for the resistivity can be written as

r  sNtye2nsd
p

2mp ¯́ Ss ¯́ , zmd
Z d

0
dz P1szd

√
z

zm

!2y3

,

(7)
whereNt is the total volume concentration of the traps
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mp is the effective mass of the electrons, and¯́ has a
meaning of their effective energy, which can be expresse
through the 2DEG Fermi energýF via

¯́  ´F

"Z `

0

d´

4T

√
´

´F

!5y6

cosh22

√
´ 2 ´F

2T

!#26

. (8)

Equation (8) interpolates between two limits:́̄ ø
TyG6s11y6d ø 1.44T for T ¿ ´F , while in the opposite
limit ¯́  ´F . For T  ´F , the effective energȳ́ ø 2T .

In the saddle-point approximation, Eq. (7) reduces to

r  shye2dr0RsVg, T d , (9a)

r0  0.46
p

rs sepy2eoxd1y6sNtr̄ypnsd sr̄ydd2y3,
(9b)

RsVg, T d 

√
T3 ¯́

´
4
d

!1y6 Z `

0

dx
f fsT dy2g expsx2 1 sd 1 1

.

(9c)

In Eq. (9c), we took into account themsT d-dependence:

s  fms0d 2 ´m 2 ´tgyT , fsT d  efmsT d2ms0dgyT .

(10)

We have to consider two distinct cases: (A) Chemical
potentials of the 2DEG and of the Si substrate coincide
(B) the 2DEG is disconnected from the substrate. A
straightforward calculation gives

fAsT d  sTyTad3y4, fBsT d  1 2 exps2´FyT d ,

(11)

where Ta is determined by the acceptor concentration
[21]. Although caseB is more likely to occur in a
real device [24], we shall concentrate mostly on caseA
which exhibits a clear metal-insulator transition even in
classical model (see below).

The exponential part of theRsT d-dependence disap-
pears whens, Eq. (10), vanishes. This happens atVg 
V c

g  f´t 2 ms0dg2y4e´d and thusV c
g defines the transi-

tion point. Away from this pointR behaves as

RA,B

√
T3 ¯́

´
4
d

!1y6

3

Ω p
p V, for V ø 1,

ln1y2 V, for V ¿ 1 .
(12)

whereV ; f2yfsT dge2s. The distance from the transi-
tion can be measured byd ; sVg 2 V c

g dyV c
g . Provided

d2 ø 4T2ys´deVgd, variable s in Eq. (10) acquires a
scaling form

s ø
q

´deV c
g sdyTd ; yyt, t ; Ty´d ,

y ; d
q

eV c
g y´d .

(13)

The RsT d dependence in the scaling region is shown in
Fig. 1. Fory ¿ t, the system is in the “metallic” phase
characterized byRA,B exponentially decreasing witht.
Because of themsT d dependence,dRAydt changes sign
at somey slightly bigger than zero, exhibiting thus a
metal-to-insulator transition. For larger negativey [not
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FIG. 1. Scaling functionR [Eq. (9c)] vs dimensionless tem-
peraturet for several dimensionless gate voltagesy [Eq. (13)].
y increases in the direction of the arrow.́Fy´d  0.25. (a)
CaseA: y  20.2 0.7. Tay´d  0.04. Dot-dashed line indi-
cates the transition. (b) CaseB: y  21.4 0.7.

shown in Fig. 1(a)], theRAstd dependence saturates
At eV c

g  1 eV, ´d  1 meV, andT  5 K, we predict
critical behavior forjdj # 0.01. This is consistent with
experiments [1–4].

In case B, there are two distinct regions: exponen
tially decreasing andt-independentRB, the crossover
between the two occurring forjyj . t. Quantum inter-
ference effects should result in localization, convertingT -
independentr into an exponentially diverging one; the
metal-insulator transition in this case will be discusse
elsewhere [20].

At the transition,RA ø 0.1 and RB ø 1 (cf. Fig. 1).
At the same time,ns . 1011 cm22 and r̄ . 100 Å
for d  2 3 1025 cm and eVg  1 eV. Estimating
Ntr̄ . 1012 cm22 and rs . 10, we obtain for the resis-
tivities at the transitionr

c
A . 0.1hye2 and r

c
B . hye2.

These values are within the experimentally observed ran
[3(b)].

As Fig. 2 shows, the transition between the insulatin
and metallic phases in caseA is very well defined, despite
the fact thatR does not solely depend on the scalin
variable yyt. Closer inspection of the transition region
(Fig. 2, inset) reveals, however, that the transition occu
over a finite range ofy rather than at a single point.

Figure 3 depicts the (approximate) data collapse f
R plotted as a function oftyjyj  TyT0 with T0 
jdj

q
´deV c

g . The inset of Fig. 3 demonstrates the “du
ality” feature, i.e., the symmetry between the resistivi
r in the insulating phase and the conductivitys in the
metallic phase. Experimentally, a similar collapse wa
achieved forT0 ~ jdja [in the quantum phase transition
.
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FIG. 2. CaseA: Scaling functionR [Eq. (9c)] vs dimension-
less gate voltagey for dimensionless temperaturest  0.1 0.6
[Eq. (13)]. t increases in the direction of the arrow. Inset: A
blowup of the transition region.

theory (QPTT),a  nz]. In all of the experiments, ex-
cept Ref. [8],a is close to1, i.e., to our prediction.

An additional insight comes from non-Ohmic measur
ments. In Ref. [1(c)], the dependence ofr on the source-
drain voltageVSD  E L (whereE is the electric field,
and L is the source-drain distance) was also found to
a scaling one,r  rsE yE0d with E0 ~ jdjb. We be-
lieve that thisE dependence can be attributed to simp
heating. Indeed, the effective temperature of electronsTp

is determined by the energy balance. For strong enou
electric field, i.e, whenTp ¿ T , and for 2D electrons,

eE
q

DsTpdtephsT pd  spy
p

6 dTp. (14)

Here DsT d is the diffusion constant of electrons a
temperatureT , and tephsT d ~ T2p is the relaxation
time of the electron temperature, which we assum
to be determined by electron-phonon scattering [25
One can check that, ifrsT d and DsT d obey a scaling
law 1yDsT d ~ rsT d  FsTyT0d, the E dependence of
the resistivity is also scalinglike:r  GsE yE0d, where
E0  Ta

0 ~ jdjaa with a  1 1 py2 and functionG is
obtained by solving Eq. (14) for a givenF. If p  3 (as
is the case for good metals),a  2.5. The experimental
value of a  bya [1] is .2.25. This discrepancy can
easily be explained byp being smaller than3. On
the other hand, QPTT predictsa  1 1 z21, i.e., a 
2 at z  1. One can check that the strong heatin

FIG. 3. CaseA: Data collapse inR plotted vstyjyj. Inset:
“Duality” between “resistivity”rp  RAyR

c
A andsp  1yrp

plotted as a function ofd [Eq. (13)]. Solid downward curve:
rpsdd. Solid upward curve:spsdd. Dashed curve:sps2dd.
147
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FIG. 4. CaseA: Scaling functionR vs temperaturet for
Zeeman splittingsEZ  s0, 0.04, 0.08, 0.12, 0.16, 0.2d 3 ´d (EZ
increases from the bottom to the top curves).y  0.1. Inset:
The same as in Fig. 1(a) but forEZ  0.15´d .

regime is realized under the conditions of Ref. [1(c)
if teph . 0.1 msyfE smVycmdg2. Strong heating of a
2DEG has recently been observed in a Si metal-oxid
semiconductor-field-effect transistor device [26], simila
in its parameters to that used in Refs. [1–4].

We now turn to the effect of a magnetic field. Conside
a hole trap, e.g., a Si-Si weak bond [19]. Such a trap c
find itself in one of the three states with energiesEi : i 
1, 2, 3. For i  1, two electrons occupy the bond. This
is supposed to be a neutral (Q  0) singlet (S  0) state.
State 2 (3) has one spin down (up) electron on the bo
Accordingly,Q  11 andS  1y2 for both states 2 and
3. A magnetic field splits the doublet:E1 2 E2s3d 
´t 6 EZ , whereEZ is the Zeeman splitting. As a result
at givenT and Vg probability P1 of finding a trap in a
Q  11 state increases withEZ , i.e., with the magnetic
field: One should substituteC  coshsEZyT d instead
of 1 into Eq. (4). This results in a magnetoresistivit
demonstrated in Fig. 4.

We conclude by emphasizing that this paper suggest
mechanism of the sharp resistance drop with temperat
and an illustration, rather than a theory, of the meta
insulator transition. The assumptions/predictions whi
we are proposing at this stage to check experimentally
the existence of hole traps in the proper energy interv
with short enough times of charge transfer betwe
these traps and a 2DEG. One can think about seve
scenarios of the transition which allow for inhomogeneo
broadening of trap energy levels and involve quantu
interference effects. These more realistic pictures will
discussed elsewhere [20].

We benefited greatly from discussions with D. Cobde
M. E. Gershenson, S. V. Kravchenko, and V. M. Pudalo
We would also like to thank I. L. Aleiner, L. I. Glazman
148
],

e-
r

r
an

nd.

,

y

s a
ure
l-

ch
are
al

en
ral

us
m

be

n,
v.
,

J. Graybeal, K. Muttalib, M. Reizer, and O. A. Starykh
for their valuable comments. The work at Princeton
University was supported by ARO MURI DAAG55-98-1-
0270. D. L. M. acknowledges financial support from NSF
DMR-970338.

[1] (a) S. V. Kravchenkoet al.,Phys. Rev. B50, 8039 (1994);
(b) 51, 7038 (1995); (c) Phys. Rev. Lett.77, 4938 (1996).

[2] D. Simonian, S. V. Kravchenko, M. P. Sarachik, and V. M.
Pudalov, Phys. Rev. B55, R13 421 (1997); Phys. Rev.
Lett. 79, 2304 (1997).

[3] (a) V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer,
JETP Lett.65, 932 (1997); (b)ibid. 68, 442 (1998).

[4] D. Popović, A. B. Fowler, and S. Washburn, Phys. Rev.
Lett. 79, 1543 (1997).

[5] K. Ismail et al., cond-mat/9707061.
[6] P. T. Coleridge, R. L. Williams, Y. Feng, and P. Zawadzki,

Phys. Rev. B56, R12 764 (1997).
[7] J. Lam, M. D’Iorio, D. Brown, and H. Lafontaine, Phys.

Rev. B56, R12 741(1997).
[8] M. Y. Simmonset al., Phys. Rev. Lett.80, 1292 (1998).
[9] Y. Hanein et al., Phys. Rev. Lett.80, 1288 (1998); Phys.

Rev. B58, R7520 (1998).
[10] B. I. Shklovskii and A. L. Efros,Electronic Properties of

Doped Semiconductors(Springer-Verlag, Berlin, 1984).
[11] V. Dobrosavljević, E. Abrahams, E. Miranda, and S.

Chakravarty, Phys. Rev. Lett.79, 455 (1997).
[12] C. Castellani, C. Di Castro, and P. A. Lee, Phys. Rev. B

57, R9381 (1998).
[13] P. Phillipset al., Nature (London)395, 253 (1998).
[14] D. Belitz and T. R. Kirkpatrick, Phys. Rev. B58, 8214

(1998).
[15] F.-C. Zhang and T. M. Rice, cond-mat/9708050.
[16] Song He and X. C. Xie, Phys. Rev. Lett.80, 3324 (1998).
[17] S. Chakravarty, S. Kivelson, C. Nayak, and K. Völker,

cond-mat/9805383.
[18] V. M. Pudalov, JETP Lett.66, 175 (1997).
[19] T. Hori, Gate Dielectrics and MOS ULSIs(Springer-

Verlag, Berlin, 1997).
[20] B. L. Altshuler and D. L. Maslov (unpublished).
[21] R. A. Smith, Semiconductors (Cambridge University

Press, Cambridge, England, 1978).
[22] We incorporate the threshold voltage intoVg.
[23] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.54,

437 (1982).
[24] V. M. Pudalov (private communication).
[25] It is not quite clear how the authors of Ref. [16] estimated

heating without specifying the relaxation mechanism.
[26] R. J. Zieve, D. E. Prober, and R. G. Wheeler, Phys. Rev. B

57, 2443 (1998).


