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Dana Z. Anderson,1 Roger W. Brockett,2 and Nathan Nuttall1

1Department of Physics and JILA, University of Colorado and National Institute of Standards and Techn
Boulder, Colorado 80309-0440

2Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
(Received 20 July 1998)

An operator approach to two-beam coupling in photorefractive media for which each beam
composed of information that varies in both space and time reduces the problem to a single differen
equation:drydz ­ fff fs0, rg, rgggy4. fA, Bg ­ AB 2 BA is the commutator of two operators,r is a
density operator that embodies the state of the optical field, ands0 is a coupling operator. A solution
exists in closed form for specific cases and is amenable to numerical integration in general. T
evolution of r is unitary and approaches a block diagonal in a representation that diagonalizess0.
[S0031-9007(99)08382-9]
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A coherent pair of laser beams made to intersect
barium titanate or a similar photorefractive material wi
couple such that one beam will give up its energy to th
other, as illustrated in Fig. 1. The process is known
two-beam coupling [1], and it is one of several nonline
optical interactions in photorefractives that lead to
remarkable variety of effects and devices, such as se
and mutually pumped phase conjugation, oscillation in
resonator, and novelty filters [2]. In addition to havin
a two-beam coupling gain, photorefractive materials a
holographic and have memory. These properties dr
the interest in photorefractives for image processing a
other information processing applications. Consider
task such as imaging through a turbulent atmosphere
perhaps tracking a bird as it flies among the trees
a forest. These, like many real-time imaging problem
impose both spatial and temporal modulation onto las
beams. What happens when information-bearing bea
interact in a photorefractive medium? The convention
approach to nonlinear optical interactions is poorly suite
to address questions concerning the information conten
the beams. The standard approach decomposes the op
field into modes, usually plane waves, then derives a
of coupled slowly varying amplitude equations to describ
how the modes evolve.

This work develops an operator treatment of two-bea
coupling interactions. Spatial information encoded on t
beams is represented by state vectors in a Hilbert spa
As the optical beams propagate through the medium
do the vectors undergo a dynamical evolution in spac
We show that a spatially varying Hamiltonian govern
this dynamics. Despite the fact that two-beam couplin
is fundamentally a nonlinear process, the medium c
nevertheless be viewed as a “black box” that perform
a unitary transformation on the input vectors. From a
information processing standpoint, it is a convenient vie
that emphasizes the function rather than the mechanism
the process.
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Yet the formalism offers more than a convenient view
point by revealing aspects of wave mixing in photore
fractives that are not so apparent in the standard coup
mode approach. In a series of papers, Hall and collab
rators [3–7] identified the symmetries associated wi
four-wave mixing in optical media by formulating the
problem as a dynamics on an SU(2) or other group ma
fold (depending upon the geometry). They also point
out that conserved quantities of the dynamics are co
veniently imbedded in a matrix formalism, whereas the
are imposed constraints in the coupled mode approa
Stojkov and Belic [8] and Stojkovet al. [9] independently
echoed similar conclusions. They employed a state-vec
representation of the fields, as we do. Like these oth
works, the operator formalism developed here is reve
ing of the symmetries associated with multiple wav
interactions.

In its simplest rendition, two-beam coupling in photo
refractive media is described by two interacting plan
waves: one at the pluss1d port having amplitudee1

and one at the minuss2d port having amplitudee2. An
index gratingg arises from the interference between th
waves, couples the amplitudes, and gives rise to a spa

FIG. 1. In simple two-beam coupling, energy is transferre
from one beam at the minus port to another at the plus po
An arrow indicates the direction of energy transfer. A typica
information processing scenario has both beams spatially a
temporally modulated.
© 1999 The American Physical Society
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x-
evolution of the fields according to

e0
1 ­ ge2 ,

e0
2 ­ 2gpe1 , (1)

g ­ Ge1ep
2y2I ,

where ′ indicates dydz, I is the total intensity,I ­
je1j2 1 je2j2 ­ I1 1 I2, andG is the coupling coeffi-
cient. We assume here that the coupling is real, in whi
case the phases are constant and one usually solves fo
intensities,

I 0
1 ­ GI1I2yI ,

I 0
2 ­ 2GI1I2yI .

(2)

The analytic solution to these equations and the
energy transfer characteristics are well known [10–12
the plus port intensity increases as it derives energy fro
the minus port beam. An information processing scena
typically requires many modes—perhaps having differe
carrier frequencies or perhaps appearing at different tim
To address this scenario one typically takes both tempo
and spatial Fourier transforms of the fields. The equatio
of motion become

e0
1iv ­

X
j

gije2jv ,

e0
2jv ­ 2

X
i

g
y
ije1iv , (3)

gij ­ G
X
v

e1ivep
2jvy2I ,

where y indicates complex-conjugate transpose. Lat
indices are used to specify spatial components and Gre
indices to specify temporal components. Our operat
formalism replaces Eq. (3) with a single equation th
embodies the same physics.

We begin the operator formalism by introducing th
optical state vector written using the Dirac notation a
jcvl [13]. In the plane-wave representation,

p
Iv jcvl

has as its components the Fourier amplitudes of the pla
waves having carrier frequencyv. For example, the
amplitude of thekth spatial Fourier component of the
plus port is given by the matrix element,

p
Iv k1k j cvl ­

e1kv. Notice that jcvl carries both plus and minus
port amplitudes. We explicitly take the intensity facto
out of the state vectors so that they are normalized
unity: kcv j cvl ­ 1. The spatial structures associate
with two different temporal components of the field ar
not orthogonal in generalkcṽ j cvl fi 0. The state vector
carries the information in a representation-free manne
one may choose to represent the information in a way th
is convenient for the information processing problem
hand. For example, one might choose to representjcvl
by the gray-level value of the various pixel elements o
a spatial light modulator rather than by its plane-wav
components.
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It will sometimes be useful to write various stat
vectors and operators in what we call the experimente
block representation. In the case ofjcvl,

jcvl !

µ
jc1vl
jc2vl

∂
. (4)

The upper state vector represents the beam of the plus
and the lower represents the minus port. Both may ha
an arbitrary number of modes. The form of the gratin
amplitude in Eqs. (1) and (3) suggests that it may
useful to construct a density operator from the followin
sum of temporal components:

r ;
X
v

Iv

I
jcvl kcvj . (5)

In the experimenter’s representation,

r !

µ
r11 r12

r21 r22

∂
. (6)

A matrix representation of the density operator ha
a unit trace and it is Hermitian,r ­ ry. Next, we
introduce the coupling operators0. In the experimenter’s
representation,

s0 ­

µ
1m 0
0 21n

∂
, (7)

where the1m, 1n are identity operators of their respectiv
spaces. If, for example, the plus port is exposed tom
plane waves and the minus port is exposed ton plane
waves, then the upper left identity operator is represen
by anm 3 m diagonal matrix of 1’s, and the lower right
is represented by ann 3 n diagonal matrix of21’s.
From now on we drop the subscripts on the identi
operators. Note that the coupling operator has the use
property so that its square is the identity,s

2
0 ­ 1, which

means that it is both unitary and Hermitian. We combin
the density and coupling operators to introduce a thi
operator,

Hrszd ­ ifs0, rszdgy4 . (8)

Sinces0 andr are both Hermitian,Hr is also Hermitian.
Equation (3) can now be replaced by an operator count
part,

jc 0
vszdl ­ 2iHrszd jcvszdl , (9)

where distance is in units of1yG. That this equation
embodies Eq. (3) can be verified in any specific instan
by writing out its matrix elements in a plane-wave repre
sentation. Equation (9) resembles a quantum mechan
Schrödinger equation with a time-dependent Hamiltonia
except here the dynamical evolution is in space rather th
time. Indeed, we will refer toH as a Hamiltonian and to
Eq. (9) as the Schrödinger picture [13] of the evolutio
of the state vector representing a temporal component
the electromagnetic field. We also think of Eq. (9) as e
pressing the flow of information through the medium.
1419
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The black-box view of the photorefractive medium
is formally cast into place by taking the Heisenber
picture [13] of the evolution equations. We define th
transformation, or two-beam coupling, operatorT by

jcvszdl ­ T szdjcvs0dl . (10)

From Eq. (9), the evolution ofT is evidently given in this
Heisenberg picture by

T 0szd ­ 2iHrszdT szd . (11)

T is a unitary operator,T21 ­ Ty, reflecting the fact
that the total intensity is preserved by the two-bea
coupling interaction. From the definition of the densit
operatorr and of the transformation operatorT , rszd ­
T szdrs0dTyszd, thus the evolution of the density operato
is given by

r0 ­ T 0rs0dTy 1 T0s0dTy0 ­ 2ifHr , rg , (12)

or

r0 ­ ffffs0, rg, rgggy4 . (13)

Equations (11) and (13) are the primary results of th
paper. They express the flow of information through th
medium in different forms. T is the identity operator
at z ­ 0, so knowingT sLd and the fields at the input
provides the fields at the output of the medium. If th
field suddenly changes, the new field undergoes the
transformation until the medium has had time to respon
typically a fraction of a second. On the other hand, th
density operator determines the specific behavior of
interaction and tracks the correlation among the modes

The simplest case of beam coupling between two pla
waves illustrates the operator formalism. The density a
coupling matrices are

r ­
1
I

µ
I1 e1ep

2

ep
1e2 I2

∂
, (14)

s0 ­

µ
1 0
0 21

∂
. (15)

Hence the Hamiltonian is

Hr ­
i

2I

µ
0 e1ep

2

2ep
1e2 0

∂
, (16)

and the double-bracket equation givesµ
I 0

1 se1ep
2d0

sep
1e2d0 I 0

2

∂
­

1
I

µ
I1I2 sI2 2 I1de1ep

2y2
sI2 2 I1dep

1e2y2 2I1I2

∂
. (17)

The diagonal elements of this equation are identical w
Eq. (2) (other than the implicit factor ofG ), as they
should be.

The two-beam coupling operator equations can
integrated directly when the Hamiltonian is spaitall
commuting, that isfHrsz1d, Hrsz2dg ­ 0 for all z1, z2. In
particular, the commuting assumption about the Ham
1420
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tonian allows us to formally integrate Eq. (11),

T szd ­ exp

∑
2i

Z z

0
Hrsz̃d dz̃

∏
T s0d . (18)

The expression forT can be put into closed form. To
do so it is helpful to first cast the two-beam couplin
equations in a “coupling” picture that treats the couplin
operator as the dynamical variable while the fields rema
fixed. We introduce

sszd ; Tys0T . (19)

The utility of this picture rests in the fact that we
can solve for sszd in all cases (whether or not the
Hamiltonian commutes with itself at different positions
and the fact the equation of motion for the two-bea
coupling operator can be cast entirely in terms ofs and
its derivatives. Taking the spatial derivative we find tha

s0 ­ fffs, fs, r0ggggy4 ­ sr0 2 sr0sdy2 , (20)

wherer0 ; rs0d and we have made use of the fact tha
s2 ­ 1. The solution to this equation is given by a
explicit similarity transformation,

sszd ­ Ss0S21, (21)

with the transformation operator given by

Sszd ­ coshsr0zy2d 1 sinhsr0zy2ds0 . (22)

That Eq. (21) satisfies (20) can be quickly verified b
noting that S0 ­ r0Ss0y2 and by using the derivative
of an inverse operatorsS21d0 ­ 2S21S0S21. Multipli-
cation of the right-hand side of Eq. (11) on the left b
TTy ­ 1 reexpresses the evolution of the two-bea
coupling operator,

T 0 ­ 2iTHs ­ Tss0y2 , (23)

where

Hs ; ifs, r0gy4 ­ ss0y2 ­ TyHrT . (24)

Now we are in a position to prove that the solution of th
two-beam coupling operator for the spatially commutin
Hamiltonian case is

T szd ­
q

s0sszd . (25)

First, we see that the above satisfies the boundary con
tion, T s0d ­ 1. Second, we takesT2d0 ­ T 0T 1 TT 0 ­
2TT 0 ­ T2ss0 ­ s0s0, which is consistent with the as-
sumed form of the operator. Note that the second equa
is a consequence of Eq. (18) and the boundary condit
on T .

One can show that the Hamiltonian is spatially com
muting for the “pure case,” a condition defined byr

2
0 ­

r0, which physically is the simplest case of two interac
ing fully mutual coherent temporal modes, such as tho
of Eq. (1). Note that it does not necessarily mean tw
plane waves; the modes may be composed of an arbitr
number of plane-wave components. One can also sh
that H is spatially commuting whenfr0, s0r0s0g ­ 0.
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This latter condition is satisfied byany 2 3 2 density
matrix, therefore any two-mode problem including two
modes that are partially mutually coherent in time. Th
latter condition is also satisfied by the general case
reflexive two-beam coupling in photorefractive media,
special instance of many interacting modes that is of pa
ticular interest in information processing [14].

What general statements can we now make about t
connection between two-beam coupling and informatio
processing? Despite nonlinear interaction, the resulta
transformation remains unitary. Consequently both th
trace and the eigenvalues of the density matrix are co
stants of the evolution. Equation (13) is, in fact, a speci
case of double-bracket equations, which have been stud
extensively in the context of information processing fo
the class of symmetric matrices [15–17]. It is known, fo
example, that Eq. (13) describes a gradient ascent to
maximum of Trsrs0d (Heisenberg picture) or of Trsr0sd
(coupling picture). Steady state corresponds to the co
dition that r commutes withs0. Therefore the density
operator in the experimenter’s representation asympto
cally approaches a block diagonal.

The density matrix is composed of a weighted sum
of state-vector outer products. The weights take on st
tistical meaning if one interprets the ratios for the var
ous temporal componentsv as probabilities,Pv ­ IvyI.
The interpretation is particularly appropriate for problem
such as turbulence mitigation for which the statistica
properties, but not the details of the optical field, can b
characterized. The diagonal elements of the density m
trix can also be interpreted as probabilities, and they a
the natural dynamical variables to follow in a given two
beam coupling problem. Reflecting the gradient asce
character of the dynamics, the diagonal elements cor
sponding to the plus port monotonically increase toward
their asymptotic values, while those corresponding to th
minus port monotonically decrease towards their asym
totic values. By contrast, the intensities associated wi
individual state vectors do not necessarily evolve mon
tonically. Numerical calculations reveal, in fact, that en
ergy can flow from the plus to the minus port, the revers
of events in simple two-beam coupling.

The ability to draw general conclusions about the dy
namics owes much to the representation free form
operator methods. For a given numerical calculation on
can choose a representation that is convenient for t
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problem at hand. Equations (13) and/or (16) are w
behaved and easily evaluated numerically by standard
tegration packages whether or notH is spatially commut-
ing. The various conserved quantities are all contain
in the formalism and one need only specify the bounda
condition. Once obtained, the black-box operatorT pro-
vides easy access to other quantities of interest.
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