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An operator approach to two-beam coupling in photorefractive media for which each beam is
composed of information that varies in both space and time reduces the problem to a single differential
equation:dp/dz = [[oo,pl, p1/4. [A,B] = AB — BA is the commutator of two operatorg, is a
density operator that embodies the state of the optical field,ognd a coupling operator. A solution
exists in closed form for specific cases and is amenable to numerical integration in general. The
evolution of p is unitary and approaches a block diagonal in a representation that diagonajizes
[S0031-9007(99)08382-9]

PACS numbers: 42.65.Hw, 03.65.Ca, 89.70.+c

A coherent pair of laser beams made to intersect in Yet the formalism offers more than a convenient view-
barium titanate or a similar photorefractive material will point by revealing aspects of wave mixing in photore-
couple such that one beam will give up its energy to theractives that are not so apparent in the standard coupled
other, as illustrated in Fig. 1. The process is known asnode approach. In a series of papers, Hall and collabo-
two-beam coupling [1], and it is one of several nonlinearrators [3—7] identified the symmetries associated with
optical interactions in photorefractives that lead to afour-wave mixing in optical media by formulating the
remarkable variety of effects and devices, such as selfproblem as a dynamics on an SU(2) or other group mani-
and mutually pumped phase conjugation, oscillation in dold (depending upon the geometry). They also pointed
resonator, and novelty filters [2]. In addition to having out that conserved quantities of the dynamics are con-
a two-beam coupling gain, photorefractive materials areveniently imbedded in a matrix formalism, whereas they
holographic and have memory. These properties drivare imposed constraints in the coupled mode approach.
the interest in photorefractives for image processing an&tojkov and Belic [8] and Stojkoet al. [9] independently
other information processing applications. Consider achoed similar conclusions. They employed a state-vector
task such as imaging through a turbulent atmosphere aepresentation of the fields, as we do. Like these other
perhaps tracking a bird as it fies among the trees ofvorks, the operator formalism developed here is reveal-
a forest. These, like many real-time imaging problemsjng of the symmetries associated with multiple wave
impose both spatial and temporal modulation onto laseinteractions.
beams. What happens when information-bearing beams In its simplest rendition, two-beam coupling in photo-
interact in a photorefractive medium? The conventionatefractive media is described by two interacting plane
approach to nonlinear optical interactions is poorly suitedvaves: one at the plué+) port having amplitudee+
to address questions concerning the information content afind one at the minué-) port having amplitudee—. An
the beams. The standard approach decomposes the opticgadex gratingg arises from the interference between the
field into modes, usually plane waves, then derives a sataves, couples the amplitudes, and gives rise to a spatial
of coupled slowly varying amplitude equations to describe
how the modes evolve.

This work develops an operator treatment of two-beam
coupling interactions. Spatial information encoded on the
beams is represented by state vectors in a Hilbert space.
As the optical beams propagate through the medium so
do the vectors undergo a dynamical evolution in space.
We show that a spatially varying Hamiltonian governs
this dynamics. Despite the fact that two-beam coupling Photorefractive
is fundamentally a nonlinear process, the medium can Plus port medium
nevertheless be viewed as a “black box” that performs _ _ _

a unitary transformation on the input vectors. From arf!G: 1. In simple two-beam coupling, energy is transferred
. ) . A . . from one beam at the minus port to another at the plus port.
information processing stgndpomt, It Is a convenient VIEWAR arrow indicates the direction of energy transfer. A typical
that emphasizes the function rather than the mechanism @iformation processing scenario has both beams spatially and
the process. temporally modulated.

Minus port

Energy transfer
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evolution of the fields according to It will sometimes be useful to write various state
el =ge_, vectors and operators in what we call the experimenter’s
block representation. In the case|gf,),
/ #
e = —8 é+, 1)
o war = (19747). @
g = Fe+e_/21, |¢/—(u>
where ' indicates d/dz, I is the total intensity,/ =  The upper state vector represents the beam of the plus port

le<|* + le-|> = I+ + I, andT is the coupling coeffi- ~and the lower represents the minus port. Both may have
cient. We assume here that the coupling is real, in whictan arbitrary number of modes. The form of the grating
case the phases are constant and one usually solves for theplitude in Egs. (1) and (3) suggests that it may be

intensities, useful to construct a density operator from the following
I =TI.1./I, sum of temporal components:
) I
I =—F1+1_/1. 1% EZTwl'ﬁw><‘r/fw| (5)

w

The analytic solution to these equations and theirJ th . ter tai
energy transfer characteristics are well known [10—12]!" (N€ EXpPenmMenters representation,
the pl_us port intensity incr_eases as it derives energy fro_m (P P ()
the minus port beam. An information processing scenario p p—+ p-—)°
typically requires many modes—perhaps having different . . .
carrier frequencies or perhaps appearing at different time&} matrix representation of _t_he densﬁy operator has
unit trace and it is Hermitianp = p'. Next, we

To address this scenario one typically takes both tempor:ﬂ d h i In th : .
and spatial Fourier transforms of the fields. The equationt'troduce the coupling operatof. In the experimenter's

of motion become representation,
(1, 0
eiv = D 8ijeju 70 ( 0 —1n>’ ")
J
;L + where thel,,, 1, are identity operators of their respective
Cjo = _Zgije+iw’ (3) spaces. If, for example, the plus port is exposednto
' plane waves and the minus port is exposed:tplane
gij =T Zeﬂwejjw/z[, waves, then the upper left identity operator is represented
' @ by anm X m diagonal matrix of 1's, and the lower right

where t indicates complex-conjugate transpose. Latinis represented by am X n diagonal matrix of —1's.
indices are used to specify spatial components and Gredkom now on we drop the subscripts on the identity
indices to specify temporal components. Our operatooperators. Note that the coupling operator has the useful
formalism replaces Eq. (3) with a single equation thatproperty so that its square is the identitsg = 1, which
embodies the same physics. means that it is both unitary and Hermitian. We combine
We begin the operator formalism by introducing thethe density and coupling operators to introduce a third
optical state vector written using the Dirac notation asoperator,
l,) [13]. In the plane-wave representatiod/,, |, ) .
has as its components the Fourier amplitudes of the plane Hy(2) = iloo. p(2))/4. (8)
waves having carrier frequency. For example, the Sinceo, andp are both HermitianH, is also Hermitian.
amplitude of thekth spatial Fourier component of the Equation (3) can now be replaced by an operator counter-
plus port is given by the matrix elemert/,, (+k | ¥,) =  part,
eiro. Notice that|,) carries both plus and minus , .
port amplitudes. We explicitly take the intensity factor I () = —iH, (2) |90 (2)) )
out of the state vectors so that they are normalized tevhere distance is in units of/I". That this equation
unity: (¢, | ¥,) = 1. The spatial structures associatedembodies Eqg. (3) can be verified in any specific instance
with two different temporal components of the field areby writing out its matrix elements in a plane-wave repre-
notorthogonal in generdly; | ) # 0. The state vector sentation. Equation (9) resembles a quantum mechanical
carries the information in a representation-free mannerSchrédinger equation with a time-dependent Hamiltonian,
one may choose to represent the information in a way thagxcept here the dynamical evolution is in space rather than
is convenient for the information processing problem atime. Indeed, we will refer tdd as a Hamiltonian and to
hand. For example, one might choose to reprefggi  Eq. (9) as the Schrodinger picture [13] of the evolution
by the gray-level value of the various pixel elements ofof the state vector representing a temporal component of
a spatial light modulator rather than by its plane-wavethe electromagnetic field. We also think of Eq. (9) as ex-
components. pressing the flow of information through the medium.
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The black-box view of the photorefractive medium tonian allows us to formally integrate Eq. (11),
is formally cast into place by taking the Heisenberg z
picture [13] of the evolution equations. We define the T(z) = exr{—ij; Hp(z)dZ}T(O). (18)

transformation, or two-beam coupling, operatoby
_ The expression fofr can be put into closed form. To
0 (2)) _ T(Z)l_‘[’“’(()»' _ _(10). do so it is helpful to first cast the two-beam coupling
From Eqg. (9), the evolution df is evidently given in this  equations in a “coupling” picture that treats the coupling

Heisenberg picture by operator as the dynamical variable while the fields remain
T'(z) = —iH,(2)T(z). (11) fixed. We introduce
T is a unitary operator7 ' = TT, reflecting the fact o(z) =TrooT. (19)

that the total intensity is preserved by the two-beamrhe tility of this picture rests in the fact that we
coupling interaction. From the definition of the density can solve foro(z) in all cases (whether or not the

operatorp and of the transformation operatdt p(z) =  Hamiltonian commutes with itself at different positions),
T(z)p(0)T1(2), thus the evolution of the density operator ang the fact the equation of motion for the two-beam
is given by coupling operator can be cast entirely in termssofind
p' =T pO)T" + To(0) T = —i[H,,p], (12) its derivatives. Taking the spatial derivative we find that
or o' =[o,[o,po]l/4 = (po — Tpoo)/2, (20)
p' =Iloo,pl pl/4. (13) wherepy = p(0) and we have made use of the fact that

Equations (11) and (13) are the primary results of this?” = 1. The solution to this equation is given by an
paper. They express the flow of information through thefXPlicit similarity transformation,
medium in different forms. T is the identity operator o(z) = SopS~ !, (21)
at z = 0, so knowing7 (L) and the fields at the input . . :
provides the fields at the output of the medium. If theWlth the iransformation operator given by
field suddenly changes, the new field undergoes the old S(z) = cosl{ppz/2) + sinh(pgz/2)oy. (22)

transformation until the medium has had time to respondy, ., Eq. (21) satisfies (20) can be quickly verified by
typically a fraction of a second. On the other hand, thehoting thats’ = poSco/2 and by using the derivative
density operator determines the specific behavior of alf an inverse operatofS 1)’ = —S~1S'S~1. Multipli-
interaction and tracks the correlation among the modes. .0 of the right-hand side of Eq. (11) on the left by

The ﬁ:mpile?t c?se of beattm ]E:ouplllng bet_:_/\;]eeg twqtplan TT =1 reexpresses the evolution of the two-beam
waves illustrates the operator formalism. The density angly jing operator,

coupling matrices are

T'=—iTH, = Too'/2 (23)
LI eyer 7 ’
P = 7<e*+e, I- ) 149 where
L o H, = i[o,pol/4d = od'/2=T'H,T. (24)
7o = <0 —1 ) (15) Now we are in a position to prove that the solution of the

two-beam coupling operator for the spatially commuting
Hamiltonian case is

H, = 2l_1< —egj')ref e+Oei >’ (16) T(z) = ooo(z). (25)

Hence the Hamiltonian is

and the double-bracket equation gives Ei{ﬁt’T”(VS) sieel th?e?fnﬁb(\j\)/:tiiz;gis :th;?oinggy:condi-
I, (ere™) 2TT' = T?0 0’ = oyo', which is consistent with the as-
(efe-) 1" sumed form of the operator. Note that the second equality
By is a consequence of Eq. (18) and the boundary condition
_ l( 1.1 (- - I+)e+e_/2> (17) onT.
I\U- — It)ele-/2 —I - One can show that the Hamiltonian is spatially com-

The diagonal elements of this equation are identical withmuting for the “pure case,” a condition defined py =

Eq. (2) (other than the implicit factor of'), as they po, which physically is the simplest case of two interact-

should be. ing fully mutual coherent temporal modes, such as those
The two-beam coupling operator equations can bef Eq. (1). Note that it does not necessarily mean two

integrated directly when the Hamiltonian is spaitally plane waves; the modes may be composed of an arbitrary

commuting, that i$H,(z1), H,(z2)] = 0 for all z;,z>. In number of plane-wave components. One can also show

particular, the commuting assumption about the Hamilthat H is spatially commuting whefipg, oopooo] = 0.
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This latter condition is satisfied bgny 2 X 2 density problem at hand. Equations (13) and/or (16) are well
matrix, therefore any two-mode problem including two behaved and easily evaluated numerically by standard in-
modes that are partially mutually coherent in time. Thetegration packages whether or rdtis spatially commut-
latter condition is also satisfied by the general case oing. The various conserved quantities are all contained
reflexive two-beam coupling in photorefractive media, ain the formalism and one need only specify the boundary
special instance of many interacting modes that is of pareondition. Once obtained, the black-box operdatopro-
ticular interest in information processing [14]. vides easy access to other quantities of interest.

What general statements can we now make about the D.Z.A. and N.N. are very grateful to A. Zozulya,
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