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Critical Behavior in the Coexistence Region of Finite Systems
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The liquid-gas phase transition in finite systems is studied within a lattice gas model in the canoni
ensemble. In the coexistence region, the existence of conservation laws is shown to result in anoma
in the associated equation of state leading, for example, to negative compressibility due to surf
effects. The associated partitions exhibit scaling behavior inside the coexistence zone. When
thermodynamical limit is taken this scaling disappears while the anomaly of the equation of sta
becomes the usual nonanalytical behavior. Therefore, in the fragmentation of small systems such
nuclei the experimentally observed critical behavior is demonstrated to be compatible with a first ord
phase transition because of finite size effects. [S0031-9007(99)08488-4]

PACS numbers: 24.10.Pa, 24.60.–k, 64.60.Fr, 64.70.–p
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Two of the most fascinating phenomena in the therm
dynamics of complex systems are phase transitions a
critical behavior [1,2]. Over the years, it has been reco
nized that phase transitions exhibit generic properties.
particular, second order phase transitions have been c
sified in various universality classes which depend up
few characteristics of the considered system such as
dimensionality of the space and of the order paramet
In the same class, various systems present a similar p
nomenology and, in particular, they have identical critic
exponents. This remark has opened a wide range of
plications for exact computer Monte Carlo simulations o
simplified models as the Ising model [3] which may b
used to study generic properties of the universality cla
to which they belong.

On the other hand, the experimental study of pha
transitions in finite systems has recently attracted a stro
interest from various communities. Bose condensa
with a small number of particles and vaporization of sma
hot systems such as atomic clusters or atomic nuclei
examples of recent attempts to study phase transitions
finite systems.

In the nuclear case, considering the analogy betwe
the nucleon-nucleon force and a van der Waals inte
action, it is expected that the equation of state (EO
presents the characteristics of a liquid-gas phase tran
tion [4]. In recent years, different indications of suc
a transition have been accumulated [5–8]. Statistic
equilibrium models, extremely successful in reproducin
multifragmentation patterns, systematically suggest lo
freeze out densities [7–9] which would indicate that th
transition occurs in the middle of the coexistence region

On the other hand, the observation of critical behavio
like power laws in the charge distribution of the multi
fragmenting system [6] has been interpreted as an e
dence of a second order phase transition. Indeed, in
Fisher droplet model a power law behavior is expected
the critical point when the liquid and vapor chemical po
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tentials are equal and the surface tension is zero [10,1
Recently, power laws have been also reported along
Kertész line [12] at higher temperature and densities [1
inside the single fluid part of the phase diagram. Th
presence at the same time of first and second order tra
tion signals is still a puzzle and the density at which th
partitioning of the system occurs is still an open questio

In this paper we shall concentrate on the liquid-ga
phase transition in a canonical framework. The use
the canonical constraint allows an unambiguous definiti
of the phase diagram even for a finite system and a dir
exploration of the coexistence region. The main res
is that a critical behavior in fragment observables can
consistent with phase coexistence and the occurrence
a low freeze-out density due to finite size effects. W
shall show that the partitions of small systems in th
coexistence region may mimic a critical behavior. Th
conclusion will be reached through the use of the fini
size scaling properties of fragment size distributions. T
critical signals inside the coexistence region appear
be suppressed in the thermodynamical limit so that t
reported effect can be considered as a specific signat
of phase transitions in finite systems.

In order to reach this conclusion we shall study a
exactly solvable model for second and first order pha
transitions, the lattice gas model of Yang and Lee [14
This model in the grand-canonical formalism is equivale
to the canonical ensemble of an Ising model in th
presence of an external magnetic field. It has already be
applied to nuclear physics in Refs. [13,15–17]. In th
canonical ensemble only an approximate [18] sampli
has been employed by the authors of Ref. [16]. In th
work we use the standard Metropolis sampling [19] whe
the configurations are chosen according to the canoni
probability exps2bEd and are weighted evenly.

In our implementation then sites of a lattice are
characterized by an occupation numbert which is defined
ast ­ 0s1d for a vacancy (nucleon). Particles occupyin
© 1999 The American Physical Society
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nearest neighboring sites interact with a constant ener
e. The Hamiltonian is given by

H ­
nX

i­1

p2
i

2m
t2

i 1
X
ifij

etitj . (1)

Events are generated by placing a numberA0 of
particles (corresponding to a densityr ­ A0yn) on a
three-dimensional cubic lattice according to the statistic
canonical probability. In order to avoid surface effect
periodic boundary conditions are imposed.

The thermodynamics of the model is calculated from
direct evaluation of the partition sum

ZsA0, bd ­
X
E

WsEde2bE , (2)

whereWsEd is the degeneracy of the state with energyE.
This evaluation is performed via an iterative procedu
[20]. At a temperatureT ­ 1yb, the number of sampled
realizations of the system with an energyE is

NsE, bd ­ N
1

ZsA0, bd
WsEde2bE , (3)

whereN is the total number of sampled states. From th
comparison of two different temperaturesT1 ­ 1yb1 and
T2 ­ 1yb2 one then has

ZsA0, b1d ­ ZsA0, b2d
NsE, b1d
NsE, b2d

e2Es b22b1d, (4)

which is valid for all the different energy bins. In orde
to profit from all the available data we can compute th
partition sum as an average of the above relation over t
various energy bins weighted by

p
NsE, b1dNsE, b2d .

Z is obtained iteratively via Eq. (4) with an initial
normalization to the infinite temperature limit where
the partition sum isZsA0, 0d ­ n!yA0!sn 2 A0d!. The
equation of state can then be obtained from a numeric
derivative of the free energy,FsA0, T d ­ AfsA0, T d ­
T logZsA0, bd. In Fig. 1 thermodynamical variables are
shown for a lattice of sizen ­ 216 at a subcritical
temperature. In the infinite system the thermodynamic
potential must be convex. However, for the free energy
the finite system (Fig. 1c) we observe a concave patte
due to the surface energy between the liquid and the va
in the mixed phase. This behavior induces a backbend
of the chemical potentialm (Fig. 1a). In infinite systems
one would expect the chemical potential to stay consta
inside the coexistence region. This corresponds to
nonanalytical behavior ofF which can be obtained
only when the volume diverges. In a finite system
the partition sum is always analytical and the chemic
potential presents a smooth backbending. This “anoma
of an intensive variable (e.g.,m) as a function of its
extensive conjugated variable (e.g.,A0) or equivalently
the nonconvex behavior of the thermodynamical potent
can be considered as the signature of the phase transi
in a finite system. This behavior can be observed only
gy
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FIG. 1. Chemical potential, pressure, and free energy as
function of the particle number at temperatureT ­ e for a
cubic lattice of sizen ­ 216.

in the considered sampling a conservation law applies
the extensive variable. An analogous backbending w
found by Gross in the temperature versus energy pl
when computed in the microcanonical ensemble [21].

In the presented results the limit of the coexistenc
zone can be accurately spotted on the chemical potent
versus pressure plane (Fig. 1b). At low temperatur
one can clearly observe two branches characteristic
a gas phase at low pressure and of a liquid phase
high density. The coexistence of two phases disappea
above a critical temperature leaving a single smooth flu
isotherm. By making a systematic analysis of the crossin
points of the two branches, the coexistence zone c
be accurately evaluated leading to a critical temperatu
Tc ­ 1.22e and a critical exponentb ­ 0.31 for the
temperature dependence of the order parameterr 2

rc ­ sT 2 Tcdb. The corresponding values forn ­ 512
areTc ­ 1.20e andb ­ 0.31. These values have to be
compared with the expected value in the thermodynamic
limit T`

c ­ 1.12e, b` ­ 0.33.
In order to get a deeper insight into the partition

inside the coexistence region we have studied th
fragment size distribution. The definition of clus-
ters has been extensively discussed in the literatu
[13,16]. The first idea is to group all the connected
sites (Ising clusters). However, it has been know
for a long time that this is not the proper way to
define clusters in the lattice gas model since it doe
not fulfill the requirement that the correlation length
should diverge at the critical point (see [13]). Using
renormalization group arguments, Coniglio and Klein
proposed to combine the above site percolation with a
additional bond percolation algorithm using a temperatu
dependent bond breaking probability [22]psT d ­ e2ey2T .
We have employed an almost equivalent way to defin
clusters [13,16] which consists of introducing a kinetic
1403
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term in the Boltzmann probability and then breaking th
bond between two nucleons as soon as the kinetic ene
of their relative motion $p2

r y2m exceeds the binding
energye.

From finite size scaling one expects that at temperatu
close to the critical point the size distribution scales
[2,23]

dN
dA

sA, T d ­ A2tfsssAssT 2 Tcdddd , (5)

where f is a scaling function andt, s are critical
exponents. Two values of the universal function are
particular interest:

(i) Its value at the originfs0d ­ f0 since it is associated
with the critical point

dN
dA

sA, Tcd ­ A2tf0 . (6)

(ii) Its maximum valuefsxmaxd ­ fmax. For each size
A there exists a temperatureTmaxsAd ­ Tc 2 xmaxA2s for
which the production is maximum

dN
dA

É
max

sAd ­
dN
dA

sssA, TmaxsAdddd ­ A2tfmax . (7)

To test the validity of Eq. (5) for the partitions com
puted at constant density we have used the following p
cedure. The maximum production yielddNydAjmax of a
species of sizeA as a function ofA is fitted to a power
law of exponenttmax. Then Tc can be obtained as the
temperature at which the power law fit to the size di
tribution dNydAsAd gives an exponentt ­ tmax. In fi-
nite systems the minimum value oft is systematically
lower thantmax; therefore, two temperatures fulfill this
condition. However, only the lowest one leads to a sca
ing behavior and can be identified withTc. The tem-
peratureTmaxsAd at which the production yield of size
A is maximum is fitted to a power law of exponents.
At the thermodynamical critical densityrc ­ 1y2 we
observe that the scaling behavior of intermediate ma
fragments is remarkably fulfilled over a wide range o
temperatures even far away from the critical temperatu
(Fig. 2, central panel). The extracted values of the p
rameters at the densityrc ­ 1y2 for n ­ 512 are very
close to the exponents of the 3D-Ising universality cla
(see Table I). These results are fully compatible with th
valuesb ­ 0.31, Tc ­ 1.2e extracted from the coexis-
tence curve using the relationb ­ st 2 2dys.

We have performed the same analysis at differe
densities. As illustrated in Fig. 2, a scaling behavio
is clearly seen at supercritical as well as subcritic
densities. For various densities, typical mass distributio
at temperatures close to the critical temperature a
displayed in Fig. 3 (upper part). The critical exponen
exhibit a small density dependence (shown in Table
for a few selected density points) while the critica
temperature increases with density and coincides with
1404
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FIG. 2. Scaling function for clusters of size6 # A # 30 and
temperature0.36 # Tye # 3.6 obtained from Eq. (5) at three
different densities for a cubic lattice of sizen ­ 512.

critical temperature of the coexistence curve only at th
thermodynamical critical densityrc (Fig. 3, lower part).
For all data points presented in Fig. 3 the quality of finite
size scaling is comparable to the one shown in Fig.
The values of the critical exponents are also compatib
with the experimental values recently reported in Ref. [6
in the case of nuclear fragmentation.

It has already been observed that power laws an
minima of the functiontsT d from power law fits of the
size distribution are not characteristic of the critical poin
solely but occur also at supercritical densities along th
Kertész line [13] and at some subcritical densities a
lower temperatures [16,24]. However, the possibility
to observe finite size scaling in small systems insid
the coexistence region is demonstrated here for the fi
time. The presented results show, in agreement with t
work of Pan et al. [24], that there is no contradiction
between the scenario of nuclear fragmentation inside t
coexistence or the spinodal region associated with a fir
order phase transition and the observed critical signals [
in fragment observables. However, contrary to Ref. [24
we have shown that the critical temperature extracted fro
fragment observables has no thermodynamical meani
at low density. As a matter of fact, the physical origin
of the scaling behavior at subcritical densities lies on th
finite size of the system and not on the existence of critic
fluctuations of all sizes induced by a divergence of th

TABLE I. Critical exponents for a lattice sizen ­ 512.

Density t s

1y6 2.16 6 0.11 0.58 6 0.07
1y3 2.19 6 0.07 0.70 6 0.10
1y2 2.20 6 0.05 0.61 6 0.16
2y3 2.21 6 0.05 0.56 6 0.07
5y6 2.25 6 0.05 0.63 6 0.07
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FIG. 3. Lower part: (full line) coexistence line calculated
using the partition sum; (symbols) critical curve from fragmen
size distributions. Upper part: cluster size distributions at thre
different densities and temperaturesT ­ Tcsrd (symbols),T ­
Tcsrd 6 0.2e (lines). The lattice size isn ­ 512.

correlation length. In fact, in the coexistence region o
small systems the liquid cluster is not much larger than th
vapor fragments and may mimic critical fluctuations of th
mass distribution. Going to the thermodynamical limit
inside the coexistence zone the liquid piece becomes in
nite so that it clearly separates from the intermediate ma
fragments. The observed power law in the coexistenc
region is then suppressed when going to the infinite siz
limit and the critical line abruptly stops on the coexistenc
boundary at the critical point. In practice this starts to
be observed in systems with approximatelyn ­ 125 000:
Inside the coexistence region a large fragment we
separated from vapor clusters is clearly observed in th
mass distribution. Therefore, below the critical densit
the power law and the related scaling is never achieved

In this paper we have shown that the liquid-ga
phase transition in finite systems is associated wi
nontrivial partitions. They induce modifications of the
partition sum resulting in anomalies in the equation o
t
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state such as negative compressibility, which can b
used to unambiguously define phase transition even
small systems. We have stressed the fact that the
anomalies are due to finite size effects and will result
nonanalytical behaviors only when the thermodynamic
limit is reached.

These partitions in small systems present scaling b
havior with critical parameters close to the ones expect
for the liquid-gas universality class. The scaling insid
the coexistence region disappears as soon as large s
tems are considered.
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