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Critical Behavior in the Coexistence Region of Finite Systems

F. Gulminell and Ph. Chomaz
'PC Caen (IN2P3-CNRS/ISMRA et Université), F-14050 Caen Cédex, France
2GANIL (DSM-CEAIN2P3-CNRS), BP 5027, F-14021 Caen Cédex, France
(Received 1 October 19%8

The liquid-gas phase transition in finite systems is studied within a lattice gas model in the canonical
ensemble. In the coexistence region, the existence of conservation laws is shown to result in anomalies
in the associated equation of state leading, for example, to negative compressibility due to surface
effects. The associated partitions exhibit scaling behavior inside the coexistence zone. When the
thermodynamical limit is taken this scaling disappears while the anomaly of the equation of state
becomes the usual nonanalytical behavior. Therefore, in the fragmentation of small systems such as
nuclei the experimentally observed critical behavior is demonstrated to be compatible with a first order
phase transition because of finite size effects. [S0031-9007(99)08488-4]

PACS numbers: 24.10.Pa, 24.60.—k, 64.60.Fr, 64.70.—p

Two of the most fascinating phenomena in the thermotentials are equal and the surface tension is zero [10,11].
dynamics of complex systems are phase transitions andecently, power laws have been also reported along the
critical behavior [1,2]. Over the years, it has been recogKertész line [12] at higher temperature and densities [13]
nized that phase transitions exhibit generic properties. limside the single fluid part of the phase diagram. The
particular, second order phase transitions have been clagresence at the same time of first and second order transi-
sified in various universality classes which depend upotion signals is still a puzzle and the density at which the
few characteristics of the considered system such as thgartitioning of the system occurs is still an open question.
dimensionality of the space and of the order parameter. In this paper we shall concentrate on the liquid-gas
In the same class, various systems present a similar phphase transition in a canonical framework. The use of
nomenology and, in particular, they have identical criticalthe canonical constraint allows an unambiguous definition
exponents. This remark has opened a wide range of apf the phase diagram even for a finite system and a direct
plications for exact computer Monte Carlo simulations ofexploration of the coexistence region. The main result
simplified models as the Ising model [3] which may beis that a critical behavior in fragment observables can be
used to study generic properties of the universality classonsistent with phase coexistence and the occurrence of
to which they belong. a low freeze-out density due to finite size effects. We

On the other hand, the experimental study of phasshall show that the partitions of small systems in the
transitions in finite systems has recently attracted a strongoexistence region may mimic a critical behavior. This
interest from various communities. Bose condensatesonclusion will be reached through the use of the finite
with a small number of particles and vaporization of smallsize scaling properties of fragment size distributions. The
hot systems such as atomic clusters or atomic nuclei areritical signals inside the coexistence region appear to
examples of recent attempts to study phase transitions ime suppressed in the thermodynamical limit so that the
finite systems. reported effect can be considered as a specific signature

In the nuclear case, considering the analogy betweeaf phase transitions in finite systems.
the nucleon-nucleon force and a van der Waals inter- In order to reach this conclusion we shall study an
action, it is expected that the equation of state (EOSgxactly solvable model for second and first order phase
presents the characteristics of a liquid-gas phase trandransitions, the lattice gas model of Yang and Lee [14].
tion [4]. In recent years, different indications of such This model in the grand-canonical formalism is equivalent
a transition have been accumulated [5-8]. Statisticalo the canonical ensemble of an Ising model in the
equilibrium models, extremely successful in reproducingoresence of an external magnetic field. It has already been
multifragmentation patterns, systematically suggest lowapplied to nuclear physics in Refs. [13,15-17]. In the
freeze out densities [7—9] which would indicate that thecanonical ensemble only an approximate [18] sampling
transition occurs in the middle of the coexistence region. has been employed by the authors of Ref. [16]. In this

On the other hand, the observation of critical behaviorsvork we use the standard Metropolis sampling [19] where
like power laws in the charge distribution of the multi- the configurations are chosen according to the canonical
fragmenting system [6] has been interpreted as an evprobability exg— B8E) and are weighted evenly.
dence of a second order phase transition. Indeed, in the In our implementation then sites of a lattice are
Fisher droplet model a power law behavior is expected atharacterized by an occupation numberhich is defined
the critical point when the liquid and vapor chemical po-ast = 0(1) for a vacancy (nucleon). Particles occupying
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nearest neighboring sites interact with a constant energy AT T L T T H-2.4
e. The Hamiltonian is given by <‘§ -0) ¥+ b) 3-2.6
oy PN T
H = T ETiT;. £ v JF Vo E
o e NS T
Events are generated by placing a numbgy of - i 3-3.4
particles (corresponding to a densigy= A¢/n) on a e L 3 -3.6
three-dimensional cubic lattice according to the statistical ’; t—c) ' ' 3. 0 02 %4
canonical probability. In order to avoid surface effects ~t 4P (e/fm’)
periodic boundary conditions are imposed. <f E /J E
The thermodynamics of the model is calculated from a SEF / E
direct evaluation of the partition sum | 3 .;’ :0 T=c¢
“ B 3
Z(Ao. B) = D W(E)e PF, @ 0700 200"
E

whereW (E) is the degeneracy of the state with eneiyy _ Ao

This evaluation is performed via an iterative procedure'f: IG. 1. thehmmal poltentlal,bpressure, and free en(fergy as a
[20]. At atemperaturd = 1/, the number of sampled C‘fﬁg?gtt%etofsigaezt'czezlngm er at temperatife= < for a
realizations of the system with an energys

L W(E)e BE, (3) in the considered sampling a conservation law applies to
Z(Ao, B) the extensive variable. An analogous backbending was
whereN is the total number of sampled states. From thdfound by Gross in the temperature versus energy plot
comparison of two different temperaturés = 1/8; and  when computed in the microcanonical ensemble [21].
T, = 1/B, one then has In the presented results the limit of the coexistence
N(E, B1) zone can be accurately qutted on the chemical potential
——PLZ ~E(B=B)  (4) versus pressure plane (Fig. 1b). At low temperature,
N(E, B2) one can clearly observe two branches characteristic of
which is valid for all the different energy bins. In order a gas phase at low pressure and of a liquid phase at
to profit from all the available data we can compute thehigh density. The coexistence of two phases disappears
partition sum as an average of the above relation over thabove a critical temperature leaving a single smooth fluid
various energy bins weighted YN (E, 81)N(E, B>) . isotherm. By making a systematic analysis of the crossing
Z is obtained iteratively via Eq. (4) with an initial points of the two branches, the coexistence zone can
normalization to the infinite temperature limit where be accurately evaluated leading to a critical temperature
the partition sum isZ(Ao,0) = n!/Ag!(n — Ap)!. The T, = 1.22¢ and a critical exponenp = 0.31 for the
equation of state can then be obtained from a numericabmperature dependence of the order parameter
derivative of the free energyF(4o,T) = Af(Ao,T) =  p. = (T — T.)?. The corresponding values for= 512
TlogZ(Ag, B). In Fig. 1 thermodynamical variables are areT. = 1.20e and 8 = 0.31. These values have to be
shown for a lattice of sizen = 216 at a subcritical compared with the expected value in the thermodynamical
temperature. In the infinite system the thermodynamicalimit 7 = 1.12¢, 8% = 0.33.
potential must be convex. However, for the free energy of In order to get a deeper insight into the partitions
the finite system (Fig. 1c) we observe a concave patterimside the coexistence region we have studied the
due to the surface energy between the liquid and the vapdragment size distribution. The definition of clus-
in the mixed phase. This behavior induces a backbendingers has been extensively discussed in the literature
of the chemical potentigh (Fig. 1a). In infinite systems [13,16]. The first idea is to group all the connected
one would expect the chemical potential to stay constandites (Ising clusters). However, it has been known
inside the coexistence region. This corresponds to &r a long time that this is not the proper way to
nonanalytical behavior ofF which can be obtained define clusters in the lattice gas model since it does
only when the volume diverges. In a finite systemnot fulfill the requirement that the correlation length
the partition sum is always analytical and the chemicakhould diverge at the critical point (see [13]). Using
potential presents a smooth backbending. This “anomalyfenormalization group arguments, Coniglio and Klein
of an intensive variable (e.gu) as a function of its proposed to combine the above site percolation with an
extensive conjugated variable (e.gy) or equivalently additional bond percolation algorithm using a temperature
the nonconvex behavior of the thermodynamical potentiatiependent bond breaking probability [22]7') = ¢ =</,
can be considered as the signature of the phase transitié®e have employed an almost equivalent way to define
in a finite system. This behavior can be observed only iclusters [13,16] which consists of introducing a kinetic

N(E,B) =N

Z(Ao, B1) = Z(Ao, B2)
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term in the Boltzmann probability and then breaking the < [Ty
bond between two nucleons as soon as the kinetic energy S 1f p=1/4 T.=0.91 &
of their relative motion p2/2u exceeds the binding }055_ P E
energye. I
From finite size scaling one expects that at temperatures ' 0
close to the critical point the size distribution scales as 1
[2,23] 0.5}
Lan-asurc-r),  © or
1
where f is a scaling function andr,o are critical 0.5E
exponents. Two values of the universal function are of 05 Y A
particular interest: -2 0 2 4 6 8
(i) Its value at the origiry (0) = f, since it is associated (T-TIA°

with the critical point FIG. 2. Scaling function for clusters of size<= A = 30 and

dN . temperature).36 < T /e = 3.6 obtained from Eq. (5) at three
JA (A, T.) =A""fy. (6) different densities for a cubic lattice of size= 512.

(i) Its maximum valuef (xmax) = fmax- FOr each size
A there exists a temperatufa(A) = T. — xmaA 7 for  critical temperature of the coexistence curve only at the
which the production is maximum thermodynamical critical density. (Fig. 3, lower part).
For all data points presented in Fig. 3 the quality of finite
dN dN _ ) LM g
av (A) = —— (A, TmalA)) = A "fmax. (7)  Size scaling is comparable to the one shown in Fig. 2.
dA max dA The values of the critical exponents are also compatible
To test the validity of Eq. (5) for the partitions com- With the experimental values recently reported in Ref. [6]
puted at constant density we have used the following proin the case of nuclear fragmentation.
cedure. The maximum production yiedV /dA|n.x of a It has already been observed that power laws and
species of sizet as a function of4 is fitted to a power Mminima of the functionr(7") from power law fits of the
law of exponentrn.x. ThenT. can be obtained as the Size distribution are not characteristic of the critical point
temperature at which the power law fit to the size dis-Solely but occur also at supercritical densities along the
tribution dN/dA(A) gives an exponent = .. In fi-  Kertész line [13] and at some subcritical densities at
nite systems the minimum value of is systematically lower temperatures [16,24]. However, the possibility
lower than mm.; therefore, two temperatures fulfill this to observe finite size scaling in small systems inside
condition. However, only the lowest one leads to a scalthe coexistence region is demonstrated here for the first
ing behavior and can be identified with.. The tem- time. The presented results show, in agreement with the
peratureTmax(A) at which the production yield of size work of Panet al.[24], that there is no contradiction
A is maximum is fitted to a power law of exponeat  between the scenario of nuclear fragmentation inside the
At the thermodynamical critical densitp. = 1/2 we  Coexistence or the spinodal region associated with a first
observe that the scaling behavior of intermediate masgrder phase transition and the observed critical signals [6]
fragments is remarkably fulfilled over a wide range ofin fragment observables. However, contrary to Ref. [24],
temperatures even far away from the critical temperatur@&e have shown that the critical temperature extracted from
(Fig. 2, central panel). The extracted values of the pafragment observables has no thermodynamical meaning
rameters at the density. = 1/2 for n = 512 are very at low density. As a matter of fact, the physical origin
close to the exponents of the 3D-Ising universality clas®f the scaling behavior at subcritical densities lies on the
(see Table I). These results are fully compatible with thefinite size of the system and not on the existence of critical
values8 = 0.31, T, = 1.2¢ extracted from the coexis- fluctuations of all sizes induced by a divergence of the
tence curve using the relatigh = (r — 2)/o.
We have performed the same analysis at different
densities. As illustrated in Fig. 2, a scaling behavior TABLE I. Critical exponents for a lattice size = 512.
is clearly seen at supercritical as well as subcritical

densities. For various densities, typical mass distributionsl?ens'ty T o

at temperatures close to the critical temperature are 1/6 2.16 = 0.11 0.58 = 0.07

displayed in Fig. 3 (upper part). The critical exponents 1/3 2.19 + 0.07 0.70 + 0.10

exhibit a small density dependence (shown in Table | 1/2 2.20 *+ 0.05 0.61 = 0.16
2/3 2.21 = 0.05 0.56 + 0.07

for a few selected density points) while the critical

. . . - - 2.25 = 0.05 0.63 = 0.07
temperature increases with density and coincides with the 5/6
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A state such as negative compressibility, which can be
) ) 2 used to unambiguously define phase transition even in

10 10 10 10° 10 10 small systems. We ha_ve s_tressed the fact_ that thgse
P BT T T anomalies are due to finite size effects and will result in
nonanalytical behaviors only when the thermodynamical
limit is reached.

These partitions in small systems present scaling be-
havior with critical parameters close to the ones expected
for the liquid-gas universality class. The scaling inside
the coexistence region disappears as soon as large sys-
tems are considered.
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