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Spinodal Decomposition in Fluids
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If there exists an asymptotic scaling regime for spinodal decomposition in phase-separating fluids
where domain sizes followL , tn, then, it is argued, the growth exponentn is no larger than 1y2.
[S0031-9007(98)08124-1]
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During the late stages of spinodal decomposition, it h
often been found that there is dynamical scale invarian
[1,2], where morphologies at different times can be relat
by a single characteristic length, the average domain s
L. This length grows as a power law in time, i.e.,L , tn,
wheren is the growth exponent. It is thought that a larg
number of systems can be grouped into a small number
universality classes, characterized by a few common fe
tures such asn, and the scaled form of the structure fac
tor. The universality classes themselves are determin
by, at least, the presence or absence of conservation l
for the ordering field. There is a strong similarity betwee
these features and critical dynamics, where dynamical sc
ing occurs near a second-order transition [3]. Here, ho
ever, the scaling is very simple. For example, the grow
exponents are usually independent of dimension, can
obtained from simple dimensional arguments, and brid
the nominal universality classes of critical dynamics. F
scalar order parameters in the absence of hydrodyna
fields, it seems that the presence (givingn ­ 1y3) or ab-
sencesn ­ 1y2d of a conservation law is the main featur
determining the universality class. While the phenomen
ogy of asymptotic scaling is well understood, much of
is based on the results of experiments or computer simu
tions, rather than fundamental theory.

The systems least well understood are fluids, althou
some scenarios for phase separation have been sugge
[4–7] that have some experimental support [8–16]. Su
systems potentially constitute a new universality cla
since velocity fields in fluids are due to Poisson-brack
relations, which are known to be relevant for determi
ing universality classes in critical dynamics [3]. Rece
advances in computer power have made these issues
cessible to numerical simulations [17–29]. Indeed, sim
lations and dimensional arguments give various results
n, includingn ­ 1 andn ­ 2y3. These are quite different
from the result in the absence of velocity fields,n ­ 1y3,
and thus lead to the tantalizing possibility of a new unive
sality class for spinodal decomposition. While some
these are effective exponents describing transient regim
some are claimed to be asymptotic. It is important to no
that only an asymptotic exponent can be used to descr
a universality class.
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The main issue involves the convective nonlineari
in the Navier-Stokes equation. The Reynolds numb
determines the relative importance of convective to visco
flow: Re ; ry,yh, whereh is the shear viscosity,y is
the fluid velocity, , is a characteristic length, andr is
the density. If an asymptotic scaling regime exists duri
phase separation in fluids, bothy and, can be expressed
in terms of the same time-dependent lengthLstd. (The
alternative is that there is no asymptotic scaling regime,
thaty and, are not expressed in terms of the same lengt
Then [22]

Re , t2n21. (1)

For large times, however, the fluids phase separate. T
Reynolds number cannot diverge, as this would imp
turbulent remixing of the fluids when the critical Reynold
number Recr is reached. Hence

n # 1y2 , (2)

which is the main result of this paper [23,30].
Nevertheless, values ofn have been reported for spino

dal decomposition in phase separating fluids which
not satisfy this bound [31]. Many of these are simp
effective exponents describing transient regimes [32] a
are not addressed by the bound on the asymptotic expon
This includes the theoretical result [4]neff ­ 1 for the
tubular necking down of an interconnected structure in
droplets. However, one candidate that has been obser
in many numerical simulations [17–23] and proposed
the asymptotic exponent [7],n ­ 2y3, clearly violates the
bound given above. This situation is reviewed below.

The exponent of 2y3 is derived from dimensional analy
sis, which is not rigorous. The argument is as follow
Consider the Navier-Stokes equation,rs≠ $yy≠t 1 $y ?
$= $yd ­ 2 $=p 1 h=2 $y, where p is the pressure. In a
liquid-vapor system, the excess pressure over a cur
surface of radiusL is syL, wheres is the surface tension.
(Similar arguments can be made for a binary fluid [33
The dimensional analysis assumes that scaling occurs
each additive term can be considered independently.
example, comparing the convective nonlinearitysr $y ?
$= $y , rLyt2d with the thermodynamic force due to pres
sures=p , syL2d givesL , ssyrd1y3t2y3. Physically,
© 1998 The American Physical Society
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the idea is that the convective flow of the fluid enhanc
the minimization of interface curvature. However, i
accordance with the argument given above, at late enou
times, the convective flow would be so strong as to rem
the fluid. For example, one does not stir salad dress
to increasethe size of oil droplets within water, just the
opposite. The timetcr at which this transient regime of
neff ­ 2y3 ends is no later than the time when the critica
Reynolds number is reached. From Eq. (1) this tim
can be estimated to betcr , Re3

cr . The value of Recr
is typically of order 10–100 [34], and is dependent o
geometry.

While many numerical simulations have reported ev
dence forn ­ 2y3 [17–23], it is likely that these simu-
lations have not probed the asymptotic regime. Fro
the capillary mean free pathh2yrs and the size of do-
mains, one can estimate the Reynolds number during
regime where the 2y3 exponent is seen: Re­

p
Lrsyh2.

The maximum Reynolds number reached in simulatio
[17–22] is no more than [35] 5–10, sotcr has not been
reached. Hence the numerical work does not provide e
dence for an asymptotic exponent describing a new u
versality class, only a transient.

In conclusion, the upper bound on the growth expone
was obtained by assuming an asymptotic scaling regim
in which all lengths scale in the same fashion: Thus, eith
there is an asymptotic scaling andn # 1y2 or there is
no asymptotic scaling [32]. Further work is necessary
determine the nature of asymptotic growth and scaling
the spinodal decomposition of fluids.
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