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Spinodal Decomposition in Fluids

Martin Grant and K. R. Eldet
'Physics Department, McGill University, Rutherford Building, 3600 rue University, Montréal, Québec, Canada H3A 2T8
2Department of Physics, Oakland University, Rochester, Michigan 48309-4487
(Received 7 August 1998

If there exists an asymptotic scaling regime for spinodal decomposition in phase-separating fluids
where domain sizes follow.. ~ ¢, then, it is argued, the growth exponentis no larger than A2.
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During the late stages of spinodal decomposition, it has The main issue involves the convective nonlinearity
often been found that there is dynamical scale invariancen the Navier-Stokes equation. The Reynolds number
[1,2], where morphologies at different times can be relatedietermines the relative importance of convective to viscous
by a single characteristic length, the average domain sizkow: Re = pv{/%, wheren is the shear viscosityy is
L. This length grows as a power law in time, i.e.~ ¢*,  the fluid velocity, ¢ is a characteristic length, and is
wheren is the growth exponent. It is thought that a largethe density. If an asymptotic scaling regime exists during
number of systems can be grouped into a small number gfhase separation in fluids, bothand ¢ can be expressed
universality classes, characterized by a few common fean terms of the same time-dependent lengita). (The
tures such ag, and the scaled form of the structure fac- alternative is that there is no asymptotic scaling regime, so
tor. The universality classes themselves are determinetthatv and€ are not expressed in terms of the same length.)
by, at least, the presence or absence of conservation lawéien [22]
for the ordering field. There is a strong similarity between R n—1

" ; ) e~ " @
these features and critical dynamics, where dynamical scal-
ing occurs near a second-order transition [3]. Here, howFor large times, however, the fluids phase separate. The
ever, the scaling is very simple. For example, the growtrReynolds number cannot diverge, as this would imply
exponents are usually independent of dimension, can dairbulent remixing of the fluids when the critical Reynolds
obtained from simple dimensional arguments, and bridg@umber Rg: is reached. Hence
the nominal universality classes of critical dynamics. For n=1/2, )
scalar order parameters in the absence of hydrodynamic = ) ]
fields, it seems that the presence (giving= 1/3) or ab-  Which is the main result of this paper [23,30]. '
sence(n = 1/2) of a conservation law is the main feature ~Nevertheless, values afhave been reported for spino-
determining the universality class. While the phenomenoldal decomposition in phase separating fluids which do
ogy of asymptotic scaling is well understood, much of itnot satisfy this bound [31]. Many of these are simply
is based on the results of experiments or computer simulffective exponents describing transient regimes [32] and
tions, rather than fundamental theory. are not addressed by the bpund on the asymptotic exponent.

The systems least well understood are fluids, althougfhis includes the theoretical result [4}; = 1 for the
some scenarios for phase separation have been suggesﬁé@mar necking down of an mterconnected structure into
[4—7] that have some experimental support [8—16]. Suc}ﬁiroplets. Howe_ver, one ca}ndldate that has been observed
systems potentially constitute a new universality clasd" many numerical simulations [17-23] and proposed as
since velocity fields in fluids are due to Poisson-brackethe asymptotic exponent [7}, = 2/3, clearly violates the
relations, which are known to be relevant for determin-Pound given above. This situation is reviewed below.
ing universality classes in critical dynamics [3]. Recent The exponent of 23 is derived from dimensional analy-
advances in computer power have made these issues &S, Which is not rigorous. The argument is as follows:
cessible to numerical simulations [17—29]. Indeed, simuConsider_the Navier-Stokes equatiop(dv /ot + v -
lations and dimensional arguments give various results fo¥o) = —Vp + 1V, where p is the pressure. In a
n,includingn = 1andn = 2/3. These are quite different liquid-vapor system, the excess pressure over a curved
from the result in the absence of velocity fields= 1/3,  surface of radiug. is o/L, whereo is the surface tension.
and thus lead to the tantalizing possibility of a new univer-(Similar arguments can be made for a binary fluid [33].)
sality class for spinodal decomposition. While some ofThe dimensional analysis assumes that scaling occurs and
these are effective exponents describing transient regimegach additive term can be considered independently. For
some are claimed to be asymptotic. It is important to not&€xample, comparing the convective nonlinearigyv -
that only an asymptotic exponent can be used to describés ~ pL/t*) with the thermodynamic force due to pres-

a universality class. sure(Vp ~ o /L?) givesL ~ (a/p)'/3t*3. Physically,
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times, the convective flow would be so strong as to remi®13] M. Takenaka and T. Hashimoto, J. Chem. Pt86.6177
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In a binary fluid, the concentration is coupled top

by the Gibbs-Duhem relationship:Vp ~ ¢Vu, where

w is the chemical potential. The dynamics of are
coupled tov by dc/at + v - Ve = I'V2u, whereT is

a mobility. For a curved interface, there are corrections
to the chemical potential of the foran/L.

L.D. Landau and E. M. LifshitzFluid Mechanics(Perga-
mon Press, Oxford, 1959).

In Ref. [23] it is reported thay?/po ~ 10™* in units of
the lattice constant, leading to an estimate of -Re0?.
However, it is not possible to simulate length scales
smaller than the lattice constant, so that a more realistic
estimate of Re involves replacing’/p o with one lattice
constant, which gives Re 10.



