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Parametric Amplification of Gravitational Fluctuations during Reheating
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Cosmological perturbations can undergo amplification by parametric resonance during preheating
even on scales larger than the Hubble radius, without violating causality. A unified description of
gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract
specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable
describing metric fluctuations which is constant in the standard analyses of inflation. For a massive
inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating be-
yond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance.
[S0031-9007(99)08452-5]

PACS numbers: 98.80.Cq

As was initially realized in [1] and worked out in  The inflaton field couples to linearized metric pertur-
detail in [2—4] and many other papers [5], parametricbations, and, hence, gravitational waves may also ex-
resonance instabilities play a crucial role in the dynamicgerience parametric resonant amplification [12] during
of the reheating of an inflationary Universe. Reheatingeheating. The growth of scalar metric perturbations due
(or now more accurately called “preheating” [2]) is theto the oscillations of the inflaton field was first consid-
period after inflation when the inflaton, the scalar fieldered by Nambu and Taruya and by Kodama and Hamazaki
driving the period of exponential expansion, oscillates[13]. Nambu and Taruya concluded that scalar perturba-
coherently about its ground state and gradually transformsons are amplified during reheating, but did not compare
its energy into the matter and radiation of which thetheir growth with the usual growth of cosmological pertur-
present Universe is made up. bations. Kodama and Hamazaki focused on the evolution

The parametric resonance instability can be seen bgf the “Bardeen parameter,” a gauge invariant measure of
considering the linearized equation of motion of fiejds the cosmological perturbations which in the usual analysis
which couple to the inflaton. Neglecting for a moment theof the growth of fluctuations (which neglects the oscilla-
expansion of the Universe, the equation of motion for thetions of the inflaton field) is constant in time for modes
Fourier modeg, becomes a harmonic oscillator equationlarger than the Hubble radius. They concluded that, in
with a periodically varying mass, the Mathieu equation. Itspite of singular terms in the perturbation equations, the
is well known that this equation admits instability bands,Bardeen parameter remains constant. Bassett, Kaiser, and
regions ofk for which the solutions grow exponentially. Maartens [14] have reanalyzed this problem and argue that
The instabilities persist after taking the expansion of thehere is a negative coupling parametric resonance instabil-
Universe into account. ity which leads to a rapid growth of metric perturbations.

The parametric resonance instabilities have important Here, we analyze the growth of metric inhomogeneities
consequences for cosmology. They will lead to a reheatduring reheating in a more complete way, making use
ing temperature which can be much larger than would bef the gauge-invariant theory of perturbations (see [15]
obtained by calculating the efficiency of reheating usingfor a review). Since matter and metric are coupled by
perturbation theory. This could have important implica-the Einstein constraint equations, the fluctuations can be
tions for grand-unification-scale baryogenesis [6], the for-described completely by a single gauge-invariant variable
mation of topological defects [7], or the production of ®. In longitudinal gauge, the perturbed metric can be
supermassive dark matter [8]. written in terms of® as

Initially [1], the parametric instability was discussed 2 2 2
in a mgd[el] in wrﬁ)ich the resonancg bands are nar- ds” =dr’(1 +20) = a’(r) (1 = 20), (1)
row. It was then pointed out [2] that, in models of wherea(r) is the scale factor. As pointed out in [13],
chaotic inflation, the instability bands can be muchtwo of the coefficients in the equation of motion for
broader, and the Floquet exponemy giving the rate & are singular due to the oscillations of the inflaton
of exponential growth correspondingly larger. In [9] field. As realized in [13], the divergence disappears
it was discovered that a negative sign of the couplingf, instead of ®, one considers the equation of motion
constant between the inflaton and the field leads for the Sasaki-Mukhanov variabl® [16], a variable
to an enhanced instability (“negative coupling instabil-in terms of which the quantization of cosmological
ity”). White noise eliminates the stability bands all perturbations is straightforward (see [15] for a review).
together [10,11]. We demonstrate that an instability persists in the equation
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of motion for a rescaled variabl®. This instability, —metric perturbations is easy. In terms@f the equation
however, is not of negative coupling type. For a massiveof motion (5) becomes [13,15]

inflaton, it leads only to an increase 6f proportional . k2 H :

to a*/2(¢) for long wavelength fluctuations. Hence, the QO + 3HQ + [V” + =+ 2(— + 3H> }Q =0.
amplitude of Q is constant in time, and there is no a H 7)
amplification of fluctuations beyond what the usual theory

predicts. However, for a massless self-coupled inflatonAs is evident, the coefficients of this differential equation
Q experiences an initial increase. We show why theare regular. Giverp, it is possible to obtaimb since (6)
usual methods to study the evolution of perturbationsan be rewritten in the form

in inflationary cosmology miss the possible additional k2 2 (2)2 H
growth of fluctuations due to the oscillating inflaton field. - = > " <— Q) . (8)
Our starting point is the equations of motion for “ ¢

the perturbations of the Einstein-Higgs system about The Hubble damping term in Eq. (7) fa@ can be
a Friedmann-Robertson-Walker background solution. Ireliminated by introducing the rescaled varialgle For
terms of the gauge invariant metric and matter variatiles a massive inflaton with potentiad(¢) = m2¢?/2, 0 =
[see (1)] and’ ¢,; (which is longitudinal gauge is equal to a*?Q. Interms ofQ, (7) becomes

the scalar field perturbatioi¢), the system of equations . k2 H
in momentum space is 0+ [V” tat 2(; + 3H> -
.. . k2 . )
L 2 -\7=
(I>+3H<I>+[a2+2(H+H)}CI> %(HZJF?H)}Q:O_ )

=2+ HP)S, (2

Making use of the background Einstein equations, (9) can

. . 2 .. be written as
5 + 3HSG + (k—2 + v”>5¢ —4dg — 2V'D, Wit
a

A k* 252 2¢.’V/ K w4
(3) Q+|:VN+;+3K¢ + 2k Y_E(f) +
b+ HD = s 4 3 1g
_EKd) b, (4) qug 0 =0, (10)

where k* = 877G, H = a/a is the Hubble expansion wherep, is the background pressure of the scalar field.
rate, ¢ is the homogeneous background field for a scalar after the period of slow rolling has ended, the value of
matter field with potential energy density(#), and & p is smaller thanm. Hence, it follows from the back-
prime denotes the derivative with respectdo Equa-  ground equation of motion fop that—in the absence of

tion (3) is the equation of motion fob¢, (4) is the  pack reaction and with accuracy increasing in time—the
Einstein momentum constraint equation, and (2) is a coMmotion of $ = a3/2¢ is oscillatory in time. In this limit,

bination of the dynamical equation of motion fdr and  gq. (9) has the form
the Einstein energy constraint equation [see EQs. (6.42) -

and (6.40) of [15]]. If physical time is replaced by con- Q + [A(k) — 2g codm)]Q =0, (11)
formal time, these equations yield Egs. (2)—(4) of [14]. where
Because of (4), there is only one physical degree of 2
freedom, chosen to b&. Note that the “source” term in Ak) = m* + — +r, (12)
a

(2) is crucial [see (4)]. The correct equation of motion for

® is obtained by inserting (4) into (2), with the result ~ Where r contains the time average of the last four
terms in the square bracket of (10), amd contains

P 5 . .
b + (H - 2$>CD + (k—z + 2H — 2H i)(I) =0. the coefficients of the oscillating parts of these terms.
¢ a ¢ 5 Since ¢(¢) is decreasing, (11) is not of the form of the
) usual parametric resonance equation, and no exponentially
During the slow rolling period of an inflationary growing solutions will resuilt.
cosmology, the coefficients in this equation are well The second of the four last terms in the square bracket
behaved. However, oscillations @b during reheating of (10) is the most important. Its initial amplitude is

lead to singularities. These singularities can be eliminate¢he largest, and it decays the least fast as a function
[13] by making use of the Sasaki-Mukhanov variable [16]of time. Approximatinga(t) ~ 2/ corresponding to a

Q, the combination . pressureless phase, it is easy to check that the second term
0=060+ ¢ P (©) decays ag ™!, whereas the other three terms decay as
H t~2. Note that the decay rate of the dominant term of

of the gauge-invariant matter and metric perturbations iry as a function of time is less fast than the corresponding
terms of which the unified quantization of the matter anddecay rate of; for matter fluctuations [4], a point already
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30!l of state would lead to an increase in the amplitude
of ®, this could have important implications for the
20} spectrum of density and cosmic microwave background
(CMB) fluctuations [14]. Such an effect woutat violate
10¢ causality. Inflation has already set up fluctuations on
/\ /\ scales larger than the reheating Hubble radius, and the
\ Ao \/ K(y 30 4 5 0 inflaton field is oscillating coherently on these scales,
100 \/ \/ \j which can lead to a self-gravitational increase in the
magnitude of fluctuations without violating causality,
20 L analogous to the usual evolution of quantum fluctuations
in inflationary cosmology.
-30 | The clearest way to determine if the growth Of
FIG. 1. Evolution ofQ as a function of time in the case of calculgteq above is a new effect is to calculate the
a massive inflaton for a mode with = 0.1 m, with initial ~ guantity¢: _
conditions such thaQ is —1 and its time derivative 0 at the 2d + H 1P
initial time when ¢ = 0.2 m,,;, after slow rolling has ended. Y + O, (15)

Time is expressed in units of Th. . . . .
which according to the standard cosmological perturbation

emphasized by [14]. The amplitude of this leading termtheory remains constant for modes with wavelength larger
in ¢ starts out slightly larger tham?. Because of the than the Hubble radius [15]. Here; = p/p describes
expansion of the Universe, the instability does not leadhe equation of state, angl and p are the pressure and
to exponential increase i, but only to an increase energy density, respectively. More precisely [1[5]{5 =
proportional toa*/2(z) (see Fig. 1), which implies that the ¢ js equivalent to the equation of motion fér (for modes
amplitude ofQ remains constant. with wavelength larger than the Hubble radius). Hence, it
The results are different for a massless self-couplegs ysually deduced thdt = 0. This conclusion, however,
inflaton with potentialV (¢) = A¢*/4. In this case, we may break down ifh = 0 which occurs during reheating.
eliminate (following [17]) the Hubble damping term in (7) yence, it is possible that additional resonant amplification

by introducing the rescaled variab@ = a(7)Q and by o fiyctuations during reheating occurs.
working in terms of conformal timey. In this case, (7) The variable is related toQ via
becomes H
+ [ Ak +3cn2<,—>} =0, 13

0+ | aw) 55| (13) p
wherex = /A A, is a rescaled conformal timeA ,
is the amplitude of oscillation of(7n)¢, cn stands for the
elliptic cosine function, and

Since the amplitudes df and¢ decrease at the same rate
(proportional toz~!) if we assume that(z) ~ 123, the
constancy of the amplitude @ (for a massive inflaton)
leads to the conclusion thdtis constant when evaluated

=~ + . (14) at the same phase during each oscillation period of the
AAG inflaton ¢. Sincel + w has constant amplitude during
Here, s stands for oscillatory terms which are importantthe period of oscillation, we deduce from Fig. 2 that the
initially and lead to an increase i® (even fork*> <  amplitude of¢ is constant. Hence [inasfar as tieterm

2

A(k) =

Aﬂé), but which decay in time ag~!. For s =0, in (15) can be neglected], although oscillates even on
Eqg. (13) is a Lamé equation, has been studied in detallrge scales, its amplitude remains constant. This can also
in [17], and exhibits no resonance fbt < /\A%ﬁ- be seen by evaluating directly using (8).

We have solved the equation of motion (10) numeri- Note that® is the basic physical quantity which is well-
cally. Figure 1 shows the resulting time evolution of thedefined at all times. It is the quantity which determines
rescaled variabl® in the case of a massive inflaton for the power spectrum of density fluctuations and of CMB
the modek = 0.1 m (about 30 times larger wavelength anisotropies. In contrast; is an auxiliary quantity. At
than the Hubble radius) over a period of several oscillaeach zero of¢ there is a singularity in the relation
tions of the background field. As mentioned above, thébetween® and /. What is therefore important is to
amplitude ofQ grows linearly in time (and thus the am- calculate the value of for each zero crossing o
plitude of Q remains constant) to within the numerical and compare the values. As seen from Fig. 2 [plot of
accuracy. (I + w){ as a function of time, determined directly from

According to the usual treatment (see, e.g., [15]), th€16)], { does not change over a period. This demonstrates
details of the equation of state are irrelevant for thethat the net growth of) observed in Fig. 1 agrees with the
final amplitude of fluctuations on scales larger thanresults of the usual analysis of the growth of cosmological
the reheating Hubble radius. If oscillations in the equatiorperturbations.
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