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Parametric Amplification of Gravitational Fluctuations during Reheating
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Cosmological perturbations can undergo amplification by parametric resonance during prehe
even on scales larger than the Hubble radius, without violating causality. A unified description
gravitational and matter fluctuations is crucial to determine the strength of the instability. To ext
specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a vari
describing metric fluctuations which is constant in the standard analyses of inflation. For a mas
inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating
yond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale reso
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As was initially realized in [1] and worked out in
detail in [2–4] and many other papers [5], parametr
resonance instabilities play a crucial role in the dynami
of the reheating of an inflationary Universe. Reheatin
(or now more accurately called “preheating” [2]) is th
period after inflation when the inflaton, the scalar fie
driving the period of exponential expansion, oscillate
coherently about its ground state and gradually transfor
its energy into the matter and radiation of which th
present Universe is made up.

The parametric resonance instability can be seen
considering the linearized equation of motion of fieldsx

which couple to the inflaton. Neglecting for a moment th
expansion of the Universe, the equation of motion for th
Fourier modesxk becomes a harmonic oscillator equatio
with a periodically varying mass, the Mathieu equation.
is well known that this equation admits instability band
regions ofk for which the solutions grow exponentially
The instabilities persist after taking the expansion of th
Universe into account.

The parametric resonance instabilities have importa
consequences for cosmology. They will lead to a rehe
ing temperature which can be much larger than would
obtained by calculating the efficiency of reheating usin
perturbation theory. This could have important implica
tions for grand-unification-scale baryogenesis [6], the fo
mation of topological defects [7], or the production o
supermassive dark matter [8].

Initially [1], the parametric instability was discussed
in a model in which the resonance bands are na
row. It was then pointed out [2] that, in models o
chaotic inflation, the instability bands can be muc
broader, and the Floquet exponentmk giving the rate
of exponential growth correspondingly larger. In [9
it was discovered that a negative sign of the couplin
constant between the inflaton and thex field leads
to an enhanced instability (“negative coupling instabi
ity”). White noise eliminates the stability bands a
together [10,11].
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The inflaton field couples to linearized metric pertu
bations, and, hence, gravitational waves may also e
perience parametric resonant amplification [12] durin
reheating. The growth of scalar metric perturbations d
to the oscillations of the inflaton field was first consid
ered by Nambu and Taruya and by Kodama and Hamaz
[13]. Nambu and Taruya concluded that scalar perturb
tions are amplified during reheating, but did not compa
their growth with the usual growth of cosmological pertu
bations. Kodama and Hamazaki focused on the evolut
of the “Bardeen parameter,” a gauge invariant measure
the cosmological perturbations which in the usual analy
of the growth of fluctuations (which neglects the oscilla
tions of the inflaton field) is constant in time for mode
larger than the Hubble radius. They concluded that,
spite of singular terms in the perturbation equations, t
Bardeen parameter remains constant. Bassett, Kaiser,
Maartens [14] have reanalyzed this problem and argue t
there is a negative coupling parametric resonance insta
ity which leads to a rapid growth of metric perturbations

Here, we analyze the growth of metric inhomogeneiti
during reheating in a more complete way, making u
of the gauge-invariant theory of perturbations (see [1
for a review). Since matter and metric are coupled b
the Einstein constraint equations, the fluctuations can
described completely by a single gauge-invariant variab
F. In longitudinal gauge, the perturbed metric can b
written in terms ofF as

ds2 ­ dt2s1 1 2Fd 2 a2std s1 2 2Fd , (1)

where astd is the scale factor. As pointed out in [13]
two of the coefficients in the equation of motion fo
F are singular due to the oscillations of the inflato
field. As realized in [13], the divergence disappea
if, instead of F, one considers the equation of motio
for the Sasaki-Mukhanov variableQ [16], a variable
in terms of which the quantization of cosmologica
perturbations is straightforward (see [15] for a review
We demonstrate that an instability persists in the equat
© 1999 The American Physical Society
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of motion for a rescaled variablẽQ. This instability,
however, is not of negative coupling type. For a massi
inflaton, it leads only to an increase of̃Q proportional
to a3y2std for long wavelength fluctuations. Hence, th
amplitude of Q is constant in time, and there is no
amplification of fluctuations beyond what the usual theo
predicts. However, for a massless self-coupled inflato
Q̃ experiences an initial increase. We show why th
usual methods to study the evolution of perturbatio
in inflationary cosmology miss the possible addition
growth of fluctuations due to the oscillating inflaton field

Our starting point is the equations of motion fo
the perturbations of the Einstein-Higgs system abo
a Friedmann-Robertson-Walker background solution.
terms of the gauge invariant metric and matter variablesF

[see (1)] anddfgi (which is longitudinal gauge is equal to
the scalar field perturbationdf), the system of equations
in momentum space is

F̈ 1 3H ÙF 1

∑
k2

a2 1 2s ÙH 1 H2d
∏

F

­ k2sf̈ 1 H Ùfddf , (2)

d̈f 1 3H Ùdf 1

µ
k2

a2 1 V 00

∂
df ­ 4 ÙF Ùf 2 2V 0F ,

(3)

ÙF 1 HF ­
1
2

k2 Ùfdf , (4)

where k2 ­ 8pG, H ­ Ùaya is the Hubble expansion
rate,f is the homogeneous background field for a sca
matter field with potential energy densityV sfd, and a
prime denotes the derivative with respect tof. Equa-
tion (3) is the equation of motion fordf, (4) is the
Einstein momentum constraint equation, and (2) is a co
bination of the dynamical equation of motion forF and
the Einstein energy constraint equation [see Eqs. (6.4
and (6.40) of [15] ]. If physical time is replaced by con
formal time, these equations yield Eqs. (2)–(4) of [14].

Because of (4), there is only one physical degree
freedom, chosen to beF. Note that the “source” term in
(2) is crucial [see (4)]. The correct equation of motion fo
F is obtained by inserting (4) into (2), with the result

F̈ 1

µ
H 2 2

f̈

Ùf

∂
ÙF 1

µ
k2

a2 1 2 ÙH 2 2H
f̈

Ùf

∂
F ­ 0 .

(5)

During the slow rolling period of an inflationary
cosmology, the coefficients in this equation are we
behaved. However, oscillations off during reheating
lead to singularities. These singularities can be eliminat
[13] by making use of the Sasaki-Mukhanov variable [16
Q, the combination

Q ­ df 1
Ùf

H
F (6)

of the gauge-invariant matter and metric perturbations
terms of which the unified quantization of the matter an
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metric perturbations is easy. In terms ofQ, the equation
of motion (5) becomes [13,15]

Q̈ 1 3H ÙQ 1

∑
V 00 1

k2

a2 1 2

µ ÙH
H

1 3H

∂?∏
Q ­ 0 .

(7)

As is evident, the coefficients of this differential equatio
are regular. GivenQ, it is possible to obtainF since (6)
can be rewritten in the form

k2

a2 F ­
k2

2

Ùf2

H

µ
H
Ùf

Q

∂?

. (8)

The Hubble damping term in Eq. (7) forQ can be
eliminated by introducing the rescaled variableQ̃. For
a massive inflaton with potentialV sfd ­ m2f2y2, Q̃ ­
a3y2Q. In terms ofQ̃, (7) becomes

¨̃Q 1

∑
V 00 1

k2

a2 1 2

µ ÙH
H

1 3H

∂
2

9
4

µ
H2 1

2
3

ÙH

∂∏
Q̃ ­ 0 . (9)

Making use of the background Einstein equations, (9) c
be written as

¨̃Q 1

∑
V 00 1

k2

a2 1 3k2 Ùf2 1 2k2
ÙfV 0

H
2

k4

2H2
Ùf4 1

3k2

4
pf

∏
Q̃ ­ 0 , (10)

wherepf is the background pressure of the scalar field.
After the period of slow rolling has ended, the value o

H is smaller thanm. Hence, it follows from the back-
ground equation of motion forf that—in the absence of
back reaction and with accuracy increasing in time—th
motion off̃ ­ a3y2f is oscillatory in time. In this limit,
Eq. (9) has the form

¨̃Q 1 fAskd 2 2q cossmtdgQ̃ ­ 0 , (11)

where

Askd ­ m2 1
k2

a2 1 r , (12)

where r contains the time average of the last fou
terms in the square bracket of (10), andq contains
the coefficients of the oscillating parts of these term
Since qstd is decreasing, (11) is not of the form of the
usual parametric resonance equation, and no exponenti
growing solutions will result.

The second of the four last terms in the square brac
of (10) is the most important. Its initial amplitude is
the largest, and it decays the least fast as a funct
of time. Approximatingastd , t2y3 corresponding to a
pressureless phase, it is easy to check that the second
decays ast21, whereas the other three terms decay
t22. Note that the decay rate of the dominant term
q as a function of time is less fast than the correspondi
decay rate ofq for matter fluctuations [4], a point already
1363



VOLUME 82, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 15 FEBRUARY 1999

e

nd

n
the
s,
e
,
ns

e

on
er

it

on

e

he

e

lso

s
B

of

tes

al
10 20 30 40 50 60

-30

-20

-10

10

20

30

FIG. 1. Evolution ofQ̃ as a function of time in the case of
a massive inflaton for a mode withk ­ 0.1 m, with initial
conditions such that̃Q is 21 and its time derivative 0 at the
initial time when f ­ 0.2 mpl , after slow rolling has ended.
Time is expressed in units of m21.

emphasized by [14]. The amplitude of this leading ter
in q starts out slightly larger thanm2. Because of the
expansion of the Universe, the instability does not le
to exponential increase iñQ, but only to an increase
proportional toa3y2std (see Fig. 1), which implies that the
amplitude ofQ remains constant.

The results are different for a massless self-coupl
inflaton with potentialV sfd ­ lf4y4. In this case, we
eliminate (following [17]) the Hubble damping term in (7
by introducing the rescaled variablẽQ ­ ashdQ and by
working in terms of conformal timeh. In this case, (7)
becomes

¨̃Q 1

∑
Askd 1 3 cn2

µ
x,

1
p

2

∂∏
Q̃ ­ 0 , (13)

wherex ­
p

l Afh is a rescaled conformal time,Af

is the amplitude of oscillation ofashdf, cn stands for the
elliptic cosine function, and

Askd ­
k2

lA
2
f

1 s . (14)

Here, s stands for oscillatory terms which are importan
initially and lead to an increase inQ (even for k2 ø

lA
2
f), but which decay in time ash21. For s ­ 0,

Eq. (13) is a Lamé equation, has been studied in de
in [17], and exhibits no resonance fork2 ø lA

2
f.

We have solved the equation of motion (10) numer
cally. Figure 1 shows the resulting time evolution of th
rescaled variablẽQ in the case of a massive inflaton fo
the modek ­ 0.1 m (about 30 times larger wavelength
than the Hubble radius) over a period of several oscill
tions of the background field. As mentioned above, th
amplitude ofQ̃ grows linearly in time (and thus the am
plitude of Q remains constant) to within the numerica
accuracy.

According to the usual treatment (see, e.g., [15]), t
details of the equation of state are irrelevant for th
final amplitude of fluctuations on scales larger tha
the reheating Hubble radius. If oscillations in the equatio
1364
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of state would lead to an increase in the amplitud
of F, this could have important implications for the
spectrum of density and cosmic microwave backgrou
(CMB) fluctuations [14]. Such an effect wouldnotviolate
causality. Inflation has already set up fluctuations o
scales larger than the reheating Hubble radius, and
inflaton field is oscillating coherently on these scale
which can lead to a self-gravitational increase in th
magnitude of fluctuations without violating causality
analogous to the usual evolution of quantum fluctuatio
in inflationary cosmology.

The clearest way to determine if the growth ofQ̃
calculated above is a new effect is to calculate th
quantityz :

z ­
2
3

F 1 H21 ÙF
1 1 w

1 F , (15)

which according to the standard cosmological perturbati
theory remains constant for modes with wavelength larg
than the Hubble radius [15]. Here,w ­ pyr describes
the equation of state, andp and r are the pressure and
energy density, respectively. More precisely [15],Ùf2 Ùz ­
0 is equivalent to the equation of motion forF (for modes
with wavelength larger than the Hubble radius). Hence,
is usually deduced thatÙz ­ 0. This conclusion, however,
may break down ifÙf ­ 0 which occurs during reheating.
Hence, it is possible that additional resonant amplificati
of fluctuations during reheating occurs.

The variablez is related toQ via

z ­
H
Ùf

Q . (16)

Since the amplitudes ofH and Ùf decrease at the same rat
(proportional tot21) if we assume thatastd , t2y3, the
constancy of the amplitude ofQ (for a massive inflaton)
leads to the conclusion thatz is constant when evaluated
at the same phase during each oscillation period of t
inflaton f. Since1 1 w has constant amplitude during
the period of oscillation, we deduce from Fig. 2 that th
amplitude ofz is constant. Hence [inasfar as theÙF term
in (15) can be neglected], althoughF oscillates even on
large scales, its amplitude remains constant. This can a
be seen by evaluatingF directly using (8).

Note thatF is the basic physical quantity which is well-
defined at all times. It is the quantity which determine
the power spectrum of density fluctuations and of CM
anisotropies. In contrast,z is an auxiliary quantity. At
each zero of Ùf there is a singularity in the relation
betweenF and z . What is therefore important is to
calculate the value ofz for each zero crossing off
and compare the values. As seen from Fig. 2 [plot
s1 1 wdz as a function of time, determined directly from
(16)], z does not change over a period. This demonstra
that the net growth of̃Q observed in Fig. 1 agrees with the
results of the usual analysis of the growth of cosmologic
perturbations.
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FIG. 2. Evolution of s1 1 wdz for a theory with a massive
inflaton, and for same mode, initial conditions, and initial tim
as in Fig. 1.

In summary, we have studied the growth of cosmolog
cal perturbations during a phase of coherent oscillatio
of the scalar field driving inflation, which leads to
singularities inc2

s ­ Ùpy Ùr. In this period, the equations
of motion of the fluctuations are similar in structure
to the equations describing coupled matter fields durin
reheating. As emphasized in [4,9,17], the presence
absence of a mass in the inflaton field is crucial. T
study the evolution of cosmological perturbations, it i
crucial to work in terms of variables in terms of which
the singularities as absent, and in which the usual grow
of cosmological fluctuations (obtained without taking int
account the oscillations off) is factored out, such asz .

For a massive inflaton, we find no amplification of lon
wavelength fluctuations (wavelength larger than the Hu
ble radius during reheating)—the amplitude ofz is con-
stant. A modeling of the reheating period including th
oscillations off will lead to the same growth as is ob-
tained in the usual analyses of perturbations in which t
transition from the inflationary phase to the postinflation
ary radiation-dominated period is modeled (implicitly) by
monotonous transition in the equation of state, or in whic
the background quantities are averaged in time [18].
a comparison Letter [19], Parry and Easther demonstr
that even a full nonlinear analysis does not lead to any a
ditional growth of fluctuations with wavelength larger tha
the Hubble radius during reheating.

However, for a massless self-coupled inflaton, the
is evidence of a stable resonance band (see [20]
a detailed discussion, and [21] for related work o
gravitational back reaction).

Note that the negative coupling instability discusse
in [14] is not present in the relevant Eq. (7) for̃Q.
The negative coupling instability in the equation forF

is precisely the instability which is responsible for th
amplification of the fluctuations in the standard analys
of the growth of cosmological perturbations.
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