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Conformal “Thin-Sandwich” Data for the Initial-Value Problem of General Relativity
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The initial-value problem is posed by giving a conformal three-metric on each of two nearby
spacelike hypersurfaces, the proper-time separation of the hypersurfaces up to a multiplier to be
determined, and the mean (extrinsic) curvature of one slice. The resulting equations haanthe
elliptic form as in the one-hypersurface formulation. The metrical roots of this form are revealed by a
conformal “thin sandwich” viewpoint coupled with the transformation properties of the lapse function.
[S0031-9007(99)08400-8]
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In this paper | propose a new interpretation of the fourflat spacetime. They limit the allowed values of the metric
Einstein vacuum initial-value constraints. (The presencg;; and extrinsic curvaturé;; of an “initial” time slice
of matter would add nothing new to the analysis.) Partlyin a yet-to-be constructed vacuum spacetime. This basic
in the spirit of a “thin sandwich” viewpoint, | base this form will be referred to as the, g, K) form, where? is
approach on prescribing theonformal metric [1] on the slice, sayr = /. In this case, the constraints have
each of two nearby spacelike hypersurfaces (“time slicesalready been posed as a semilinear elliptic system for
t =t andt = ¢/ + &t) that make a thin sandwich (TS). spatial scalar and spatial vector potentials, generalizations
Essential use is made of a new understanding of the rolef the Newtonian potential [9—11]. A significant virtue
of the lapse function in general relativity [2,3]. The new of the formulation in this paper is that the constraints
formulation could prove useful both conceptually, and inagain become a semilinear elliptic system with gane
practice, as a way to construct initial data in which oneessential mathematical structure as hag¥he, K) form.
has a hold on the input data different from that in theThis surprising result, as we shall see, arises from the
currently accepted approach. The new approach allows usehavior of the lapse function [2,3].
to derivefrom its dynamical and metrical foundations the The constraint equations abeare, in vacuum,

important scaling lamd” = ¢~ 1°A% for the traceless part V(K - Kg¥) = 0, 1)
of the extrinsic curvature. This rule is simply postulated o
in the one-hypersurface approach. R(g) — K ;K" + K =0, (2)

The new formulation differs from the well-known TS whereR((g) is the scalar curvature gf,;, V, is the Levi-

conjecture of Baierlein, Sharp, and Wheeler (BSW), "NCivita connection ofg,;, andK is the trace ofK;;, also

which the full spatial Riemannian metrig;, is given called the “mean curvature” of the slice. (A review of this

on each of two infinitesimally separated hypersurface i . .
T eometry is given in [11].) The overbar is used to denote
[4—6]. (The orthogonal separatioNét between the \Euantitiei thgt satisf;}thg:)constraints.

slices is assumed never to change signs in the BS The time derivative of the spatial metrig: is related
proposal and also here.) The four unknowns needed _ = __ /

to solve the constraints were taken by BSW to bel® Kij. N, and the shift vectop' by

the “lapse function”N(x) and the spatial “shift vector” 98, =8;="2NK; + (V;B; +V;B,). (3)
B'(x) (see below). By using a known vacuum spacetime — i i . L
solution of Einstein's equations from which to obtain WN€r€B; =88 The fixed spatial coordinatesof a

BSW data, one sees that their proposal must sometimd¥!nt on the “second” hypersurface, as evaluated on the
work. However, an analysis of the BSW proposal by first hypersurfage, are displaced hiy_(x)étwnh respect
Bartnik and Fodor [7] describes the general situatiorf® those on the first hypersurface, with an orthogonal link
clearly, and one can only conclude that the BSW proposaf®™m tr}_’e fII’S‘;[ to the second surface as a fiducial reference:
is unsatisfactory. For example, an infinite number ofB: = a * ax» Where= is the physical spacetime inner
nontrivial counterexamples to the BSW conjecture, baseffoduct of the indicated natural basis four-vectors. The
on compact three-geometries of negative scalar curvatu@ssentially arbitrary direction of is why N(x) and' (x)

with one (notw!) constraint (fixed volume), have been appear inthe TS formulation. In contrast, the tenfgris
described in [8]. always determined by the behavior of the unit normal on

The initial-value problem (IVP), that is, satisfying one slice and therefore does not possess the kinematical
the four constraints, is fundamentallyoaehypersurface freedom, i.e., the gauge variance, §f. Therefore,N
embedding problem. The four constraints are the Gaussnd 8' do not appear in the one-hypersurface IVP for
Codazzi embedding equations for a time slice in a Ricci{2, g, K).
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Turning now to the conformal metrics in the IVP, Itis clearin (8) that the left hand sidg; satisfies:;; =

we recall that two metricg;; andg;; are conformally  y*y;; because the terms if cancel out. Furthermore, a
equivalent if and only if there is a scalgr> 0 such that  straightforward calculation shows that

J— _ 4 . . .

g;; = ¥"g;;- The conformally invariant representative TB): = 4 (LB) - B = o 4LB)Y. (10
of the entire conformal equivalence class, in three dimen- (LB)ij = W (LB)yj; (LB) yo(Lp)”. (10)

sions, is the weight—2/3) unit-determinant “conformal ~ Néxt, we note, perhaps surprisingly, that the lapse
metric” §; =g g, = ¢ 3g; with g = de(g,)) function N has essential nontrivial conformal behavior.
i tj

and g = (detg;)). No{e particularly that for any small Furthermore, this ishe new element in the IVP analysis.

perturbation, g/ 8;; = 0. We will use the important In [2,3,13,14] t_he_“slicing function'a(z, x) > 0 replaces
relation the lapse functiowv,

.. .. .. N o —=1/2
870:8ij = 87 0:8ij = 879:8i; = 0. 4 N=g"a, (11)

In the following, rather than use the mathematicalWith important improvements then appearing in Teitel-
apparatus associated with conformally weighted object§0im’s path integral [13], in Ashtekar's new variables
such asg;;, we find it simpler to use ordinary scalars andProgram [14], in the canonical action principle [2,3], and
tensors to the same effect. Thus, let the roleggfon N making clear the role of the contracted Bianchi iden-
the first surface be played by a given metgg such tities [2,3]. 11}?2|ap59 is now a dynamical variable be-
that the physical metric that satisfies the constraints i§ause of theg /= factor [2,3,14]. Furthermore, in the
i = *g;; for some scalagy > 0. (This corresponds construction of mathematically hyperbolic systems for the
to “dressing” the initial unimodular conformal metrf;; ~ Einsteinevolutionequations with explicitly physical char-
with the correct determinant factgi/? = y*g!/3. This  acteristics, and only such (for example, [15-17]), it turns
process does not alter the conformal equivalence clagut to bea(z,x), not the usual Igpse_fL]J/r;cthn, that can
of the metric.) The role of the conformal metric on the P€ freely specified.  This use of =3 ""“a is Choquet-
second surface is played by the meyfe = g;; + u;;67, ~ Bruhat's “algebraic gauge” [18,19] !"1'}2‘ in general, a
where, in keeping with (4), the velocity tensay, = g;; ~ 9auge source” [20]. ActuallyN =g/“a should be
is chosen such that seen as a change of variables in which one specifies freely

iy — iy =0 (5) a(t,x) > 0 rather thanN. For these reasons, we con-
o s 8y clude that is not a dynamical variablgy = «. For the
Then, to first order indt, g;; and g;; have equal |apse, we have from (11), witN given and positive,
determinants, as desired; bgt; and g/; are not in the T _ .6
: 7 SlNE 8ij N = ySN. (12)
same conformal equivalence class in general. i o

We now examine the relation between the covariant Finally, we recall from the standard initial value prob-
derivative operator¥; of g;; andV; of g,;. The relation 1em for (%, K) that the separation of the extrinsic
is determined by / curvature into (its irreducible) trace and traceless parts is

=i j _ j ; fundamental, as it is here, and thiit= K [1]: the trace
— L 1 2 Y 7 ’ 1

Tj(®) - T(g) + 24 28(;00¥ — 8 g/"‘?“//)j (6) s not transformed even though it is apparently dynami-
from which follows the scalar curvature relation first usedcal. It “anchors” the construction, setting a reference scale
in an initial-value problem by Lichnerowicz [12], by fixing an observable dimensionful variable. (In closed

R(@) = ¢ *R(g) — 8y Ay, (7) worlds K is like a “time” variable, in that it may “lo-
whereA, ¢ = gM'V,V, 4 is the “rough” scalar Laplacian cate” the thin sandwich. In cosmologl, is essentially
associatged withy;; the inverse mean “Hubble time.”) There is no underlying

Next. we solvlej '(3) for its traceless part geometrical derivation ok = K, unlike the case of\;;

] : . o L below. The conformal invariance &f is primitive. See

%, — 38,898y =u; = —2NA; + (LB); (8) theresultsin (19) below.

T T 1 Now we solve (8) forA” and find
Wil A~ X~ sKey and Al ¢6(2N)(1E11/4(LE)U b4l

—— S5 . v % _ Sk = - u
(LB)IJ = VZB] + V]Bl - (2/3)gljv Bk‘ (9) _10{(2N _1[ L_ ij lJ]} —IOAij 13

Expression (9) vanishes, for nonvanishigg, if and —v )l ’8,) wlh=4¢ > (13) )

only if g, admits a conformal Killing vectoEi — ki the same conformal scaling that was postulated by Lich-
ij .

Clearly, k' would also be a conformal Kiling vector nerowicz [12] and others [9—-11] for the traceless part

of g;;, or of any metric conformally equivalent tg;;, of K]_ |n.the one_—hypersurface problem. O_ne now h_as
with no scaling ofk’. This teaches us that in general a de_rlvatlon of t_hls fundamental transformatlon from its
B = pi, whie B, = 5.8’ = g, B/ = y*p;. That metrical foundations. The momentum constraint (1) be-
B ] I folléws f)lécausﬂ ggltjenerator ofl.a spatial comes

B = p'also g —1(7 AV — 1 ij 6yi
diffeomorphism, is not a dynamical variable. The latter ViL@N) T (LB)T] = ViL@N) " ut] + 2/3)47V'K
“rule” was inferred to be a matter of principle. (14)
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for unknown 8' and knownN, g;;, u;;, and K. The 0, (4logy) = %(Vkﬁk + 68" logy — NKy)
operator on the left, being in elliptic “divergence form” Y [

with N > 0, does not differ in any important property 9.(g/8)"" = 3(Vip” = NK). (19)
from its counterpart in the3, g, K) analysis [9-11]. The Thgrefore,

Hamiltonian constraint (2) becomes [21] . . 2 (VB + 68 0, NKUO)]
N 8ij = ¥luij + 3 8i + dxlogy —
S0 — R + AyATy " — /3Kkys =0, ) C0 TV T sstE T oradgd T ARy
for unknowny, whereA¥ is given in (13). This equation = ij T 38, 2ViB — 2NK). (20)

has precisely the same form in the one-hypersurface angle see that{p and ?ij are fully determined by the
two-hypersurfaces constraint problems. Note that (14}onstraints and, in the last equality of (20), that the
and (15) are not coupled |K = const; i.e., one solvgs conformal invariance ofg* (= Ek) and K (= K) are
(14), then (15). No tensor splitting$21,22] are needed in 11y consistent, having led to the precise geometrically
the new formulation of the constraints. _ correct form 0f§,~- by virtue also ofN = ON.

Thus, the free data afg;;, u;;. N. K} and the solution  Thjs interpretation of the semilinear elliptic constraint
is {, 8'}. Mathematical analysis of the correspondingsystem has interesting differences from earlier ones be-
elliptic system (14, 15) has been carried out elsewhergsause the data and solutions are related more simply to
for example, [9,10,23-25], and will not be repeated herethe spacetime metric, though not in the manner that would
The corresponding situation in th&, g, K) analysis is  be implied by ordinary conformal transformations of the
that the free data argg;;,A;;, K} and the solution is spacetime metric. In this “conformal” TS form one can
{¢. W'}, where W' is obtained from a tensor splitting see explicitly the role of every part of the metric. The
of A;; [21,22]. Note thatp # ¢ and W' # B'. Only  new formulation shows that the one-hypersurface and two-
part ofA;;, found in the splitting, is free. The conformal hypersurfaces initial-value problems are both viable once
covariance of the new method, i.e., starting with differentthe full implications in general relatively of the “dynamical
representatives of a given conformal equivalence class isonformal structures” are understood. The two viewpoints
uniqueand clear. On the other hand, that of fieg, K)  can be thought of as roughly analogous to a Hamiltonian
analysis can follow two inequivalent routes because therand to a Lagrangian view of the constraints; the former
are two slightly different conformal analyses possiblebecause using;; directly [9-11] is equivalent to using
for construction of(%, g, K). This nonuniqueness arises the initial canonical momentur/ = g'/2(Kg"/ — K*),

because conformal scaling and tensor splittings are nQfnq the latter becaugg, is the initial velocity. This strik-

commutative in a straightforward way. The method ofing correspondence hangs on the subtle role of the lapse

tensor splitting in [11] gives the Hamiltonian constraint in fynction through the Choquet-Bruhat relatidh= g2«

the form of (15). , ~and on the corresponding conformal invariancekopos-
These data are not in perfect analogy to those conjegy|ated by the author [21] in going beyond Lichnerowicz’s

tured by BSW, becaus& and N can be thought of as ¢hojcek = 0. The “conformal thin sandwich” aspect of
belonging to the thin sandwich as a whole. The rol&of the results reflects Wheeler's approach.

has been described. The role/sf= ¢'/?a is to give the It is a pleasure to acknowledge the influence of the
thickness of the sandV\lncIN&, in proper time measured stydies of the IVP begun by the late André Lichnerowicz
orthogonally fromr = ' tot = " and by John Archibald Wheeler, whose approaches have

Not = (%)t = (y%g"*)ast = yS(N6r). (16) been melded in this paper. | thank Yvonne Choquet-
Bruhat for encouragement and James A. Isenberg for
The final relationships between the two physical Riethoughtful advice concerning presentation of the re-
mannian metricg;; andg;; = g;; + g;;6¢ and the given sults. Research support has been received by the author
datag;; andg/; = gi; + u;; 8t are quite interesting. Of from National Science Foundation Grants No. PHY
course,g;; = Y*g;; is clear. But we have to calculate 94-13207 to the University of North Carolina, Chapel
the re|ati0nship betwe@j andgéj asgéj = gij + ?ijat’ Hill, and No. PHY 93-18152/ASC 93-18152 (ARPA

where, as in (3), supplemented).
?ij = 9,(p*gij)

_ l_ e — Pr——
= —2N(A;; + zg..K) + (V;B; +V;B8.). (17
(4 + 38K + (ViB, B A7 *Permanent address: Department of Physics and

Working out (17) gives a key result, namely, Astronomy, University of North Carolina, Chapel Hill,
- . NC 27599-3255.
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