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Conformal “Thin-Sandwich” Data for the Initial-Value Problem of General Relativity
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The initial-value problem is posed by giving a conformal three-metric on each of two nearby
spacelike hypersurfaces, the proper-time separation of the hypersurfaces up to a multiplier to be
determined, and the mean (extrinsic) curvature of one slice. The resulting equations have thesame
elliptic form as in the one-hypersurface formulation. The metrical roots of this form are revealed by a
conformal “thin sandwich” viewpoint coupled with the transformation properties of the lapse function.
[S0031-9007(99)08400-8]
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In this paper I propose a new interpretation of the fo
Einstein vacuum initial-value constraints. (The presen
of matter would add nothing new to the analysis.) Par
in the spirit of a “thin sandwich” viewpoint, I base this
approach on prescribing theconformal metric [1] on
each of two nearby spacelike hypersurfaces (“time slice
t ­ t0 and t ­ t0 1 dt) that make a thin sandwich (TS)
Essential use is made of a new understanding of the r
of the lapse function in general relativity [2,3]. The ne
formulation could prove useful both conceptually, and
practice, as a way to construct initial data in which on
has a hold on the input data different from that in th
currently accepted approach. The new approach allows
to derivefrom its dynamical and metrical foundations th
important scaling lawAij

­ c210Aij for the traceless part
of the extrinsic curvature. This rule is simply postulate
in the one-hypersurface approach.

The new formulation differs from the well-known TS
conjecture of Baierlein, Sharp, and Wheeler (BSW),
which the full spatial Riemannian metricgij is given
on each of two infinitesimally separated hypersurfac
[4–6]. (The orthogonal separationNdt between the
slices is assumed never to change signs in the BS
proposal and also here.) The four unknowns need
to solve the constraints were taken by BSW to b
the “lapse function”Nsxd and the spatial “shift vector”
b

isxd (see below). By using a known vacuum spacetim
solution of Einstein’s equations from which to obtai
BSW data, one sees that their proposal must sometim
work. However, an analysis of the BSW proposal b
Bartnik and Fodor [7] describes the general situati
clearly, and one can only conclude that the BSW propo
is unsatisfactory. For example, an infinite number
nontrivial counterexamples to the BSW conjecture, bas
on compact three-geometries of negative scalar curvat
with one (not`1) constraint (fixed volume), have bee
described in [8].

The initial-value problem (IVP), that is, satisfying
the four constraints, is fundamentally aone-hypersurface
embedding problem. The four constraints are the Gau
Codazzi embedding equations for a time slice in a Ric
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flat spacetime. They limit the allowed values of the metric
gij and extrinsic curvatureKij of an “initial” time slice
in a yet-to-be constructed vacuum spacetime. This bas
form will be referred to as thesS, g, Kd form, whereS is
the slice, sayt ­ t0. In this case, the constraints have
already been posed as a semilinear elliptic system fo
spatial scalar and spatial vector potentials, generalizatio
of the Newtonian potential [9–11]. A significant virtue
of the formulation in this paper is that the constraints
again become a semilinear elliptic system with thesame
essential mathematical structure as has thesS, g, Kd form.
This surprising result, as we shall see, arises from th
behavior of the lapse function [2,3].

The constraint equations areS are, in vacuum,

=jsKij
2 K gijd ­ 0 , (1)

Rsgd 2 KijKij
1 K2 ­ 0 , (2)

whereRsgd is the scalar curvature ofgij, =j is the Levi-
Civita connection ofgij , andK is the trace ofKij , also
called the “mean curvature” of the slice. (A review of this
geometry is given in [11].) The overbar is used to denot
quantities that satisfy the constraints.

The time derivative of the spatial metricgij is related

to Kij, N, and the shift vectorbi by

≠tgij ; Ùgij ­ 22N Kij 1 s=ibj 1 =jbid , (3)

wherebj ­ gjib
i . The fixed spatial coordinates$x of a

point on the “second” hypersurface, as evaluated on th
“first” hypersurface, are displaced byb

is $xddt with respect
to those on the first hypersurface, with an orthogonal lin
from the first to the second surface as a fiducial referenc
bi ­

≠≠≠

≠≠≠t p
≠≠≠

≠≠≠xi , wherep is the physical spacetime inner
product of the indicated natural basis four-vectors. Th
essentially arbitrary direction of≠≠≠≠≠≠t is why Nsxd andb

isxd
appear in the TS formulation. In contrast, the tensorKij is
always determined by the behavior of the unit normal o
one slice and therefore does not possess the kinemati
freedom, i.e., the gauge variance, of≠≠≠

≠≠≠t . Therefore,N
and b

i do not appear in the one-hypersurface IVP fo
sS, g, Kd.
© 1999 The American Physical Society
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Turning now to the conformal metrics in the IVP
we recall that two metricsgij and gij are conformally
equivalent if and only if there is a scalarc . 0 such that
gij ­ c4gij. The conformally invariant representative
of the entire conformal equivalence class, in three dime
sions, is the weights22y3d unit-determinant “conformal
metric” ĝij ­ g 21y3gij ­ g21y3gij with g ­ detsgijd
and g ­ sdetgijd. Note particularly that for any small
perturbation,gijdĝij ­ 0. We will use the important
relation

gij≠t ĝij ­ gij≠t ĝij ­ ĝij≠t ĝij ­ 0 . (4)

In the following, rather than use the mathematic
apparatus associated with conformally weighted obje
such asĝij, we find it simpler to use ordinary scalars an
tensors to the same effect. Thus, let the role ofĝij on
the first surface be played by a given metricgij such
that the physical metric that satisfies the constraints
gij ­ c4gij for some scalarc . 0. (This corresponds
to “dressing” the initial unimodular conformal metriĉgij

with the correct determinant factorg1y3 ­ c4g1y3. This
process does not alter the conformal equivalence cl
of the metric.) The role of the conformal metric on th
second surface is played by the metricg0

ij ­ gij 1 uijdt,
where, in keeping with (4), the velocity tensoruij ­ Ùgij

is chosen such that

gijuij ­ gij Ùgij ­ 0 . (5)

Then, to first order indt, g0
ij and gij have equal

determinants, as desired; butgij and g0
ij are not in the

same conformal equivalence class in general.
We now examine the relation between the covaria

derivative operators=i of gij and=i of gij. The relation
is determined by

G
i
jksgd ­ G

i
jksgd 1 2c21s2d

i
s j≠kdc 2 gilgjk≠lcd , (6)

from which follows the scalar curvature relation first use
in an initial-value problem by Lichnerowicz [12],

Rsgd ­ c24Rsgd 2 8c25Dgc , (7)

whereDgc ; gkl=k=lc is the “rough” scalar Laplacian
associated withgij.

Next, we solve (3) for its traceless part

Ùgij 2
1
3 gijgkl Ùgkl ; uij ­ 22N Aij 1 sL bdij (8)

with Aij ; Kij 2
1
3 Kgij and

sL b dij ; =ibj 1 =jbi 2 s2y3dgij=
k
bk . (9)

Expression (9) vanishes, for nonvanishingb
i , if and

only if gij admits a conformal Killing vectorbi
­ ki .

Clearly, ki would also be a conformal Killing vector
of gij, or of any metric conformally equivalent togij ,
with no scaling ofki . This teaches us that in genera
b

i
­ bi , while bi ­ gijb

j
­ c4gijbj ­ c4bi . That

b
i

­ bi also follows becausebi , generator of a spatial
diffeomorphism, is not a dynamical variable. The latte
“rule” was inferred to be a matter of principle.
,
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It is clear in (8) that the left hand sideuij satisfiesuij ­
c4uij because the terms inÙc cancel out. Furthermore, a
straightforward calculation shows that

sL b dij ­ c4sLbdij; sLbdij ­ c24sLbdij . (10)

Next, we note, perhaps surprisingly, that the lap
function N has essential nontrivial conformal behavio
Furthermore, this isthe new element in the IVP analysis
In [2,3,13,14] the “slicing function”ast, xd . 0 replaces
the lapse functionN ,

N ­ g1y2a , (11)

with important improvements then appearing in Teite
boim’s path integral [13], in Ashtekar’s new variable
program [14], in the canonical action principle [2,3], an
in making clear the role of the contracted Bianchi ide
tities [2,3]. The lapse is now a dynamical variable b
cause of theg1y2 factor [2,3,14]. Furthermore, in the
construction of mathematically hyperbolic systems for t
Einsteinevolutionequations with explicitly physical char-
acteristics, and only such (for example, [15–17]), it tur
out to beast, xd, not the usual lapse functionN, that can
be freely specified. This use ofN ­ g1y2a is Choquet-
Bruhat’s “algebraic gauge” [18,19] with, in general,
“gauge source” [20]. Actually,N ­ g1y2a should be
seen as a change of variables in which one specifies fre
ast, xd . 0 rather thanN . For these reasons, we con
clude thata is not a dynamical variable,a ­ a. For the
lapse, we have from (11), withN given and positive,

N ­ c6N . (12)

Finally, we recall from the standard initial value prob
lem for sS, g, Kd that the separation of the extrinsi
curvature into (its irreducible) trace and traceless parts
fundamental, as it is here, and thatK ­ K [1]: the trace
is not transformed even though it is apparently dynam
cal. It “anchors” the construction, setting a reference sc
by fixing an observable dimensionful variable. (In close
worlds K is like a “time” variable, in that it may “lo-
cate” the thin sandwich. In cosmology,K is essentially
the inverse mean “Hubble time.”) There is no underlyin
geometrical derivation ofK ­ K, unlike the case ofAij

below. The conformal invariance ofK is primitive. See
the results in (19) below.

Now we solve (8) forAij and find

Aij ­ c26s2Nd21fc24sLb dij 2 c24uijg

­ c210hs2Nd21fsLb dij 2 uijgj ­ c210Aij , (13)

the same conformal scaling that was postulated by Li
nerowicz [12] and others [9–11] for the traceless p
of Kij in the one-hypersurface problem. One now h
a derivation of this fundamental transformation from i
metrical foundations. The momentum constraint (1) b
comes

=jfs2Nd21sLb dijg ­ =jfs2Nd21uijg 1 s2y3dc6=iK ,

(14)
1351
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for unknown b
i and knownN , gij, uij, and K. The

operator on the left, being in elliptic “divergence form
with N . 0, does not differ in any important property
from its counterpart in thesS, g, Kd analysis [9–11]. The
Hamiltonian constraint (2) becomes [21]

8Dgc 2 Rsgdc 1 AijAijc27 2 s2y3dKc5 ­ 0 , (15)

for unknownc, whereAij is given in (13). This equation
has precisely the same form in the one-hypersurface a
two-hypersurfaces constraint problems. Note that (1
and (15) are not coupled ifK ­ const; i.e., one solves
(14), then (15).No tensor splittings[21,22] are needed in
the new formulation of the constraints.

Thus, the free data arehgij , uij , N , Kj and the solution
is hc , b

ij. Mathematical analysis of the correspondin
elliptic system (14, 15) has been carried out elsewhe
for example, [9,10,23–25], and will not be repeated he
The corresponding situation in thesS, g, Kd analysis is
that the free data arehgij , Aij , Kj and the solution is
hw, Wij, where Wi is obtained from a tensor splitting
of Aij [21,22]. Note thatw fi c and Wi fi b

i . Only
part of Aij, found in the splitting, is free. The conforma
covariance of the new method, i.e., starting with differe
representatives of a given conformal equivalence class
uniqueand clear. On the other hand, that of thesS, g, Kd
analysis can follow two inequivalent routes because the
are two slightly different conformal analyses possib
for construction ofsS, g, Kd. This nonuniqueness arises
because conformal scaling and tensor splittings are
commutative in a straightforward way. The method o
tensor splitting in [11] gives the Hamiltonian constraint i
the form of (15).

These data are not in perfect analogy to those conj
tured by BSW, becauseK and N can be thought of as
belonging to the thin sandwich as a whole. The role ofK
has been described. The role ofN ­ g1y2a is to give the
thickness of the sandwich,Ndt, in proper time measured
orthogonally fromt ­ t0 to t ­ t00:

Ndt ­ sg1y2addt ­ sc6g1y2dadt ­ c6sNdtd . (16)

The final relationships between the two physical Ri
mannian metricsgij andg0

ij ­ gij 1 Ùgijdt and the given
datagij and g0

ij ­ gij 1 uijdt are quite interesting. Of
course,gij ­ c4gij is clear. But we have to calculate
the relationship betweengij andg0

ij asg0
ij ­ gij 1 Ùgijdt,

where, as in (3),

Ùgij ­ ≠tsc4gijd

­ 22NsAij 1
1
3 gijKd 1 s=ibj 1 =jbid . (17)

Working out (17) gives a key result, namely,

Ùgij ­ c4fuij 1 gij≠ts4 logcdg

­ uij 1 gij≠ts4 logcd , (18)

where
1352
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≠ts4 logcd ­
2
3 s=kb

k
1 6b

k
≠k logc 2 NKc6d

­ ≠tsgygd1y3 ­
2
3 s=kb

k
2 N K d . (19)

Therefore,

Ùgij ­ c4fuij 1
2
3 gijs=kb

k
1 6b

k
≠k logc 2 NKc6dg

­ uij 1
1
3 gijs2=kb

k
2 2NKd . (20)

We see that Ùc and Ùgij are fully determined by the
constraints and, in the last equality of (20), that the
conformal invariance ofbk s­ b

kd and K s­ K d are
fully consistent, having led to the precise geometricall
correct form ofÙgij by virtue also ofN ­ c6N .

This interpretation of the semilinear elliptic constraint
system has interesting differences from earlier ones b
cause the data and solutions are related more simply
the spacetime metric, though not in the manner that wou
be implied by ordinary conformal transformations of the
spacetime metric. In this “conformal” TS form one can
see explicitly the role of every part of the metric. The
new formulation shows that the one-hypersurface and tw
hypersurfaces initial-value problems are both viable onc
the full implications in general relatively of the “dynamical
conformal structures” are understood. The two viewpoint
can be thought of as roughly analogous to a Hamiltonia
and to a Lagrangian view of the constraints; the forme
because usingKij directly [9–11] is equivalent to using
the initial canonical momentump ij ­ g1y2sKgij 2 K

ijd,
and the latter becauseÙgij is the initial velocity. This strik-
ing correspondence hangs on the subtle role of the lap
function through the Choquet-Bruhat relationN ­ g1y2a

and on the corresponding conformal invariance ofK pos-
tulated by the author [21] in going beyond Lichnerowicz’s
choiceK ­ 0. The “conformal thin sandwich” aspect of
the results reflects Wheeler’s approach.
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